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We report systematic specific-heat measurements of crystalline Si doped with P in the concen-
tration range enclosing the metal-insulator transition, in the temperature range from 40 mK to 3 K
and in magnetic fields up to 7 T. The data can be interpreted in terms of a phonon contribution,
a term linear in 7" due to itinerant electrons, which persists even on the insulating side, and an ex-
cess contribution AC varying sublinearly with temperature. The strong magnetic field dependence
of AC suggests an interpretation in terms of local magnetic moments. We discuss a theoretical
model for the metallic phase, which provides a quantitative description of the concentration of local
moments. We show that the temperature power law in zero field can be explained by the Kondo

effect.

I. INTRODUCTION

The metal-insulator (MI) transition in heavily-doped
semiconductors continues to be a very interesting sub-
ject in the physics of disordered solids. In these materi-
als, the disorder stems from the random spatial distribu-
tion of donor or acceptor atoms in the single-crystalline
host. Recently, the question of localized magnetic mo-
ments on the metallic side of the transition has received
considerable attention. In particular, for Si:P a num-
ber of experimental!™® and theoretical’® !4 studies have
appeared. In addition, experiments have been reported
for Si:B (Ref. 15) and Ge:Sb (Ref. 16) showing the ex-
istence of localized moments on the metallic side of the
transition. Specific-heat measurements in magnetic fields
are particularly well suited to study the interplay be-
tween localized and delocalized electrons.’?7'7 With
these measurements, the dependence of local moments
on the P concentration N could be mapped out system-
atically for uncompensated Si:P.” A major result was
that at the critical concentration NN, about 5 to 10%
of the P-derived electrons carry a localized moment.
Here, in extension of our previous work,” we present a
rather complete account of the evolution of magnetic
moments in uncompensated Si:P as studied experimen-
tally with specific-heat measurements. Concerning com-
pensated Si:P, two different types of samples have been
studied addressing the question of local moments. For
boron-compensated samples Si:(P,B) local moments in
the metallic region were detected by ESR (Ref. 18) and
specific-heat measurements.'® In initially metallic Si:P,
which was compensated by acceptor defects introduced
by fast neutron irradiation, magnetic moments also sur-
vived when annealing the defects partially to come into
the metallic region.2°

The theoretical models to describe magnetic mo-
ments span the range from purely phenomenological
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two-component models®2! to numerical calculations of
the appearance of magnetic moments in an Anderson-
Hubbard model.!! The second aim of this paper is to
deduce on a rather fundamental level the concentration
of local magnetic moments in a model of a disordered
system incorporating the salient features of Si:P.

The paper is organized as follows. Section II contains
some experimental details. The results are presented in
Sec. III and are interpreted in terms of a phenomenolog-
ical two-component model of localized and delocalized
electrons in Sec. IV. Section V presents a theoretical
derivation of the density of localized moments in a real-
istic model of metallic Si:P, including a discussion of the
Kondo effect on these moments. The contribution to the
specific heat of the moments is calculated and shown to
compare well with observation.

II. EXPERIMENTAL DETAILS

The samples?? were grown with the Czochralski
method, yielding rods of 54 or 79 mm in diameter with a
typical P concentration gradient of N~1(dN/dz) = 1072
cm™! along the axis of the rods. The P concentra-
tions N were determined from the room temperature
resistivity using the Thurber scale.2® For a given sam-
ple of 30 x 20 x 5 mm® cut from the center of the
rod, the concentration variation was appreciably less
than 5%. Small bars of the samples were also inves-
tigated with electrical-conductivity measurements.2%2°
The magnitude and temperature dependence of the con-
ductivity o(T) is in good agreement with earlier work.2¢
[The early rough determination of the critical concentra-
tion of our samples quoted as N, = 3.2 x 1018 cm ™2 (Ref.
7) was subsequently found to be in error.] A discussion
of the critical behavior of the conductivity, including the
determination of N, is given by Stupp et al.2*

The specific heat was measured in a standard *He/*He
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dilution refrigerator with the heat pulse technique. The
sample was suspended with nylon threads in a Cu frame
firmly connected to the mixing chamber. The addenda
(heater and thermometer, and part of the mechanical and
electrical links) contributed about 5% at 0.1 K and 20%
at 1 K to the total heat capacity in zero magnetic field.
A superconducting solenoid provided magnetic fields up
to roughly 6 T. Even for low-N samples and in high fields
the addenda contribution was always less than 40% ex-
cept for N = 0.34 x 10'® cm~3, where it rose to 60%.

