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Interband optical transitions in a semiconductor superlattice induced by an intense optical wave in the
presence of a uniform electric field are analyzed. Both the oscillating electric field of the optical wave

and the uniform electric field are directed perpendicular to the heterolayers. The superlattice potential
barriers are modeled by a periodical chain of 5 functions. Quasienergetic time-dependent states are used.
The explicit dependence of the coef6cient of the multiphoton absorption on the frequency and magni-
tude of the oscillating electric field, the superlattice parameters, and on the magnitude of the uniform
electric field is obtained. The importance of a suf6ciently strong uniform electric field, which causes
Wannier-Stark localization of the electrons and holes, is emphasized. It has been shown that this locali-
zation increases with the magnitude of both the uniform and oscillating electric fields. The main
influence of the intense oscillating field is found to be in the narrowing of the energy minibands. Under
localization conditions, the electroabsorption multiphoton spectrum consists of a sequence of intense

steps such that the number of steps depends upon the number of photons and increases with this num-

ber. The effective red boundary of the spectrum shifts towards longer wavelengths as the magnitude of
the uniform electric field increases. The form of the spectrum is shown to depend upon the parity of the
number of photons involved. Estimates for the GaAs/Ga& „Al„As superlattice are given.

I. INTRODUCTION

The study of the optical properties of multilayer
periodic semiconductor structures is attracting the atten-
tion of both theoreticians and experimentalists. One im-
portant example is the heterostructure formed by alter-
nating layers of GaAs and Ga& „Al„As semiconductors
which have similar properties but different forbidden
gaps. In such superlattices, the electrons are under the
influence of an additional periodic potential which affects
the electron motion in the direction Oz (the superlattice
direction) normal to the heterolayers. This potential con-
sists of a periodic sequence of potential wells separated by
barriers and causes changes in the three-dimensional
energy-band spectrum. The energy spectrum associated
with the z direction of the superlattice splits into an alter-
nating series of allowed and forbidden minibands. This
miniband spectrum is superimposed on the two-
dimensional band energy spectrum associated with the
transverse motion. The character of the superlattice
energy-band spectrum reflects both the localized and ex-
tended carrier states of the potential wells due to tunnel-
ing through the barriers.

Optical experiments, including interband optical ab-
sorption, are the methods usually adopted for the investi-
gation of these structures. These techniques are very
effective in the presence of external fields. In particular,
very interesting optical phenomena arise in the superlat-
tice when it is subjected to a uniform electric field E
parallel to Oz. It is well known' that the quasiclassical
motion of the electron of charge e moving along Oz is
finite. Its frequency Q is given by Q-eEa/A, where a is

the relevant period of the structure under consideration.
The localization length of the electron states is order of
6leE, where 6 is the energy-band width. This leads to a
discrete electron energy spectrum consisting of equidis-
tant Stark levels separated by an amount fiQ. However,
in bulk semiconductors for which 6-1 eV, a —1 A, and
with available electric fields E-10 V m ', the localiza-
tion length ( —103 A) is much greater than the crystal
period, so that Stark quantization is not observed in such
experiments. In contrast, in a superlattice for which
a-50 A and 5-0.1 eV, an electron can be localized
within one period by the above-mentioned strong applied
electric field E. We note that the influence of the local-
ized electrons on the optical response of a superlattice
with an electric field applied along the superlattice direc-
tion has been investigated previously both theoretical-
ly and experimentally.

It should be noted that most of the previous theoretical
papers were based either on numerical- or variational-
type calculations of one-photon effects induced by a weak
optical wave. The numerical character of these calcula-
tions is a consequence of using a real superlattice poten-
tial which consists of a large number of rectangular wells
separated by barriers with finite width and height. ' '"
Evidently such a potential cannot be studied by analytical
methods. Since the optical wave is considered to be
weak, these calculations involve the time-independent in-
traband carrier states and ignore the effects of the time-
dependent electric field of the optical wave. The calcula-
tion of multiphoton transitions based on time-
independent states is possible by using the formalism of
high order of perturbation theory. However, if the num-
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ber of photons is increased, these calculations rapidly be-
come very cumbersome and thus only one- or two-photon
absorption can be considered in practice. This approach
has been illustrated by the example of two-photon mag-
netoabsorption in a superlattice induced by radiation po-
larized in the plane of the heterolayers. '

