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Anderson impurity states in band-inverted semiconductor heterojunctions
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The development of the Anderson impurity model for the case of the symmetry-inverted band-
edge heterojunction that was considered in the framework of the e8'ective Dirac model has been
suggested. The Anderson impurity due to interaction with the heterojunction and the band states
is shown to give the impurity level inside the band gap for the proper model parameters, its energy
being changed with the impurity-atom location relative to the interface plane.

I. INTRODUCTION

Due to the systematic and extensive investigations
of the layered semiconductor structures (such as het-
erojunctions, quantum wells, and superlattices), the
problems of the impurity states have received growing
attention. Considerable progress has been attained in
the study of the impurity states of the semiconduc-
tor structures based on the classic semiconductors (Si
and Ge) and their multiple isoelectronic analogs (III-V
semiconductors);2 the shallow hydrogenic impurity states
have mainly being investigated. » On the one hand, the
impurity states in those semiconductor structures are
characterized by the disturbance of the space and transla-
tion crystal symmetry along the growth axis. As a result,
the impurity-state energy depends on the impurity-atom
position relative to the interface boundary. On the other
hand, there is quite a strong variation of the impurity
binding energy with the characteristic dimension of the
structure.

The problem of the impurity states in the narrow-gap
sexniconductor structures has received somewhat less at-
tention despite its obvious importance. The principal
peculiarity of the narrow-gap semiconductor impurity
states is that, due to small gaps and other properties,
the shallow impurity states do not appear. Note that in
the past ten years, for the complicated problem of the
impurity states of the narrow-gap IV-VI semiconductors,
a new aspect connected with the doping by the group-
III elements (In, Tl, and Ga) has appeared. An unusual
behavior of such doped materials is connected with the
generation of the resonant energy levels localized either
in the conduction band (for example, In in PbTe) or in
the valence band (Tl in PbTe) as well as of deep levels

(Ga in PbTe). As a result the physical properties (for
example, carrier density) dramatically change. Experi-
mental investigations show that these impurities are of
the substitutional type. Taking into account the reso-
nant character of the impurity states in the narrow-gap
semiconductors, their theoretical investigation is known
to use the Anderson impurity model as one of the proper
models for this situation.

Besides, in contrast to the problem for the bulk semi-
conductors, while investigating the impurity states in the

quantum structures based on the narrow-gap semicon-
ductors it is necessary to take into account the follow-

ing aspect. It has been shown that in semiconductor
heterojunctions based on some narrow-gap semiconduc-
tors such as II-VI (HgTe/CdTe) or IV-VI (PbTe/SnTe),
where the constituents have opposite band-edge symme-
try and overlapping gaps, the interface states seem to
be localized near the boundary. These states appear in-

dependently of the interface region nature and are sim-
ilar to the midgap states which arises in the presence
of the solitons in one-dimensional systems. Later inter-
face states were shown to occur also in the normal
heterojunction when Eg Egt, ) 0 (Es,Egs are the band
gaps of the initial compounds). However, they appear
at the finite values of the in-plane (along the plane of
the interface) momentum and overlap band states of the
semiconductor constituents. In the case of the inverted
band-edge heterojunction (called the inverted contact)
when E~ E~g & 0, a nondegenerate gapless state has
been shown ' to appear inside the band gap, being lo-
calized near the boundary and having a linear spectrum
in the interface plane. %hen the width of the transi-
tion region is quite large, besides this zeroth mode (Weyl
branch) there is a set of the doubly degenerate interface
states with the 6nite e8'ective masses.

As a xnatter of fact the interface states are Tamm
states, which is why they generate &om the bulk states
of the initial compounds. So, taking into account the
strong interaction of the band and impurity states in the
Anderson xnodel, the strong interdependence between im-

purity and interface states in the semiconductor hetero-
junction should be expected. Thus the aim of this paper
is to develop the Anderson model for the deep impurity
in the heterojunction of the narrow-gap semiconductors
with mirror symmetrical bands such as those in IV-VI
semiconductors, for example. Here only the case of the
heterojunction with band inversion is investigated. We
shall consider the symmetry heterojunction with the mir-
ror bands and with constituent gaps equal in absolute
value, that is, iEs i

