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Ab initio calculation of structural and lattice-dynamical properties of silicon carbide
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The plane-wave pseudopotential approach to density-functional theory (DFT) in the local-density
approximation has been applied to investigate a variety of ground-state properties of the 3C, 2H,
and 4H polytypes of silicon carbide. The linear-response theory within DFT has been used to obtain
lattice-dynamical properties of cubic Sic such as the phonon-dispersion curves, phonon eigenvectors,
elastic and Griineisen constants, as well as the thermal expansion coefFicient and specific heat within
the quasiharmonic approximation. Finally, we present some results for phonon-dispersion curves in
the hexagonal 2K (wurtzite) and 4K structure. These results are analyzed and discussed in view of
further applications to temperature-dependent properties.

I. INTRODUCTION

Silicon carbide (SiC) is considered to be a promising
material for electronic and optical devices due to its out-
standing mechanical, chemical, thermal, and electronic
properties. Microelectronic devices made of SiC can be
used in high-power, high-speed, high-temperature, high-
&equency, and even hard-radiation applications. ~'2 Yet,
before a wide use of SiC in the production of electronic
devices can be possible, a series of technological problems
has to be solved, such as the growing of monocrystalline
large-size and high-quality SiC samples or the doping
with donors and acceptors. The overcoming of these tech-
nological problems requires a deep understanding of the
physical properties peculiar to SiC. Furthermore, SiC is
the only IV-IV compound which occurs not only in cubic
(3C) but also in complex, long-range ordered hexagonal
(nH) and rhombohedral (mR) structures. However, to
date SiC has not been the subject of the same thorough
theoretical and experimental investigations as, e.g. , the
group-IV crystals or the III-V semiconductors.

In recent years, 6rst-principles investigations of the
structural and electronic properties of SiC have been per-
formed by many groups. Further studies went deep
into the high-pressure behavior6' and the eEects of
atomic relaxation on structural properties ' of SiC.
Some attempts to explain the phenomenon of the poly-
typism of SiC have also been undertaken. However,
up to now only a few ab initio calculations of the lattice-
dynamical properties of SiC are available. ' Moreover,
the thermal properties of SiC have not yet been investi-
gated &om 6rst principles.

Since the electronic energies of the diferent phases
of SiC are very close, inclusion of the phonon contri-
butions to the &ee energy may become important and
in this case these contributions must be calculated reli-
ably. Thus the purpose of this work is a study of lattice-
dynamical and therxnal properties of some of the diferent
phases of SiC, which need the structural properties as
a prerequisite. Therefore, we have investigated various

ground-state properties of the 3C, 2H, and 4H poly-
types of SiC. We have calculated the equilibrium lattice
parameters, the bulk modulus, the pressure derivative of
the bulk modulus, the Born e6'ective charges, and the
high-&equency dielectric tensor. For cubic SiC, we have
also calculated phonon-dispersion curves, phonon eigen-
vectors, elastic constants, and the internal-strain param-
eter. Concerning the hexagonal 2H and 4H phases, we
have determined the phonon-dispersion curves along se-
lected high-symmetry directions and the I' point &equen-
cies, respectively. Finally, we have evaluated the mode
Gruneisen parameters, the thermal expansion coeKcient,
and the specific heat at constant volume and at constant
pressure of 3C SiC within the &amework of the quasi-
harmonic approximation. The results for all calculated
quantities are in excellent agreement with the available
experimental data.

The structure of the paper is the following: After this
introduction a short outline of the theory and a brief de-
scription of the investigated physical quantities are given
in Sec. II. In Sec. III the results of our calculation are
presented and compared with the available experimental
data. Finally, the conclusions are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Method

The plane-wave pseudopotential total-energy scheme
within the local-density approximation (LDA) of the
density-functional theory is used to obtain the energy
differences between the various structural phases of SiC.
For the exchange and correlation energy the Perdew and
Zunger parametrization is used. The evaluation of in-
tegrals over the irreducible wedge of the Brillouin zone
(BZ) has been performed using sets of Chadi-Cohen spe-
cial points. Soft norm-conserving pseudopotentials for
carbon and silicon have been generated using the method
proposed by Troullier and Martins. 8 DiHerent potentials
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have been constructed for different values of the angular
momentum of the electrons (l = 0, 1,2) in order to re-
produce correct tails of the atoxnic wave functions, en-

ergy levels, and excitation energies for a number of elec-
tronic configurations of the single atoms. The obtained
pseudopotentials yield phonon-dispersion curves for sil-
icon and carbon elemental crystals which are almost
indistinguishable from those of Refs. 20 and 21, respec-
tively.