An analytical approach to the calculation of the inter-
band optical transitions in a semiconductor superlattice
has been developed previously' ' in which the superlat-
tice potential barriers are modeled by carriers which are
6-type functions. ' ' Explicit analytical expressions for
the time-independent carrier states and for the coefficient
of one-photon absorption in the presence of uniform elec-
tric' '" and magnetic' fields were obtained. The results
were found to be in good agreement with both numerical
calculations and with experimental data. ' Explicit ex-
pressions for the time-dependent carrier states and for
the coefficient of multiphoton magnetoabsorption' and
exciton absorption' induced by the radiation polarized
perpendicular to the heterolayers have been obtained.
The theoretical results' are in agreement with experi-
mental data. ' '

The aim of this paper is to extend the previous analyti-
cal approach' ' to calculate the interband multiphoton
absorption in a semiconductor superlattice subjected to
external uniform electric fields (the multiphoton
Wannier-Stark eff'ect). Both the oscillating electric field
of the intense optical wave and the uniform electric field
are parallel to Oz. The effective-mass approximation is
used and the superlattice is modeled by a limiting form of
the Kronig-Penney potential consisting of a periodic
chain of 5-function-type barriers. This approach uses
quasienergetic time-dependent intraband states. The
inAuence of the dynamical Stark effect on the localization
of electrons by the uniform electric field is studied. The
explicit dependence of the coefficient of the multiphoton
absorption, upon the frequency and magnitude of the os-
cillating electric field, upon the magnitude of the uniform
electric field, and upon the superlattice parameters, is ob-
tained.

It is shown that the dynamical Stark effect is favorable
for the localization on account of the narrowing of the
rniniband width 6 by the strong oscillating electric
field. ' ' Also, when the conditions of localization are
met, the electroabsorption multiphoton spectrum will be
shown to consist of a sequence of intense steps such that
the number of these steps depends upon the number I of
photons and increases with I. As the uniform electric
field increases in magnitude, it will be shown that the
low-frequency edge of the spectrum will shift toward
longer wavelengths. Finally, it is found that the form of
the spectrum depends critically upon the parity of the
number of photons. Detailed estimates for the
GaAs/Ga& Al„As structure are also given.

where

V(z) =a g 5(z —as), V(z) = V{z+as), u & 0

with s integral (2.2)

is the periodic superlattice potential formed by the 5-
function-type barriers of power a.

If both electric fields are directed along Oz, the solu-
tion to Eq. (2.1}is

%(r, t)=e ' ' 4i(p)P(z, t},
where 4i(p) is the transverse function of a particle with

transverse energy 8i, and P(z, t) obeys the equation

8 (zt) + [ V(z) —e (E + Focostot)z]P(z, t)
2m

(2.4)

The solutions to this equation with E =F0=0 are

P'„'(z, t;k}=e ' " P„(z;k),
where

E„(k)=s„(k +2m /a), f„(z,k) =g„(z,k +2m/a)

for n =1,2, 3, . . . .

(2.5)

(2.6)

s„are the energies of the allowed minibands, and lt„are
the Bloch functions of the particle in the superlattice
with the average momentum Ak. For weak barrier
penetration for which

$2 «1,
2maa

where A, is the reciprocal dimensionless barrier power, the
expressions for the Bloch functions g„and energy mini-

bands c.„can be found in explicit form. The reciprocal
power A, can be regarded as a parameter of the theory,
but it can be calculated from the knowledge of the width
and height of the barrier. Under the condition A, && 1, the
expression for the energy spectrum is'

frequency ai, magnitude Fo, polarization (unit) vector g,
and a uniform electric field E. Assuming that the usual
effective mass approximation can be used, the equation
for the envelope wave function 4 describing a particle at
coordinate r in a simple band with an effective mass m is
given by

V' %(r, t)+[V(r) e—(E+rIFocoscot} r]0'(r, t)
fi

261

.~ Bqi(r, t)

II. THE QUASIENERGETIC STATES
OF THE CARRIERS

Let us consider an electron of charge e in a semicon-
ductor superlattice with a large number X of periods a in
the presence of an oscillating electric field gI ocos~t of

e„(k)=Ii„+—,'6„(1—coska),

where

[(1—2A, ) +4( —1)"A,]
2m a

(2.7)
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and
T '2

b,„=8(—1)"+' A, (n =1,2, 3, . . . ) .
2m a

c(k, t) =co(k)c, (k, t),
where

(2.10)

The lower boundary of each miniband is e„(0)=b„, and
the corresponding width is 6„. We shall consider the
ground minibands only so that the n = 1 label will hence-
forth be dropped.