= iEaqi, their middles coinciding.
In Sec. II we develop the Anderson ixnpurity model for

the case of the symmetry-inverted contact that is consid-
ered in the framework of the effective Dirac model with
a coordinate-dependent band gap. In this work the band
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gap of the considered structure is supposed to be changed

by the law Es(z) = Eg tanh(z/L) (where L defines the
heterojunction width and Es = )Es )

= ~EssO. In Sec.
III the equation determining the impurity energy level is
obtained by the Green function method. Two particular
cases are considered: one when EgL = 2hv (v is Fermi
velocity) and the other when L m 0. A discussion of
the results obtained and some numerical estimations are
given in Sec. IV.

II. MODEL

The full Hamiltonian of the system

where d, is the annihilation operator of a localized elec-
tron at the impurity atom with spin s, Ep is the atomic
level, V is the mixing matrix element between the impu-
rity and band states, and c~, is the annihilation opera-
tor of an electron at the lth site of the lattice with spin

s[R~ = a(li, l2, ls), a being a half period of the fcc lattice
of the constituents]. Here the parameters a, E~, and V
are believed to be equal in both semiconductors.

We consider a one-dimensional heterojunction with the
axis along C3 of the initial compounds directed along
the z axis. The z and y axes lie in the heterojunction
plane. In this case b, (r) = b, (z). Taking into account
the geometry of the task, the function 4 can be picked
out in the form

H=HpyH; p 4(r) = kl/(z)e'"~ ", (4)

Hp= C~ '"."y '4 gV C d", (2)

includes the heterojunction Hamiltonian Hp and the im-

purity Anderson Hamiltonian H;m&. Both materials of
the studied heterojunctions of IV-VI narrow-gap semi-
conductors are known to have a direct gap at L points
of the Brillouin zone, so that near the middle of the gap
there are two bands L+ and L . Thus the simplest model
describing their spectrum is the two-band one, which is
absolutely necessary for describing the states near the
band edges of the narrow-gap semiconductors. Moreover,
in the inverted-band heterojunction, the band with the
fixed symmetry in one semiconductor forming the struc-
ture is the conduction band and in the other one it is the
valence band. Therefore the crucial material properties
we invoke are that the states near the gap in the bulk ma-
terials are adequately described by the two-band model
and that one of the semiconductors has inverted bands.
In earlier papers it was shown that the energy spectrum
of the heterojunctions based on the narrow-gap IV-VI

eek

semiconductors in the framework of the two-band k p
model might be described by the effective Dirac Hamil-
tonian with a coordinate-dependent band gap

where k~ ——(k, k„,0) and @(z) is the envelope of the
wave function. For the symmetry heterojunction it is
necessary to set V(r) = 0. So instead of (2) we obtain

Hp — et z ~p~3i, +hv~p ~.. kL +~pl z e zdz

Using the results of Ref. 15, we find that in the repre-
sentation in which

t' 0
i 0—

&'o o ~

0 —io.

(oo &

0

where o = (o,o„,o, ), o „,are the Pauli matrices, the
eigenfunctions of the equation Hp@ = EC' can be repre-
sented in the form

where the Beld operator kI/(r) due to the symmetry prop-
erties of the IV-VI semiconductors is a bispinor repre-
senting the the L and L+ bands; po, j = (p, p, p )
are the Dirac matrices; g7 = —ih(v V, v„V„,v, V', ) is a
momentum operator, with v, v„,v, the components of
the Fermi velocities; 24(r) = Eg(r); and V(r) is the
work function, which also depends on the coordinate. To
simplify analytical calculations in this paper we consider
only the symmetry case when v = v„=v = v. Note
that accounting for the Fermi surface anisotropy does not
cause the principal diKculties.

The second term in (1) describes the Anderson im-
purity with one level E~ localized at the lth site of the
lattice. Here on-site Coulomb repulsion is neglected. In
the second quant»m representation H;m& is written in the
usual form

1
4p(z) =

1
is &.+&(k)

SAN e+Aki

-8, +A:(s)
e+Akg

(p(z).