Total-energy corrections to the second order in the
lattice distortion corresponding to a given phonon are
derived within the framework of the density-functional
perturbation theory (DFPT) using the linear-response
theory. The DFPT is an efficient tool for the de-
termination at any wave vector g in the BZ of the
phonon &equencies and eigenvectors. The knowledge
of these quantities is necessary for the calculation of
physical quantities such as, e.g. , the thermal expansion
coefficient, Raman-scattering cross section, ' or in-
&ared absorption spectra. Using DFPT, the phonon
&equencies and eigenvectors can be determined at any
wave vector with a computational effort comparable to
a ground-state calculation. This is an advantage com-
pared with the &ozen-phonon method, which restricts
the calculations to high-symmetry points in the BZ.
A coxnplete and detailed description of the nuxnerical im-
plementation of the DFPT formalism is given in Refs. 20
and 21.

B. Harmonic phonons

The displacement of an atom of the eth sublattice in
the 1th unit cell with the Bravais lattice vector R(l) can

be written in the the form

(g~q) e [q.R(l) — (9) t]

mQ

where m„denotes the xnass of the ~th atom. Within the
harmonic approximation the phonon frequencies uz(q)
and eigenvectors u(rc~qj) satisfy the secular equation

) D (KK'~q) u(~'~qj) = ~, (q) u(~~q1) .

The expression for the dynamical matrix reads

D p (~~'~q) = gm„m„-(9u (0) Bup('„,)

where the second derivative of the total energy E' of the
crystal is evaluated at the equilibriuxn positions.

The total energy can be expressed as a sum of the di-
rect ion-ion interaction energy E' " and the total ground-
state electronic energy E" in the presence of the bare
ionic potential V(r) = P&„V„r—R ('„) . Therefore

the dynamical matrix D p (tcK'~q) can be separated into
an ionic D'

p (zz'~q) and an electronic part D"p (Kl(,"~q),
where the ionic contribution can be evaluated in a
straightforward way using Ewald's method. The elec-
tronic part of the dynamical matrix is obtained &om the
Hellmann-Feynman theorem

1 ( Bp(r) ) '
(9V(r) s 1 (92V(r )

' a..(.(q)
~ a- (-(q)"'"' '-'W ")a..(.)q=o)a.p(.(q=o)"" (')

where N is the number of the unit cells in the lattice and
Bp(r ) j8u (z~q) is the linear response of the electronic
system to a lattice distortion caused by a displacement of
the eth sublattice. The linear response of the electronic
system to a lattice distortion is calculated using Grst-
order DFPT.

In polar compounds, the long-runge part of the
Coulomb interaction causes the splitting of the q = 0
optic xnodes by raising the &equency of the LO mode
above that of the TO modes. The long-runge part of
the Coulomb interactions corresponds to the macroscopic
field arising &om the ionic displacements. In the long-
wavelength limit q ~ 0 the dynamical matrix is com-
posed of the analytic (regular) and the nonanalytic (sin-
gular) part. The analytic part D of the dynamical ma-
trix for polar compounds is calculated in the same way as
for the nonpolar coxnpounds, neglecting any macroscopic
polarization. The nonanalytic part of the dynamical ma-
trix can be written as

(zg. q). (q. z~, )pOpm„m„qe . q

I

where 0 denotes the vol»me of the unit cell, e the high-
&equency dielectric tensor, and Z+ the Born effective
charge tensor for the eth ion in the unit cell. Both quan-
tities are calculated self-consistently in the &axnework of
first-order DFPT.22'2O