Let us represent the solution to Eq. (2.4) with EAO,
FOAO in the form

P(z, t)=Cf c(k, t)g[z, q(t, k)]e ' ' "dk, (2.8)—~/a

k
co(k) =exp — f [Z(k') —8+ ,'eE—a]dk'

eE o
(2.11)

and

e(k)= —f e[q(r, k)]dr where T=1 T 2m

T 0 N
(2.12)

Substituting the function c (k, t) from (2.10) into Eq. (2.9)
and assuming that the condition

where

q ( t, k) =k +eFO/fico singlet,

Bc, Bc,
eE

Bt
(2.13)

and C is a normalization factor. Substituting expression
(2.8) into Eq. (2.4) and taking into account the relations'

is valid, the term -Bci /Bk in the equation for c i can be
neglected. The equation for c& then becomes

. 8 a

Bg
=iz[1+0(A,}] and zg= i ——[1+0(A,)]

Bk 2

Bc,(k, t)
c, (k, t)[e[q(t, k)]—e(k)] =i% (2.14)

the equation for c (k, t) is

with z =as, The solution to Eq. (2.14) can be found by direct integra-
tion and gives

[e(q) 8+—'eEa—]c (k, t) —ieE ' =i%Bc(k, t) . Bc(k, t)
2 Bt Bt

c,(k, t}=exp ——f [e[q(~,k)]—e(k)]d~
0

(2.15)

Let us represent the function c (k, t) in the form

(2.9) Substituting the functions co(k) from (2.11) and ci(k, t)
from (2.15} into (2.10), and then into (2.8), the result for
the function P is

P(z, t)=C f dk g[z, q(t, k)]exp ——f [8—(ke)+ [qs( kr)]]dr—m/a o

kf [e(k') —8+ ,'eEa]dk'—
eE o

(2.16)

v= &(1 .eEa
(2.17}

Expression (2.16) is valid under condition (2.13). On tak-
ing into account expression (2.15), this condition can be
written in an explicit form

That is, the periodicity of the function co(k) leads to the
quantized Stark energy levels given by

8 =eEa(o+ —,')+ f F(k)dk2' 0

where 0.=0,+1,+2, . . . . (2.19)
For example, if %co-8 —1 eV, a-50 A, and E-10
Vm ', then v-5X10

It is easy to see that function (2.16}satisfies the condi-
tions

p(z, t +T)=e 'er'"p(z, t)
(2.18)

P(z, t)=e ' '~"f(z, t) such that f(z, t+T)=f(z, t),
with the explicit form of the periodic function f (z, t)
given below. Condition (2.18) means that expression

(2.16}is a quasienergetic function with quasienergy @.
The requirement of periodicity of the function

c (k, t)-co(k) is given by

c(,kt )=c ( k + m2/at ) .
g(z, q}= —g Q (z)e'~'",1

(2.20)

As expected, in the absence of a time-dependent electric
field (F0=0), function (2.16) tends to the function which
describes the particle in the presence of the uniform elec-
tric field E given previously. ' ' If E=O but FOAO, the
function co(k} takes the form

co(k) =5(k —p) and e(p) =8,
and function (2.16) tends to that describing the particle
subjected to the time-dependent electric field only. '

To take into account the periodicity of functions (2.6),
the Bloch functions g are expanded in a Fourier series in
the form
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where p is summed over the superlattice indices, and
where

eFoaP= «1.
Aco

are the particle %"annier functions, such that

&Q„.g„&=~„„..

(2.21)

(2.22)

Thus if Ace- —1 eV, a -50 A, and Fo -5X 10 V m
then P=0.25.