III. EXPERIMENTAL RESULTS

Figure 1 shows the specific heat C of several Si:P sam-
ples spanning two orders of magnitude in concentration,
plotted as C/T vs T?. In this plot, the data above
1.5 K follow straight lines typical of a metal, with a fi-
nite intercept «y with the C/T axis (except for the low-
est concentrations). For noninteracting electrons v =
(n2/3)k4N(EF), where N(EF) is the (single-particle)
density of states at the Fermi level. The slope 3 cor-
responds to a Debye temperature @ = (1245R/3)'/3 =
(660 + 20) K, in good agreement with literature data for
pure Si. Since our thermometer calibration is not very
accurate at high temperatures (T' > 2 K) because of the
very flat R-T characteristic in this range, we do not at-
tach significance to the small apparent variation of 8 from
sample to sample. Figure 2 shows «y vs P concentration
N. Also included are earlier data by Kobayashi et al.2
(Note that these authors determined N from the Hall
constant N = 1/Rye without corrections.) Both sets of
data vary smoothly across the MI transition with a fast
decrease of «y towards zero on the insulating side.

For a parabolic rigid band N(EF) is given by

N(EF) = v(m*/R>n?)(37%)}/%(n/v)'/?, (1)
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FIG. 1. Specific heat C of Si:P for various P doping concen-
trations N plotted as C/T versus T?: W, 7.3; O, 4.5; O, 3.6;
A, 3.3; A, 1.6; ¢, 0.89; O, 0.79; e, 0.34; and O, 0.055x10'®
cm™2. Solid lines indicate fits of C/T = v+ BT?. Data below
0.4 K are partly omitted for clarity.
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FIG. 2. The specific-heat coefficient -y of the term linear in
T versus doping concentration N. Open symbols: data after
Kobayashi et al. (Ref. 2); closed symbols: this work. Solid
line indicates v according to the nearly-free-electron model
Eq. (1).

where n is the electron concentration and v is the valley
degeneracy (v = 6 for Si). For a parabolic band N(EF) is
proportional to the band effective mass m* (in general,
of course, this need not be true). The solid line is the
expectation y{f) for electrons with density n = N with
an averaged effective mass m* = 0.33m, where m is the
free-electron mass. Above N, the experimental v values
are close to y(f). This fact has been taken as evidence
that the impurity band has merged with the conduc-
tion band.?” However, recent infrared reflectivity mea-
surements on Si:P across the MI transition have clearly
shown that the impurity band is energetically separated
from the conduction band up to at least N ~ 2N..33
Also, it has been suggested that the N1/3 dependence
of v above N, is fortuitous and can be explained if Ep
is in the center of an impurity band whose width de-
pends on N and disorder.?® The above-mentioned optical
measurements33 also have shown that the impurity band
is predominantly formed by 1s(A) states of the sixfold
degenerate valley-orbit split hydrogenic ground state.

A universally accepted explanation for v(IV) below N,
does not exist. An early suggestion involving localized
electrons?® must be met with some reservation because
the localized electrons give rise to a specific-heat contri-
bution at still lower temperature, which is visible as the
upturn in C/T below about 1.5 K and will be discussed
below. A possible explanation would be that for N < N,
the sample, because of local fluctuations in concentra-
tion, separates into smaller and smaller metallic regions
which still may exhibit a finite v as long as the size of this
region containing Ng electrons is such that the average
spacing of one-electron levels § ~ Er/Npg is still smaller
than the thermal energy, which is > 50 mK xkp. This
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requirement would correspond to Ng ~ 2000.