([(9, —k(z))[k9, i k(z)] + s —k~)y(z) = 0. (8)

The function kl/g(z) is an eigenfunction of the "pseu-
Jee

doparity" operator P = ip p (p . k~)/k~, its eigen-
states being A = +1. In (7) the following definitions
have been introduced: 8, = 8/Bz, s = E/hv, k(z) =
lk(z)/ke, exp(+ik) = (k + 'ke)/k~, k& = Vke+ke,
Ap is a normalized factor, and the function y(z) satisfies
the equation

ik
= Eg) dtd, + V) (dtc~, + c&t, d, ), In this work the band gap of the inverted contact is

supposed to be changed by the law
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z
A(z) = b, p tanh

where L defines the heterojunction width and 26p

= ~Esp~. In this case the solution Eq. (8) is ex-
pressed through the hypergeometric functions. For the
delocalized states determining the spectrum of the quasi-
two-dimensional energy bands of the heterojunction one
obtains

f, 't
yq(z) = e'"'F

~ 1+ kpL~ —kpI 1 —ikL; — 1 —tanh'2 (L) )
2

Here kp = Ap/hv and e' = +~kp + k2 + k&2 for any k.
The interface states localized near the boundary are described by the function

, (,)
yr (z) = sech~ — F 1 + p + kpL, p —kpL, p + 1; — 1 —tanh

~

&')

where s = 6 kp2+ k& —
(&&) . As follows from the

boundary conditions, the localized interface state spec-
trum is discrete, the parameter p being defined &om the
condition

Here E, is the eigenstate of the Hamiltonian Ho following
from Eq. (8). Taking into account the symmetry proper-
ties of the initial compounds the operator e~ in H; & has

been expressed through 4(Rt)

p= kpL —n,
where the integer n changes in the limits

0&n(Lkp.

c& = a')'q, 'e(R~),

(13) where in the representation (6) used

(17)

At n = 0 the zero mode, called the Weyl branch, with a
spectrum linear on k~, has been obtained. In the limit
of the infinite structure dimensions the zero mode is spin
nondegenarate. Note that, as it follows &om (?), in the
case of the finite structure, any eigenstate E of the Hamil-
tonian Hp is doubly degenerate on the parameter A. This
is an obvious consequence of the double Kramer's de-
generacy of all energy levels of the original compounds
having a center of inversion that is still preserved in the
investigated symmetry-inverted contact.

Thus taking into account the dependence of the wave
function 4p(z) (7) on the parameters A, k (or p), k~, and
the sign of e, the field operator is written in the expansion
form

4 (r) = ) @,(z)e'"~'a, ,
LgL2

where i marks the set of all the quantum numbers defin-

ing 4(z); a; is the annihilation operator of the particle
in the ith state; and I j, L2, and L~ are the system sizes
along x, y, and z axes, respectively.

Using the expansion (14) for Hp and H; ~ one obtains

Hp = ) E;ata, ,

g&
——~2 cos —l, cos l, i sin ——l, i sin ———l I, (18)

2
'

2
'

2 2 )

l = lg + l2 + ls. In the expression (16), the supposition
about the equality of the interaction matrix elements be-
tween impurity states, on the one hand, and states of the
conduction and valence bands as well as localized inter-
face states, on the other hand, has been used. Refuse
from this supposition leads to the appearance of some
new parameters instead of the one parameter V.

III. SOLUTION

Following the method elaborated in Ref. 16, we define
the Green functions

G~(&) = —(T«.(&)d.'(0))

G;(r) = —(T7a, (T)at(0)),

G;~( )r= —(T.ra;(T)dt(0)),

H;, = a')'V[d,'y,'4(R&) + @t(R&)~&d,]+E„)dtd,

(16)

where d, (7.) = eH d, e H, H = H + yK„pbeing
the chemical potential and N the electron number. By
means of the method of the Green function motion equa-
tions in the energy representation one obtains
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(in~ + P, —Ed) Gd(~~)

= 1 — Vy, ) e *" '4';(Rl)G;.d(ur„), (20)
LgL2

(i(d„+P —E;)G;d((G„)

a3 Ve'"' '818;(Rl)yiGd((d„). (21)
1 2

Then we have

Vza . t 8I8, (Rl) kI8t(Rl)
Gd((d) = 8(d88+V Ed

L L ) Xi E Xl
LgL2 .- iu)„+p, —E;

t ~ .4';(Rl)kI8+(Rl)

2(k) t 1

I.~ I (p)

r8, + k(z)

~
s;+kz

+ — 21 (zt)+ t 22(z) I
=*

l
(88)

1 r(9, + k(z)

(s; —kg
' ")

where ~ = i~„+p, , the normalized multiplier being ex-
pressed in the form

(22)
LB/2kf= ra, +k z)p'(z) + &(z) dz.