Under conditions (2.17) and (3.1), the expressions for
functions (2.16) and (2.18) and the quasienergies (2.19) be-
come

Using the explicit form of the Bloch functions in the cell
with fixed index s, the explicit form of the Wannier func-
tions can be obtained. ' In the approximation A, «1, the
Wannier functions are not equal to zero in the superlat-
tice cells with indices s =p, p+ 1, and p —1 with
Q„-A, ' ". Formulas (2.3), (2.19), (2.20), (2.16), (2.7),
and (2.12) define the quasienergetic miniband time-
dependent states of a carrier in the superlattice in the
presence of the total longitudinal electric field
E +Focoscot.

III. LOCALIF ATION
IN THE OSCILLATING ELECI'RIC FIELD

To find the longitudinal function (2.16) and quasiener-
gy (2.19) in an explicit form, we make the assumption
that in the case of real superlattice and in the presence of
a real oscillating electric field Fo, the parameter P is such
that

f (z, t)= f '"y g„(z)e'"' '"a8,
ai/X

(3.2)

8 =eEa(cr+ ,')+I—r+—,'5 . (3.3}

where the J„'s are Bessel functions, we find that

where 6 =p(Psin8+8), H = —
—,'g[Psin8(1 —coscot)

—(P /8)cos8sin2art], and I =[cr8+(g/2v)(l—
—,'P )sin8].
The other parameters are defined by g=b/Ace and

C =a@ N /2n.
Using the expansions

+ 00

I"J„.(y) '"' th '=0, 1,2, . . .
n'= —oo

and

+ co

ed@ sine y J {@}cine with n 0

f (z, t)= g Q +„+„.(z)e ' " "'+"""'(—1)"+"(i)"J„(y(t))J„(@(t)), (3 4)

where

g(t) = g sin2art

and

@(t)= —,'(1 —
—,'P )g/v —

—,'gP(1 —costot) .

Since b -0.1 eV and fico-1 eV, then g « 1 and

y(t) «1,
(t)=4

2v 4 2eEa 4

(3.5}

slope of the chain of the potential wells and barriers
describing the superlattice. The oscillating field Fo
reduces the miniband width to'

&(Fo)=&(1—
—,'p ) .

Both of these mechanisms are favorable for the concept
of the localization. In contrast, the time dependence of
the slope of the superlattice potential due to the oscillat-
ing field does not infiuence the localization, because this
eSect is suppressed by the high frequency of the oscilla-
tions.

Therefore, only the item with index n'=0 should be re-
tained in the sum (3.4), so that

f (z, t)= QQ„(z)(—I)"J„(@o). (3.6)

It follows from expression (3.6} that the degree of locali-
zation of the carriers is deSned by the Bessel function
J„(40). If 40« 1, then Jo = 1 and J„«1 ( n %0) and the
carrier having the energy Co is localized in the superlat-
tice cell with index s = —cr. Expression {3.5} for 40
shows that localization increases with an increase in the
magnitudes of both the uniform E and oscillating Eo elec-
tric fields. The uniform electric field E increases the

IV. COEFFICIENT OF THE INLRRBAND
MULTIPHOTON ABSORPTION

The outline of the derivation of the multiphoton ab-
sorption coefficient will be given below; further details of
the calculation can be found in a previous paper. ' &e
consider the interband absorption as a transition of the
electron-hole pair to an excited state in which an electron
(e) is in the conduction miniband and a hole {h} is in the
valence miniband. The ground state is then described '

by the function spa(r„r„)=5(r, —rs), and the excited
state by the function

%(r„rj„t)=%,(r„t)+r,(rs, t) .
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The electron function %,(r„t) is defined by expressions
(2.3},(2.18), (3.2) and (3.3), with the addition of subscripts
e to all parameters (p,z, Ci, g, 5,b, m) S. imilarly, the hole
function 0's(rz, t) can be obtained from the electron func-
tion by replacing the subscript e by the subscript h, o by
0', t by —t, e by —e, and taking complex conjugates. In
expansion (3.3), the electron Wannier function Q„(z, )

should be replaced by the hole function Q„"(zI,) with

The coefficient of the interband dipole transition under
the oscillating field is defined by the matrix element of the
operator

no%co 1
W and W= —g IS(t)l'

cuO e, h

(4.4)