A coxnplete description of lattice dynamics requires the
knowledge of the phonon eigenvectors of the dynamical
matrix in addition to that of the eigen&equencies. For
SiC in the zinc blende structure, the vibrational modes
with wave vectors along high-symmetry directions [100]
(b, ) and [ill] (A) can be classified as purely transverse
or longitudinal, so that for acoustic modes one can write

u( )(q j) = cz(q) exp [i4)~(q)] e~,

where cz(q) is the modulus of the eigenvectors, e~ is a
real longitudinal or transverse unit vector, and (t)~ (q) is a
real phase function [with (t)~ (q) = 0 for q = 0]. The eigen-
vectors of the optical modes are obtained from Eq. (6)
with an exchange of the amplitudes of the two atoms and
sixnultaneous increase of the phase function by m.
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C. Elastic properties of 3C SiC

The linear elastic constants c are defined as

where a denotes the externally applied stress and g the
strain. In the case of cubic crystals symmetry relations
reduce the number of independent elastic constants to
three c&]:cz& &z & c&2 c&& yy &

and c44 ——cyz yz The
elastic constants cqz and cq2 for a cubic crystal can be ob-
tained by considering a crystal uniaxially strained along
the [100] direction, and calculating the induced stress in
[100] for cii and in [010] direction for ci2.

For the zinc blende structure the evaluation of the
shear constant c44 is more complicated: A uniform strain
along the [111]direction causes the bond along [ill] to
be inequivalent to the other ones along [111],[111],and
[111].Under the action of this strain the distance of the
nearest neighbors along the [111]direction is compressed
by an amount of (1—() q ap i/3/4, where ( is the internal-
strain parameter. The elastic constant c44 is given by

0 2 2c4 = c44 — p~To(1')&
4ap

where c44 is the elastic constant in the absence of any in-
ternal displacements (i.e. , ( = 0), p is the reduced mass
of the two atoms in the unit cell, and uT~ the trans-
verse zone-center phonon frequency. The internal-strain
parameter ( is the only independent component of the
internal-strain tensor A of the zinc blende structure,

& p&(1) = —& p~(2) = -(—l& p~l

where ~ pp is the fully antisymmetric Levi-Civita tensor.
( can be evaluated with three difFerent procedures:2 (i)
using the dependence of the phase function PL, (q) upon
the wave vector q = 2x/ap (f, (, () for the longitudinal
acoustic mode along the [111]direction, s4

1 FOIL, (())
),

(ii) calculating the strain derivative of the force F(K)
acting on the Kth atom at the equilibrium position,

&-p~(K) = 1 (OF (r) )
y, ' (I') ( Ogpu

(iii) determining the derivative of the strain cr with re-
spect to the atomic displacements tc at vanishing strain
9)

Gp ( Oops.'.(I') &O -( ))„=.

+) k Tln 1 —exp l- b(u, (q, V) t

k„T )
(»)

The linear thermal expansion coefBcient for a cubic crys-
tal can be written within @HA as

n(T) = ) p, (q) cv, (q, T),
0

(14)

where p~(q) is the mode Griineisen parameter,

Vp fO~, (q, V) )
!

~(q, Vp) ( OV ) v=vo

and c~~ is the mode contribution to the specific heat at
t t ol

»(q) =—

~~ (q, Vp) O /' her, (q, Vp) &

The specific heat Cv(T) of the harmonic crystal is given
by

Cv(T) = ).cv, (q, T)

At the I' point (q = 0) the acoustic phonon frequencies
vanish, and the mode Griineisen parameters of the acous-
tic modes are nonanalytic. In the long-wavelength limit
the Taylor expansion of the acoustic phonon &equencies
and their derivatives with respect to the volume leads at
the I point to the Griineisen parameters

Olnv (V)() 3( V )
()

where v (V) is the sound velocity in the direction of q.

III. B.ESULTS

temperature dependence of the elastic constants, and
phonon &equencies or finite phonon lifetimes cannot be
described. However, for many purposes temperature-
dependent properties of an anharmonic crystal can be
studied within the so-called quasiharmonic approxima-
tion (@HA). In the /HA the interatomic force constants
are renormalized by taking into account an explicit de-
pendence upon the volume.