( s;+kg (24)

Here the summation over i is implied to be carried out
over all the quantum numbers defining the function @;,
that is, over k~, k for delocalized states and over p for
localized states as well as over states with E; )0 and
E; &0. Substituting the evident expression of the func-
tion @,(Rl) (7) for the sum &om (22) we find

Now we shall consider two particular cases: one when
koL = 1 and the other when L ~ 0. Note that in both
cases only the zeroth mode with n = 0 appears. All
calculations are performed analytically. So when koL =
1, the sum &om (22) is written in the form

V2a3 . V2a3hv (Gsech (~&)dk& V2a3 dk

L1L2 kvL 2 (82 282 dz)gtk2 + 822282 dz (2v) td —tkt2 —t2 v k
(25)

Here it is supposed to be 6& —u & 0, that is, only the
states lying inside the band gap are considered.

When integrating over k the second term in (25) is
divergent. This divergence is conditioned by the approx-
imation of the effective mass method and is common for
a task such as this. The problem of the divergent integral
calculation can be formally solved by introducing the ad-
ditional parameter K to limit the integration region over
k. In its essence X describes the bandwidth.

So after simple calculations we obtain

where

fi(LG) =(G —Ed+, l
&Vi-

ll'

, rz, &
cusech

I

— ln

(8)Ck,'Ap r zl ~
f, (~) = sech

8 )L)

Q2 ~2
2 )
b,p —gb, p2

—ur2
(28)

b, p + /6p2—LG2

(29)

Gd(td) = Itd —Zd— (8)Crap z zl )
8n (L)

Ep —gb, p2 —(d2
x ln

b,p+ gb, p2 —LGZ

n~ r
+ hvK ——

2 (26)

1
pdd(LG) = ——sgnLGImGdd(LG)

—sgn(G fz((8))

fi'(~) + fz'(~) ' (27)

where a = Vzas/(5 vs). From here the local density of
the impurity states is found

In the quasiparticle approximation the equation

fi(ur) = 0 (ao)

defines the energy of the impurity level in the system of
the symmetry-inverted contact when koL = 1.

The finite quantity of the impurity state density is
bound up with the interaction between the impurity
and interface states. While the impurity atom is re-
moved &om the heterojunction boundary, the peak of
the density of states abruptly increases. When z~ -+ oo,
pdd((G) b(Ed)2 Ed satisfying Eq. (30) at zl -+ oo and
determining the impurity level position renormalized due
to an interaction with the band states in the homoge-
neous semiconductor. From (27) we get pdd(0) = 0. It
is conditioned by the lixed~- dependence of the interface
state density on the energy.
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In the case ~ ) 40, after simple calculations for the
impurity Green function we obtain

The local density of impurity states is de6ned by Eq.
(21) with

(a/ahvK . a(d 2 rzf ~
Gg(ur) = (u —Eg + + i sech

fl 27I

Ao vr
x —+ arctan

2 2 Ap

0!Lcp A, 'UK
fi(~) =(u —Eg+

r
2 2 ZI~ —S, +sech, —

l

&~)

Do „rex '
l

—+ arctan
2 I 2 bo )

(32)

+ ~2 —402 0 ~ —Ao

-e(-~ —&o)j

Then Eq. (30) again defines the energy of the impurity
states.

By analogy with the foregoing calculations, in the case
of the stepped heterojunction, when L ~ 0 the impurity
Green function is written in the form

Gg(id) =
~ u —Eg —era sech — ln

(L ) Zko + gAo —IJ2

zf'I, r zf & ~' —f'v'K~
2sech ' — —sech — ln

42o —tu2 + 5 v2K&2 — 62o —u2
!