+ 00

M(~)coscor= g e ""'Ai(to),

where tto(t0) is the refractive index, c is the speed of light,
u =Eon/'~~ is the optical energy density, Q=L„L~ N& is
the volume of the crystal and g, t, a sum over band
states. On substituting for the operator P(~} from (4.2),
and the function 4 from (4.1) into (4.3), and using the re-
lations

~op.~,eP ( t ) =Pocostot where Po =
m, C,

(4.2)
+~/~ rentAi(a)) = e'"'coscotM ( t)dt,

277 7T/co

(4.5}

and where p,&, is the matrix element of the momentum
operator between the amplitudes of the Bloch functions
of the electron and hole bands. This matrix element is
given by

S(t)= . 5(r, —r„)P(~)%'(r„rz,~)dr, dred~ . (4.3)
1

i%' o

where

M(~) =f5(r, —rz )@f,(p, )4 i(tpg )

Xf (z 1 )fg (zs T)dr, dr& (4.6)

The result connects the transition rate 8' with the
coefficient of absorption a as

such that M(v+2m leo)=M(w), the general form for the
coefficient of absorption a is

2m.a)R'e'ip, „,i'a= pa& where al(t0)= g i AI(co)i 5(lfuu Cg
—C—z,

—8iq —8 —8 ),
I EpcQm Ott.p@r

(4.7)

where ai is the coefficient of l-photon interband absorption. A transformation of (4.6) into the relative coordinate p and
the coordinate of the center of mass Ri is made using the relations

mepe +mppp
P Pe PS~

m, mI,

and writing

iKL Rl
e

(P )@'zs (Pa }= @i(P}
L„Ly

(4.8)

where @i(p}is a function of the relative transverse motion and Ki is the total transverse momentum of the electron-
hole pair, with Ki=0 in the dipole approximation.

Substituting expressions (4.8), (3.2), and (3.3) into (4.6) and then into (4.5), the form for the coefficient Ai(to) becomes

A (t0)=QL L 4 (0) exp i (o —o')8 — 1 — sin8 8&(co,8)d8,+. , (: p'
x y j. 2v 4 (4.9)

where

g, (~,8}= f dt coscot exp ice f dr[1 —
—,'gd, Ipsin8sinco~ —

—,'p cos8(1 —2sin for)I ]2& —m'/co 0
(4.10)
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and where g,i,
=g, + (1, .

It was shown previously' that the coefFicient BI can be
represented in the simpler form

8)— e[—i&l —1)+lj/2I
2&i~

The matrix elements are as follows.
(a} For transitions involving an odd number of pho-

tons, such that I =2s+1 with s =0, 1,2, . . . , we have

where

sin[ —21(+—,
' 1n.], (4.11) sI',"(v,p) =—y2g J s 5 2J (5.4)

1/2
Pea sin8

(cos8}'~

(b) For transitions involving an even number of pho-
tons, such that1=2(s+1) with s =0, 1,2, . . . , we have

r

s
Ms (»p}=(lk.i ),+i g . [J.+i —s—2J(A}

P cos8,1 eh

&'(8) 41

such that g,z «1, y&&1. Expressions (4.7), (4.9), and
(4.11) define the coefficient of the 1-photon interband elec-
troabsorption in the superlattice. The above expressions
have a common character but they are not related to any
speci5c transverse states.

with

A= (1—
—,'p'), g,„,v, p«1,

J i s 2J(A)]

(5.5)

V. RESULTS AND DISCUSSION

A. General result

and with

s!
J'(~ J')

For the free transverse motion, the wave function and
energy are

ltd''p

2%

fi kq
and t i, +8,„=

2p

mern~
where p=

Pl, +my

The sum in (4.7) is of the form

g = g Jdk&=N g Jdki with 5=cr —cr' .
e, h (y, 0'

(5.1)

(5.2)

ai(co) =aI g ~Mis"
~

e(lyrico 6 eEa5), — —(5.3)

where
I —I

e' Cap'
'4I 161

and where

1, x&0
8g=@g+b, +bi, + ,'(b, , +EI, ), e(x)= '0—

0, x&0,
with

On substituting expressions (4.11) into (4.9), the
coefficient Ai(co) can be expressed in terms of Bessel
functions. Substituting @i(0)and (5.1) into (4.9) and then
substituting the explicit form of the coefficient A&(co) into
(4.7), and using the summation rules (5.2), the result for
cxl 1s