Figures 3-5 show the specific heat C vs T on a log-
log scale in order to emphasize the low T region. While
the sample with N = 7.3 x 10® cm™® (and also the
sample with N = 73 x 10'® cm™3, not shown) exhibit
free-electron behavior C = 4T down to the lowest tem-
peratures, strong deviations are observed for small N, in
particular, an upturn of C towards a sublinear T' depen-
dence. Some indication of such a behavior was reported
previously.* Unexpectedly, the slope of C(T') changes sign
for small N and even becomes negative, i.e., C increases
with decreasing T'. Of course, since C — 0 for T — 0
this only indicates the existence of an energy scale with
C having a maximum at the corresponding temperature,
which is shifted to lower and lower energies with decreas-
ing N. Figure 5 demonstrates that this fact is “intrinsic”
to the P electron system and is not associated with deep-
level impurities such as oxygen. Upon reduction of NV fur-
ther by a factor of 6 from 0.34 to 0.055x10® cm 3, the
low-T anomaly is strongly reduced (by roughly a factor
of 10). Also, we investigated two samples of float-zone
purified Si:P which is expected to have a much lower
level of oxygen concentration. Both samples exhibited
the same specific heat as the corresponding Czochralski-
grown samples.30

The specific heat for B = 0 for all samples and in the
whole temperature range investigated can be described

by
C =~T + BT3 + AC, (2)

where AC is shown in Fig. 6. The anomalous contribu-
tion to C varies as AC ~ T between our lowest mea-
suring temperature (0.04 K) and 0.3 to 0.4 K, i.e., over
almost one decade in T'. This allows a reliable determina-
tion of the exponent a,(IN) which is shown in Fig. 7. a,
is roughly constant in the metallic range where a, ~ 0.2,
decreases with decreasing NV, and becomes negative for
lowest V. We associate AC with the existence of local-
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FIG. 3. Log-log plot of specific heat C versus T for the
higher P concentrations.
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FIG. 4. Log-log plot of specific heat C versus T for interme-
diate P concentrations in the vicinity of the metal-insulator
transition.

ized magnetic moments which are coupled to the envi-
ronment by exchange. However, the phenomenological
Bhatt-Lee model,?! where AC is explained in a scheme
of exchange-coupled pairs with a wide distribution of ex-
change energies does not allow for negative values of the
exponent a,. Also, the strong decrease of AC around 0.5
K suggests a “high-temperature” cutoff at variance with
a very wide distribution of exchange energies calculated
in the model. Finally, RKKY coupling in the metallic
state must also be considered. In Sec. V, we will present
a model of partially Kondo screened moments, with a
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FIG. 5. Log-log plot of specific heat C' versus T for the
lowest P concentrations.
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FIG. 6. Log-log plot of the excess specific heat AC versus T
for various P concentrations N. (O, 4.5; A, 3.3; W, 1.8; A, 1.6;
¢, 0.89; o, 0.34x10® cm™3. Solid line indicates power-law
fits.

wide distribution of Kondo temperatures, which appears
to account well for the observed behavior in the metallic
phase. These points will be discussed further below.
The proof that AC is indeed caused by localized mo-
ments is provided by the strong magnetic field depen-
dence of C. As the series of Figs. 8 to 11 shows, this de-
pendence becomes gradually stronger with decreasing N.
AC is suppressed increasingly at low T and, instead, a
Schottky-like anomaly develops which is shifted to higher
T with increasing B. Also noticeable in Figs. 8 to 11 is
the upturn of C at lowest T in high fields. This can be at-
tributed to the Zeeman splitting of 3'P nuclei, as inferred
from the magnitude and concentration dependence. It is
much smaller than expected for 2°Si. This shows that
even for metallic samples the Korringa relaxation rate for
298i nuclei is much smaller than the inverse time scale of
our specific-heat measurements (¢t ~ 1s), while that for
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FIG. 7. Exponent o, of the temperature power-law fitted
to AC versus doping concentration N.
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FIG. 8. Log-log plot of specific heat C in magnetic fields
versus T at doping concentration N = 4.5 x 10'® cm™3.