The harmonic equilibrium lattice parameters of a crys-
tal are obtained by minimizing the total ground-state
energy E(V). The structural parameters at finite tem-
perature are defined by the minimum of the Helmholtz
free energy F(T, V). Within the @HA the Helmholtz free
energy is given by

+HA -1
F(T, V) = t(V) + ) —her, (q, V)

D. Thermal expansion A. Structural properties

Within a purely harmonic theory many important
physical properties of solids such as thermal expansion,

All calculations have been performed using a kinetic-
energy cutoR' of 48 Ry and equivalent sets of special
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points for the different structures. The zinc blende lattice
has been treated as a hexagonal structure in order to min-
imize numerical errors. The total energy has been calcu-
lated using six special points for the 4H, 12 points for the
3t, and 18 points for the 2H SiC. The equilibrium lattice
properties have been obtained by minimizing the crystal
total energy E(V) as a function of the structural param-
eters. The calculated crystal total energies at different
volumes were fitted to the Vinet equation of state. It
has been found that the hexagonal 4H structure has the
lowest energy, followed by the zinc blende structure and
the wurtzite structure. The crystal total energies per Si-
C pair are nearly identical: fmj~ E~j~ 3 6 x 10 Ry
and Em~~ Emj~ 5.6 x 10 Ry. Likewise, the calculated
equilibrium volumes of the SiC phases differ by less than
0.2'.

Because of the predominantly covalent bonding charac-
ter in all SiC polytypes each atom of one kind is tetrahe-
drally surrounded by four atoms of the other kind. The
polytypism arises through variants in the arrangement
of these regular tetrahedra. As all polytypes have the
same nearest-neighbor shell, the first difference occurs
with the second neighbors. Because of the similarity of
the structures of SiC polytypes the differences in the total
energies, equilibrium volumes per Si-C pair, and charge
densities along some selected planes are almost negligible.
This also becomes evident in Fig. 1, where the valence
charge densities along the zigzag bonds of the 3C and 2H
SiC phases —the structures with h = 0 and h = 100 per-
centage hexagonality —are compared; the correspond-
ing charge densities of other hexagonal polytypes are also
nearly identical.

Results pertaining to the static properties of the cubic
3C and the hexagonal 2H and 4K structures are given
in Table I together with the corresponding experimental
data. The theoretical results are in good agreement with
the experimental values. The close relationship between
the different SiC phases becomes also apparent in the
similarity of the traces of the dielectric matrices e and
of the Born effective charge tensors Z of the hexago-
nal 2H and 4H structures with the corresponding val-
ues of the zinc blende structure: s Tr(e )2" = 7.01,
s Tl'(e")4~ = 7.03, with (e")sz = 6.97; s~ &(Z )zH =
2.68, s Tr(Z )4~ = 2.71, with (Z )s~ = 2.72. The di-
rectional dependence of both the dielectric matrices and
the Born effective charges in the hexagonal structures
arises from the crystal anisotropy, but the effect is weak.

(a)

(b)

FIG. 1. Calculated valence charge density of the bond
chains for the 3C (a) and 2H (b) phases of SiC. The con-
tour interval is 0.2 e/~ . The maximum of the charge along
the bonds is 1.96 (3C SiC) and 1.92 (2H SiC) e/~ . The
dotted lines indicate the C-Si zigzag chain.

B. Phonon-dispersion curves

The theoretical phonon-dispersion curves of 3C SiC for
several high-symmetry directions and the phonon density
of states are shown in Fig. 2. Here a kinetic-energy cut-
ofF of 44 Ry was used, and a set of ten special points in
the irreducible BZ of the fcc lattice guaranteed converged
values for the calculated frequencies within 1—2%. The
dominant role of the carbon atom for the dynamics of 3C
SiC is expressed by the behavior of the phonon-dispersion
curves, which are more similar to those of diamond than
to those of silicon. The Qatness of the transverse acous-
tic modes near the BZ boundaries, which is typical for
most of the tetrahedral semiconductors, does not appear
in SiC, as in the case of diamond. Another charac-

TABLE I. Equilibrium lattice constants a and c/a (a.u. ), bulk modulus Bo (Mbar), the derivative
of t;he bulk modulus with respect to the pressure Bp, the tensor of the Born effective charge Z
and the static dielectric tensor e (in units of the elementary charge).

Theory
Expt.

Theory
Expt.