[The latter are the binoinial coefficients, and J„(A) are
Bessel functions of integral order. ]

Expressions (5.3)—(5.5) define the coefficients of the in-
terband multiphoton electroabsorption in the superlat-
tice. With a weak oscillating electric field Fo(p~0}, only
the one-photon (1 =1, s=0) transitions are large. In this
case, the matrix element (5.4) is

~s"=J s(A),

and the coefficient a&(co) from (5.3) tends to an analogous
result for the one-photon absorption. ' We can see from
(5.3) that the 1-photon spectrum consists of a sequence of
rectangular steps. The boundary frequencies are given by

8 +eEa5
co&"= for 5=0, %1,+2, +3, . . . . (5.6)

The heights of the steps are governed by the relevant ma-
trix elements M&' and consist of Bessel functions. Their
argument A depends upon the relationship

~, +~a
v eEa

and on the parameter p«1. For arbitrary values of
g,i /v~ 1, the steps with difFerent 5 contribute nearly
equally in the absorption spectrum (5.3). Interband tran-
sitions between any Stark levels (a~o'') and between
any wells are possible. The intensity of the multiphoton
absorption decreases with the number of photons I such
that ai-(g, i,p )' ' and g,i, p «1. These optical transi-
tions between the extended states are the essence of the
multiphoton Franz-Keldysch effect in the superlattice.
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Let us consider the most attractive case for the locali-
zation of carriers. The localization arises in the presence
of a suKciently strong uniform electric Seld E. %ith
such fields, the separations between the Stark levels eEa
become much greater than the sum of the widths of the
electron and hole minibands (b,,+b, » ) such that

(g,» /v) « 1. In this case, the magnitude of the argument
A of the Bessel functions in (5.4) and (5.5) becomes « 1.
Note also that an increase in the magnitude of the oscil-
lating electric Seld Fo-P causes A to decrease. Under
the condition A «1, the Bessel function Jo(A)=1 only
contributes to the matrix elements (5.4) and (5.5) as
J„(A}-A"«1 for n%0. Optical transitions occur be-
tween the localized states of the single quantum wells and
cause the multiphoton %'annier-Stark effect.

S. The form of the spectrum

1.00—

075—

0.50—

0.25-

0.00
-2

FIG. 1. The multiphoton electr oabsorption spectrum
represented by F=al(co}/aI for 1=1, 3, and 5 as a function of
X =(lcm —Cg) l(eEa).

For a.n odd number ofphoton transitions
(1=2s+I,s =0,1,2, . . . )

It follows from (5.4) that only items with

j=
—,'(s —5),

with

(5.7)

0%J Kg (5.8)

contribute in the transition with the Sxed number s. It
follows from (5.7} that the quantum number 5 should
have the same parity as the integer s. The condition (5.8}
limits the values of 5 such that

still applies, leads to the allowed values for 5 in the range

—(s+1)&5&(s+1) . (5.11)

For the two-photon absorption (l =2, s=O}, transitions
with 5=+1 are possible with (2g) '~2M~)I =2—,'. If
l=4, s= 1, then 5=0, +2 with (2g) ' M+2) =+—,

' and
M(o '=0. Thus the absorption spectrum for an even num-
ber of photons consists of (s+2) steps having boundary

{I) {I) {I)frequencies N {,+, ),N, +], . . . , 6), „N,+1. L Lie red
edge of the spectrum is at u'"{,+&). The form of the su-
perlattice elctroabsorption spectrum for an even number
of photons is also shown in Fig. 2 for 1=2 and 4.