31P is comparable to ¢t 1. This is in agreement with NMR
experiments on both nuclei.3>

Figures 12 and 13 show for two samples the excess spe-
cific heat AC in a magnetic field where the contributions
v(B)T+(T? have been subtracted. The field dependence
of 4 has been discussed elsewhere!” and the observed de-
crease of y(B) was attributed to a field-induced tendency
towards localization. The maximum of AC, on the other
hand, is seen to increase with B in nice agreement with
this idea. However, a change of the specific-heat maxi-
mum might also come about because of the large range
of exchange couplings, as will be discussed below. The
solid lines represent two-level Schottky anomalies, with
height directly proportional to the apparent density of lo-
cal moments Ng.,. For low fields some deviations occur
at low T because of the predominantly antiferromagnetic
exchange coupling between localized moments. These de-
viations are stronger in the metallic than in the insulating
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FIG. 9. Log-log plot of specific heat C in magnetic fields
versus T at doping concentration N = 3.6 x 10'® cm™3.



17 068

T T T

N=1.810"%cm3

T T T

10

f_ e B=0 _E!
[« B=04T ]
[ v B=07T ]
I aB=15T J
< o B=5.7T

S0 e
g r ]
© ]
- ""v" A..‘. 4
o ]

" ‘:‘ ©
107 | “ -
Eos el C ]

0.1 1
T (K)

FIG. 10. Log-log plot of specific heat C in magnetic fields
versus T at doping concentration N = 1.8 x 10*® cm™3.

samples. In line with this argument, the effective field ob-
tained from the position of the maximum of the Schottky
anomaly Beg = B+ B; is smaller than B, hinting at anti-
ferromagnetic (mean-field) interactions. Figure 14 shows
Beg/B as a function of donor concentration for two dif-
ferent fields, B = 1.5 and 5.7 T. In spite of the scatter
of the data points, a systematic decrease of Beg/B with
increasing N can be inferred from the data.

IV. INTERPRETATION
OF THE SPECIFIC HEAT IN TERMS
OF A TWO-COMPONENT MODEL

The Bhatt-Lee model?! of localized magnetic moments
in doped semiconductors was originally developed for
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FIG. 11. Log-log plot of specific heat C' in magnetic fields
versus T at doping concentration N = 0.79 x 10*® cm™3.
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FIG. 12. Excess specific heat AC versus temperature for
two magnetic fields B at N = 4.5 x 10'® cm™3.

the insulating region, where only localized magnetic mo-
ments and no itinerant electrons exist. Due to the ran-
dom distribution of donor atoms a wide distribution of
nearest-neighbor distances and, hence, nearest-neighbor
exchange couplings exists. This led Bhatt and Lee to a
description of the magnetic properties of doped semicon-
ductors in terms of a hierarchical antiferromagnetic cou-
pling of pairs. For a certain range of exchange energies,
the distribution of effective couplings J can be modeled
as P(J) ~ J~°», which leads to power-law behavior in
the magnetization and susceptibility, x ~ T~*™, and in
the specific heat, C ~ T, with ap, = oy = 1 — as,.
(In the original literature o has been chosen to represent
the exponent of x and also of C. We choose the above
specific notation in order to avoid confusion.) The posi-
tive values of a, for N =~ N, are in agreement with the
Bhatt-Lee model and also with «,,, < 1 as measured with
the magnetic susceptibility.® However, the decrease of a,
with decreasing N and the negative value of a, for 0.34x
108 cm 2 is unexpected. We previously speculated that
this might be due to the neglect of ferromagnetic pairs

1.5

T
N =0.79 -10'%cm3

AC (pJ/gK)

FIG. 13. Excess specific heat AC versus temperature for
four magnetic fields B at N = 0.79 x 10*® cm™3.
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FIG. 14. Effective magnetic field B.g normalized to applied
magnetic field B, versus doping concentration N.

and/or of larger clusters.” Others® have suggested that
effective negative o, values might arise from a crossover
between two apparent exponents, since the distribution
law P(J) ~ J~%r is only approximate. A solution to
this problem was offered by May,3! who pointed out that
with increasing dilution, the P(J) distribution and also
the high-energy cutoff are shifted to lower J, which can
result in a, > 1 for an intermediate range of J values
and, hence, o, < 0.