+ i2n au&sech

Here, instead of the parameter K, another parameter K~
has been introduced. It limits the integration region over
k~. Equation (34) is obviously written for Ao2 —u2 ) 0.
Expressions such as (27)—(30) can be obtained in this
case as well.

IV. DISCUSSION AND CONCLUSIONS

ergy versus the impurity-atom location on the z axis. For
the calculation we used the following parameters: V = 1
eV, V = 10 cm/s, Eg ——1 eV, a = 3.3 A. , K = 3 eV,
and Ao ——0.1 eV.

As it follows &om the figure, at the heterojunction
boundary the impurity level is driven into the middle
of the band gap. While leaving &om the interface, the
impurity state goes to the limit value Eg for the homo-

First let us discuss the case koL = l. %hile z~ -+ oo,
Eq. (30) determines the energy of the impurity state Ez
in the homogeneous semiconductor. Under the condition

26.8—

avaK&
Eg&Ao 1+ ! ) (35)

the solution of Eq. (30) is that inside the band gap,
the impurity level appears. As it follows from the defi-
nition of the parameter K, the condition (35) is broken
when the initial impurity state Ed lies very high inside
the band. So due to the interaction with the band elec-
trons, the impurity states fall into the band gap. Using
this result the expression for fi(u) (28) can be simpli-
6ed by substituting the second and third terms for the
renormalized impurity state Eg. Then there is the single
parameter Eg in our task instead of two, Eg and K.

Equation (30) defines the impurity state in the system
of the inverted contact. Under the condition (35) inside
the band gap the impurity state appears. Due to the
interaction between the impurity and interface localized
states, there is a dependence of the impurity energy on
the local position of the impurity atom relative to the in-
terface boundary. Figure 1 shows the impurity-state en-

24.8 ~ T "I I r I f I 3 f ) I i I I I I I I I ) I I I f I I f I f 1 I I I I I I I I I f

(3.(jO 10.0() ?().I.)0 , )C) C)C) 4C) Ci()

zIA)

FIG. 1. The impurity state energy versus the impurity
atom location on the axis z. CThe origin of the energy scale
is p.)
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geneous semiconductor. Decreasing the interaction be-
tween the interface and impurity states, that is, decreas-
ing the parameter V and increasing the Fermi velocity v,
this eKect certainly becomes less marked.

Figure 2 shows the impurity-state density p~g ver-
sus the energy for two positions of the impurity atoms:
z~

——0 when the impurity atom is located at the bound-
ary (dashed line) and z~ = 6 L (solid line). It is clear
kom Fig. 2 that while removing the impurity atora &om
the boundary, the impurity level half-width noticeably
decreases. The peak of the impurity states approach the
larger energy going to its limit value Ep.

While increasing the atomic impurity level Eg, the
inverted contact impurity state goes to the band edge.
When the condition (35) is broken the impurity level
leaves the band gap and falls within the band, and as
it appears from (34) its value does not depend on the
impurity location. Note that from the essence of the pa-
rameter K, the condition (35) seems to be broken when
the supposition about the two-band model used in this
work is incorrect.

All the conclusions obtained above also apply in the
case of the stepped interface when L —+ 0. Note that the
condition (35) is fulfilled. for the typical parameters for
the narrow-gap IV-VI semiconductors and for the ini-
tial impurity energies characteristic of them. Thus the
Anderson impurity due to the interaction with the band
and interface states of the inverted contact gives the en-
ergy level within the band gap, its energy being changed
with the location of the impurity atom. The supposition
about the symmetry of the inverted contact is obviously
not principal; it only gives an opportunity to simplify the
calculations. So all the conclusions are kept and for any
inverted contact with any relations between band gaps

20.00

15.00

10.00—

5.00—

0.00
0.01

I I I I I I I I I I I I I I I 1 I I I I I I

0.05 0.04
eV

FIG. 2. The impurity state density pp~ versus the energy
for two positions of the impurity atoms: z& = 0 A (dashed
line) and z~ = 6 A. (solid line). (The origin of the energy
scale is y, .)

of the initial compounds. Besides, as noted above, the
impurity states appear both in the inverted contact and
in the normal heterojunction when E~ E~p & 0. So it
may be supposed that the peculiarities of the impurity
states obtained in this paper have to be observed and in
the normal heterojunction in which the interface states
appear.
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