Theory
Expt.

a
8.21
8.24
5.80
5.81
5.81
5.80

c/a

1.64
1.64
3.27
3.27

Bp
2.22
2.24
2.24

2.23

Bp
3.88

3.75

3.66

(Z )11

2.72
2.69
2.62

2.64

(Z )~
2.72
2.69
2.81

2.84

(e-)ii
6.97
6.52
6.89

6.96

(e-)~
6.97
6.52
7.27

7.17

Reference 50.
Reference 51.
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FIG. 2. Calculated phonon-dispersion curves and density of states (DOS) for 3C SiC. Experimental unfolded first-order

Raman scattering data are denoted by diamonds (from Ref. 49).

teristic and peculiar feature of the dispersion curves of
diamond —the overbending in the LO branch with a min-
imum at the Brillouin zone center2 ' —does not appear
in the dispersion curves of 3C SiC regardless of the strong
in6uence of the carbon atom. In contrast to the diamond
structure, the LO and TO modes are split at the I' point
because of the polar character of SiC, and, due to the
mass difFerence, the LA and LO modes are split at the X
point. The weak dispersion of the LO and TO phonon
branches causes a gap and pronounced maxima in the
optical range of the one-phonon density of states of 3C
SiC. This peculiar behavior is rather uncommon to the
tetrahedral III-V semiconductors. Numerical values for
selected. frequencies are given in Table II.

Experimental &equencies of SiC are available only
from Raman-scattering results for various hexagonal and
rhombohedral polytypes. After unfolding these data the
calculated phonon &equencies agree excellently with the
experimental ones. This agreement has been supported
by recently measured second-order Raman spectra of
3C SiC, which have been theoretically reproduced us-

ing phonon frequencies and eigenvectors resulting from
this work.

For SiC in the wurtzite structure (20 SiC) the phonon
frequencies of the I'KM and the I'A directions have been
determined by interpolation of a set of dynamical matri-
ces calculated along the respective directions. The cal-
culated phonon-dispersion curves are compared with the
available experimental data in Fig. 3. The directional
dependence of the longitudinal optical modes at the I'
point is caused by the crystal anisotropy. However, the
splitting is quite small, in agreement with the experimen-
tal value. Along the I'A direction, which is the stacking
direction, the phonon modes are folded. The sites of the

silicon and the carbon atoms in the unit cell of 2H SiC
are not equivalent under primitive lattice translations.
However, time reversal, screw displacement, and glide re-
fiection symmetries result in degeneracies of the phonon
modes at the A point.

The absence of energy gaps at the zone boundary sug-
gests the use of the extended 3ones zone, which contains
only six phonon branches instead of 12. In Fig. 4 the
calculated phonon-dispersion curves of SiC in the zinc
blende structure along the [lll] direction are plotted as
solid lines and the unfolded curves of the wurtzite struc-
ture as dashed lines. The diamonds denote the unfolded
I' point frequencies of the 4H structure. The labels at the
bottom of the figure correspond to the wurtzite structure
and those at the top to the zinc blende structure. The
wavelength of the phonon modes at the I'(2'/c) point iii
the wurtzite structure is A = 2vr/q = c; the two inequiva-
lent silicon atoms in the unit cell and the inequivalent car-
bon atoms —each pair with a separation of c/2 —vibrate
with opposite phase. In contrast, in the I'(0) mode these
atoms vibrate in phase.

As discussed in Sec. IIIA, the difFerent SiC polytypes
have very similar valence charge densities along the stack-
ing or the tetrahedral bonding direction; the same holds
for ground-state energies and unit-cell volumes. The al-
most identical dynamical properties of the difFerent SiC
polytypes along the stacking direction as shown in Fig. 4
are related to their structural (static) similarity. These
results con6rm the experimentally deduced assumption
that the dynamical properties of the difFerent hexagonal
SiC polytypes along the I'A direction can be traced back
to the dynamics of 3C SiC along the I'I. direction. This
suggests that the short-range interactions are dominant
for the static and dynamical properties and that minor

TABLE II. Phonon frequencies (in units of cm ) of 3C SiC at the high-symmetry points I', X,
and I.

Theory
Hxpt.