We can estimate the density of localized moments Ng
from the entropy associated with AC for B = 0. Of
course, this estimate does not account for truly isolated
spins which do not contribute to AC for B = 0. Also,
for samples with a, < 0 the extrapolation to T' = 0 is
uncertain. The resulting Ngs is plotted against the total
number N of electrons in Fig. 15.

In a magnetic field, we have to account for the fact
that with increasing B, more and more antiferromagnetic
pairs can be aligned by the field. This leads to an increase
of the height of the Schottky-like anomaly3! and thus to
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FIG. 15. Concentration of magnetic moments N, deter-
mined experimentally in zero field and Nse, in finite mag-
netic field versus doping concentration. Dashed line indicates
Nsch = N expected in the dilute insulating limit. Solid line
gives the concentration of local moments Njs in the metallic
phase as calculated in the theory of Sec. V.
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a systematic upward shift of Ngch(5.7 T) with respect to
Nsen(1.5 T) in Fig. 15. A recent calculation®? in terms
of a phenomenological small-cluster model supports this
interpretation. Furthermore, the systematic difference
between Ns < Nso, for N < N, and Ns > Nse, for
N > N, can be understood qualitatively.”

V. THEORETICAL MODEL
OF MAGNETIC MOMENT FORMATION
IN THE METALLIC PHASE

On the metallic side of the metal-insulator transi-
tion the donor states have merged to form an impu-
rity band, which is half-filled for uncompensated mate-
rials. The simplest model Hamiltonian featuring the es-
sential elements of disorder and Coulomb interaction is
the Anderson-Hubbard model,

H= Z(e, — w)nis + Ztijcg;cja + UZ nipniy, (3)
i0

ijo 7

where c;,(c;) is the annihilation (creation) operator for
an electron with spin projection o in the lowest state of
the dopant atom at site ¢ and n;, = cg;c,-, is the occupa-
tion number operator. We assume that the five excited
states generated by the valley-orbit splitting are suffi-
ciently far away that a single-band model is applicable.3*
The host semiconductor does not appear in this except
through the fact that the positions {¢} are those of the
Si crystal lattice, and that the effective mass and the
interaction are renormalized. The hopping integrals t;;
may be approximated [12] as overlap integrals of hydro-
gen wave functions, t;; = 2E§ exp(—r;;/a*)(1 + ri/a*),
with E§ and a* the effective hydrogen binding energy and
Bohr radius, respectively. The t;; are random variables
according to the randomness of the donor positions. In
the following, we will assume the positions 7 to be the lat-
tice positions of a regular simple hypercubic lattice, with
random nearest-neighbor hopping. This is equivalent to
keeping only the 2d largest hopping amplitudes from any
given site in d dimensions and assuming some regularity
in the connectivity of the initial random lattice. The on-
site energies €; are approximately equal to the energy e
of an isolated dopant level, but fluctuate, in principle, on
account of the Coulomb interaction between electrons on
different sites. We will assume ¢; = € in the following.
The quantity U describes the on-site Coulomb interac-
tion. It may be estimated by the difference in the ground
states of an H™ hydrogenlike ion and the neutral H atom
as U = 0.95E}, where E§ = (m*/m)e~2E, is the ground-
state energy of the dopant level (Ey is the ground-state
energy of the hydrogen atom). Using the effective mass
m* = 0.33m and the dielectric constant € = 12 of the Si
host material, E§ ~ 2.4x1073 Ry = 31 meV. An estimate
of the typical hopping integral at distance 7o = N~1/3
for a density of N = 5 x 10'® cm ™3 yields ¢t = 0.34E and
the average value of nearest-neighbor hopping integrals
to be considered below is (t) = 0.9E§. The ratio of Hub-
bard U to bandwidth is thus U/12t ~ 0.08 for d = three
dimensions, which is clearly in the weak-coupling regime.
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The excitation gap to the conduction band of Eg ~ Ej
estimated in this way, is in reasonable agreement with
the well-known value of the ionization energy E; = 44
meV, also obtained from reflectivity measurements3? at
a concentration of 7.3 x 10'® cm™3. The discrepancy of
E and Ej is due to the crystal field splitting of the six
valleys of the Si conduction band. In the following, we
use the value of E§ = 31 meV for consistency reasons,
rather than scaling the value up to 44 meV. Estimates of
the position and width of the impurity “Hubbard bands”
indicate that the effective value of U may be somewhat
smaller than given above because of the multivalley na-
ture of the impurity band.3?