—s&5&s . (5.9} C. Discussion of the results

For the one-photon absorption (l = l, s=O) only the tran-
sition with 5=0 is allowed. The absorption spectrum
then consists of one step with a boundary frequency of
co0" and of height governed by the matrix element
Mo( '=1. For three-photon absorption (l =3,s =1), tran-
sitions with 5=+1 are possible. The absorption spec-
trum then consists of two steps with boundary frequen-
cies of co+& and heights governed by the matrix elements
M', 3' =M' ', =

—,'. For 6ve-photon absorption (l =5,s =2)
the corresponding boundary frequencies are co' 2, co0',
and ~'+z, with Mo ' =—,

' and I'+2 =M'
2
= 4. The odd-

photon electroabsorption spectrum then consists of s+1
pronounced steps of boundary frequencies
co'", +2, . . . , co,' '

2, ~,' '. The red edge of the spectrum is
at cu' ', . The form of the superlattice odd-photon electro-
absorption spectrum is depicted in Fig. 1 for I= 1, 3, and
5.

In practice, in the presence of a strong electric Seld E,
multiphoton transitions occur between isolated wells
which are labeled by the quantum numbers 0 and cr' and
which satisfy conditions (5.9) and (5.11). Thus all fre-
quencies are absorbed with the boundary at the red end
of the spectrum shifted toward the lower frequencies.
The absorption increases with an increase in the frequen-
cy co of the light. In contrast to the increase in the ab-
sorption in bulk semiconductors (the Franz-Keldysh
effect }, the multiphoton absorption in the superlattice

1.00-

075—

0.50—

2. For an even ngmber ofphoton transitions

( I =2(s +1),s =0, 1,2, . . . )
025-

It follows from (5.5) that, for A « 1, only items with

j=—,'(s —5)k—,
' (5.10)

contribute to the transition with s fixed. From (5.10), it
follows that the quantum number 5 should have a parity
opposite to that of the integer s. Condition (5.8), which

0.00',
-3

FIG. 2. The multiphoton electroabsorption spectrum
represented by Y' =al (co) /(al i(,q ) as a function of X (defined in

Fig. 1).
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consists of equidistant intense steps caused by the Stark
quantization (The Wannier-Stark effect ). Among these
intense steps mentioned above, there are other steps of
vanishingly small heights which are proportional to vari-
ous powers of A «1.

If the superlattice is formed with semiconductors with
complex valence-band structures, then the light and
heavy holes contribute to the electroabsorption spectrum,
with the heavy holes localizing more rapidly than the
light holes. Estimates are now made of the results using
the parameters of GaAs/Ga& „Al„As (with x=0.35) het-
erostructure for which m, =0.065m p, m hh =0.55mp,
trt&h =0.09mo, and Cs = 1.53 eV. We assume further that
the superlattice has a typical period (tt=50 A) and that
X, =0.05. We note that the selected quantity A., corre-
sponds to the electron miniband width b, , =0.0926 eV
which is very close to the value of 0.0950 eV for 6, given
previously' obtained by numerical calculation using a
model of rectangular wells of width 40 A separated by
barriers of width 15 A. Other parameters needed are
A,zh=0.006, k&a 0.036, Ahh=0. 0013 eV, and Am 0.048
eV. The total width of the minibands is given by
6, +6&h =0.14 eV and 6, +Ahh =0.094 eV. In an electric
field E =5X10 Vm ', we find that the parameter 4p in

(3.5) is such that, for electrons, 40, =1.856, for heavy
holes +ohh=0. 0258 and, for light holes, Cp &h=0.98. If
E =10 Vm ', then 4o, =0928 4'o, i,h=0 0129 and

4p ~h
=0.49. In such an electric field, the heavy hole is al-

most totally localized. By increasing the electric field E,
first the light holes and then the electrons will become lo-
calized as the localization condition A « 1 is reached.

VI. CONCLUSION

In summary, we have developed an analytical ap-
proach to the problem of calculating the multiphoton in-
terband absorption spectrum in the presence of a uniform
electric field which is directed parallel to the oscillating
electric field of the optical wave and the superlattice axis.
It has been shown that as both the uniform and oscillat-
ing electric fields increase in magnitude, localization of
the carriers increases. The influence of the intense oscil-
lating field is to narrow the miniband width. If the locali-
zation is realized, the electroabsorption multiphoton
spectrum or photocurrent consists of a sequence of in-
tense steps. The number of steps depends upon the num-
ber of photons and increases as this number increases.
The effective red boundary of the spectrum shifts toward
longer wavelengths as the uniform electric field increases.
The form of the spectrum depends upon the parity of the
number of the absorbed photons.
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