The relatively small value of U suggests that a pertur-
bation theory in U might be a good starting point. A
Hartree factorization of the interaction term leads to an
effective single-particle problem with random hopping.
This Hamiltonian has been studied numerically for finite
size systems.!! It was found that some of the magnetic
susceptibility eigenvalues turned negative for sufficiently
large U, signalling an instability towards local moment
formation. An alternative to this numerical treatment is
to study a simpler model problem, which can be solved
more or less analytically, while still capturing the essen-
tial physics.!?

Observing that the fraction of dopant atoms carrying
a local magnetic moment is relatively small, of the or-
der of several percent, it appears reasonable to consider
an isolated moment forming in an effective homogeneous
medium. The effective Hamiltonian for this impurity
problem is given by

H = Zekc- Ciy t Z VEE'C‘ C 1 (4)

Rk'o

where the spin-dependent impurity potential is given by

Vg, = —50MU + Vg + Vg, (5)
and V; = —ex — 3, f.e""*Rn_ Here the summation is
over the nearest neighbors of the impurity at positions
R,, and £, are the random hopping amplitudes to and
from site 0 to R,. The band energy € is given in tight-
binding approximation as € = —2t ) . _, cos karg, where
ro = N~1/3 is the lattice parameter of the (fictitious)
hypercubic lattice. The local spin occupation number
(which is proportional to the magnetization),

M = (not — noy) (6)

has to be determined self-consistently. A solution of this
problem yields a region of the seven-dimensional parame-
ter space of variables ,, U, where M is finite, i.e., a local
magnetic moment exists. The moments are the more sta-
ble the higher U and the smaller £ is, as one might expect.
In particular, for fixed U, there is a critical surface in the
six-dimensional parameter space of i;,%s,... ,tg, which
encloses the region of stable moments.

The qualitative explanation for the appearance of mo-
ments is that the local level is shifted and split by the
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interaction U by the amount Ae = %U (1 — oM) for spin
projection o = *1. If the lower level lies sufficiently be-
low the Hartree-shifted levels in the bulk (Aey = 1U),
it will be occupied by a single electron and hence carry
a magnetic moment, just like in the case of the usual
Anderson impurity.3® We note that this energy shift is
caused by a reduced occupation of the impurity site by
the unfavorable spin species n| = %(1 -M) < %, due
to suppressed hopping. However, the total occupation is
nt +ny = 1 for the half-filled band case.

Let us now turn to the statistical description of the
local moments in the initial problem. In the approxi-
mation of independent moments, we may calculate the
probability of a donor atom carrying a magnetic moment
and hence the density Ny, of donors carrying a moment.
Assuming the position of the donor atoms to be com-
pletely random, the probability for finding the first near-
est neighbor at distance r;, the second one at r; and so
forth is given by

Ps,m{r,,} = Pl(’l‘l)

[ ' (T2)0(Tn — Tn_1 // “1P n)d’r"},
(7)

where 6(z) is the step function and P,(r) is the prob-
ability for finding the nth nearest neighbor at distance
T’

Par) = g (5N) e (< Fr)

The probability Pgn.{r.} is normalized to unity with
respect to integration over all distances r,,n =1, ...,6.
It is instructive to consider first the distribution of hop-
ping integrals £; to the nearest neighbor. By inverting the
expression of #;(r;) in terms of 71,71 (¢1) = a [lnr + 1],
where t* is the hopping integral at distance a*, we find

d7'1

Pt dt,

= Py(ry(t1)) (9)

P, (t,) is plotted in Fig. 16 for a typical density of donors
N = 5 x 10'® cm~3. The distribution is charact~erized
by a broad maximum, a rapid increase at small ¢; and

500 I T T T

250 |- .

Pa(t) (Ry™)

t (10-°Ry)

FIG. 16. Probability distribution P;(t;) of hopping ampli-
tudes ¢; to the nearest-neighbor site.
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an almost linear decrease at higher £;, up to the maxi-
mum value tpax = 2Eg. The density of local moments
obtained from applying the mean-field results discussed
above is given by

dr,

Ny =N
M di,

Ps,m{rn(f,,)}H6=1 (

dfn) , (10)

5{in}

where the integration extends over the region S in pa-
rameter space for which M # 0. In Fig. 15 the density
of moments Nps as calculated from (10) is shown as a
function of the concentration of dopants IV for a value of
U = (t). Also shown are the experimental estimates of
Ny discussed in Sec. III. One observes that the agree-
ment of theory and experiment in the metallic region is
very good, except close to the metal-insulator transition.
A possible explanation of this deviation is that the distri-
bution of hopping integrals near the transition is modified
by the formation of larger clusters weakly coupled to the
itinerant part of the sample.'4

The agreement of the above theoretical estimate with
experiment is encouraging. A more stringent test of the
theory would be given by the direct comparison of the
results of a calculation of observable quantities with ex-
periments. This will be attempted below.

The contribution of the local magnetic moments to the
specific heat is determined by their coupling to the heat
bath. The principal coupling of a local moment to the
environment is the spin-exchange coupling to the conduc-
tion electrons. Projecting the Hamiltonian (4) on to the
low-energy subspace of Hilbert space analogous to the
usual Schrieffer-Wolff transformation, i.e., by eliminat-
ing states with no occupancy or double occupancy at the
impurity site, one finds an effective spin exchange Hamil-
tonian. In contrast to the usual Anderson model, here
the local spin is coupled to delocalized electron spins on
neighboring sites. It may be shown that in the case that
the coupling occurs mainly to one nearest-neighbor site
(taken to be along the positive z direction), the effective
Hamiltonian is given by [14]

_ ot Al eff J .= + .
H = E €i¢%, ko + J3 E E So Toa'CZ Cii 1g1
ko

kk ' oo’

x expi(k, — k,)as, (11)

where a; is the distance to the nearest neighbor. Note
that ca’e”’= % js the creation operator for an electron

at the nearest-neighbor site. Here S is the spin—% oper-
ator of the local moment and 7, is the vector of Pauli
matrices.

The effective exchange coupling has p-wave symmetry
and J§f ~ 1(#2/U). The s-wave component of the ex-
change coupling may be shown to vanish. Since Jf is
positive, the local moment will be screened below the
Kondo temperature,

Tk =Dexp(— NO—TIEE)’ (12)

where NV is the local density of states at the Fermi level
at the nearest neighbor, which couples to the impurity,
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and D = 6(t) is half the bandwidth.

From the probability distribution of ¢, one may derive
a distribution of Kondo temperatures Tk for the range
0 < Tx < T, where T>* = Tk (t.),

N

Pk (Tk) = Nar

- dt
_— 13
with P, (£) given by (9)

The distribution Pk (Tx) is dominated by the factor
1/Tk originating from the Jacobian factor dt/dTk. A
double-logarithmic plot of Px(Tk) in Fig. 17 reveals
that

PK(TK) = CQTEQK (14)

for a broad range of Tx values, where ax ~ 0.9. Here,
we used the parameters of the model specified in the text
following (3). A power-law behavior of Pk (Tk) leads to
a power-law behavior of the specific heat C, due to_the
fact that C = C(T/Tk) in the Kondo model, where C(z)
is a universal function. Neglecting contributions from the
boundaries of the power-law regime we find

T+ ~
C=c / dTx T &(TTx)
Tr —

T2y -
= Tl"’"co/ dzz=**C(1/z)
T._
~ C1T1_ak. (15)

The exponent of the temperature power law for C,
1 — ax ~ 0.1, agrees reasonably well with the experi-
mentally determined value o, ~ 0.2. The theoretical ex-
ponent ax depends only weakly on doping, as does the
experimental one in the metallic region. Possible sources
of the remaining discrepancy are (i) the somewhat uncer-
tain values of the parameters U and Ny, the DOS, and
(ii) the effect of antiferromagnetic coupling of the mo-
ments by the RKKY interaction. A rough estimate of
the RKKY coupling energy Irkky = 3mNoJ2(2kpR)™3
with No = (12(t))~!, J = 4J1, N = k}/3x%, R® = N
yields Irkky =~ 0.1 K for ¢ values at the maximum of the
distribution. This indicates that spin correlations medi-
ated by the RKKY interaction may play some role in the
experimental temperature regime. Also, the quenching
of the Kondo effect by disorder has to be considered. A

8 T T T T
= 6 -
X
< 4r -
=
% 21 ]
g ot \
-2 | | 1 1
-8 -6 -4 2 0

logyoTk (K)

FIG. 17. Log-log plot of the distribution of Kondo temper-
atures P(Tk) versus Tk, showing power-law behavior.
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theoretical study of this effect as well as a more quan-
titative comparison of theory and experiment, including
the effect of a magnetic field is in progress.

VI. CONCLUSIONS

In this paper, we have reported the results of an exten-
sive experimental and theoretical study of local magnetic
moments in the heavily doped Si:P system, in a range of
doping concentrations including the metal-insulator tran-
sition. The existence of local moments is inferred from
a specific heat contribution which shows the characteris-
tics of two-level systems when a magnetic field is applied,
confirming earlier work. In zero magnetic field the spe-
cific heat is analyzed in terms of three contributions, a
lattice contribution B3T3, a Fermi liquid contribution vT
ascribed to itinerant electrons, and a residual contribu-
tion. Surprisingly, the 47" contribution appears to be
present even in the localized regime close to the transi-
tion confirming earlier studies. We conjecture that this
contribution is due to conducting islands in the insulating
matrix.

The investigation reported in the present paper is fo-
cused on the residual part of the specific heat, AC. From
the entropy associated with AC one can estimate the
density of local magnetic moments. Theoretically, the
existence of local magnetic moments can be derived from
a one-band model of weakly correlated electrons hopping
between statistically distributed donor sites. In an effec-
tive medium approximation, we determine the criterium
for the existence of moments on isolated sites. The num-
ber of moments at given donor concentration may be es-
timated and is found to agree well with the data. It is
found that within the temperature range investigated,
AC can be represented by a temperature power law, 7.
In the metallic phase, a, ~ 0.2, approximately indepen-
dent of doping concentration. We show that a contribu-
tion of this type is generated by a statistical ensemble of
local magnetic moments, exchange coupled to the con-
duction electron system. For the simplest model, with
realistic parameter values, we find a, ~ 0.1. On the
insulating side of the transition, the experimentally de-
termined exponent a, is found to decrease continuously
with decreasing doping concentration, down to negative
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values ~ —0.3 at the lowest concentration measured. In
this regime, a model of exchange-coupled spins with a
wide distribution of coupling constants should be appro-
priate. As shown by Bhatt and Lee,?! the successive
freezing out of singlet pairs, as the temperature is low-
ered, should lead to a temperature power law with, how-
ever, a positive exponent a,.

The measured specific heat shows rich behavior as a
function of magnetic field, generally consistent with the
notion of spin-singlet systems and single spins, which are
broken up and Zeeman split by the magnetic field. A
detailed comparison with theory has not been attempted
here. Work in this direction is in progress.

Although the concept of local magnetic moments in
doped semiconductors near the metal-insulator transition
is confirmed by the present study, a number of unresolved
issues remain. First, on the metallic side the nature of
the interaction of the moments is not yet clarified beyond
doubt. The model of partially Kondo screened impurities
presented here appears to give a reasonable account of
the data at least in zero magnetic field. However, the
role of the indirect or also the direct exchange interaction
deserves further clarification. A quantitative comparison
with the observed magnetic field dependence should allow
us to distinguish the two contributions.

On the insulating side, the observed negative exponent
a, of AC needs further consideration. Here also the mag-
netic field dependence should help to identify the relevant
processes.

As a final remark, we emphasize that the formation of
local magnetic moments is not induced by or related to
the metal-insulator transition. This is apparent from the
noncritical behavior of the density of moments across the
transition (see Fig. 15). This phenomenon is a short dis-
tance effect and should not be mixed up with a possible
vanishing of the spin diffusion coefficient at or near the
MI transition. On the other hand, the existence of local
moments may influence the critical behavior.
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