I TD
783
795

I'I.o
956
972

XTA
366
372

XLA
629
639

XTO
755
76Q

XI.O
829
829

61Q
610

Leo
766
765

Reference 49.
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FIG. 3. Calculated phonon-dispersion curves for 2H SiC.
Experimental Raman-scattering data at the I' point are de-
noted by diamonds (from Ref. 53). The luminescence data
(from Ref. 39) at the K point are denoted by full circles.

0
r(0) A(n'/c) r(2m/c)

FIG. 4. Calculated phonon frequencies in the extended
Jones zone for the stacking direction of the 3C (solid lines),
2H (dashed lines) and 4H (diamonds) SiC.

differences in the long-range Coulomb interactions are
the reason for the appearance of polytypism.

C. Phonon eigenvectors in 3C SiC

The harmonic lattice dynamical properties of a crys-
tal are incomplete without the phonon eigenvectors. The
calculation of physical quantities such as infrared absorp-
tion, Raman spectra, or Debye-&aller factors involves
the phonon &equencies as well as the eigenvectors. Even
though the results for phonon &equencies derived with
phenomenological models are often quite satisfactory, the
associated eigenvectors difFer usually significantly.
Thus predictions of eigenvectors from phenomenological
models are unreliable. The ab initio results for the eigen-
vectors are not only important for the above-mentioned
calculations but can also be used to judge the reliability
of different phenomenological models.

The calculated phase functions P~(q) of the eigenvec-
tors, see Eq. (6), of 3C SiC for q along the high-symmetry
directions A and 4 are shown in Fig. 5. The difference
in the dynamics of SiC as compared to that of most of
the other tetrahedral semiconductors is evident &om the
dependence of the phase function PL, (q) of the longitu-
dinal mode upon wave vector along the [111]direction.
For comparison, the qualitatively different phase function
of the longitudinal eigenvectors of silicon along the [111]
direction, which is typical for the covalently bonded semi-
conductors, and that of diamond are included in Fig. 5.
For symmetry reasons, the eigenvectors are real at the L

point, so that only the two values 0 and x are allowed
for PL, . The case $1,(L) = vr corresponds to the so-called
bond-stretching mode, in which the two atoms of a bond
along the [ill] direction vibrate with opposite phase. In
contrast, the case PL, (L) = 0 corresponds to the bond-
bending mode, in which the two atoms of this bond vi-
brate in phase. In SiC and diamond the bond-bending
mode has a higher &equency than the bond-stretching
mode. The opposite holds for the typical semiconduc-
tors such as Si, Ge, or GaAs. This peculiar behavior
of the longitudinal phonon mode of 3C SiC and diamond
along the [111]direction can be traced back to the strong
bond-bending forces of these semiconductors. The lon-
gitudinal phonon-dispersion curves of diamond, silicon,
and 3C SiC along the A direction are shown in Fig. 6 to-
gether with the corresponding phases of the eigenvectors
at the L point.

In the diamond structure the eigenvectors along the
high-symmetry directions A and 6 are completely deter-
mined by the phase functions Pz(q), because the ampli-
tudes of the eigenvectors for the two atoms in the unit
cell are equal, cz(q) = 1/~2. In the zinc blende struc-
ture, however, the knowledge of the amplitude c~(q) of
the eigenvectors is necessary, too. The calculated arnpli-
tudes of the acoustic transverse and longitudinal eigen-
vectors of the carbon atom of 3C SiC along the [111]
and [100] directions are shown in Fig. 7. The disper-
sion of the amplitude as a function of the wave vector
g is caused by the different masses of the carbon and
silicon atoms. The amplitude of the transverse modes
shows quite a small dispersion in both directions A and
A, whereas there is strong decrease of the amplitude of

.5 .5

FIG. 5. Calculated eigenvector phase
functions P~(q) of 3C SiC for q vector along
the A and E direction for the transverse
modes (solid lines) and longitudinal modes
(dotted) lines. Along the [111] direction
the longitudinal phase functions of diamond
(long-dashed line) and silicon (short-dashed
line) are included for comparison. The dia-
monds denote the experimental values of the
longitudinal phase function of silicon from
Ref. 34.
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TABLE III. Theoretical values of the internal-strain pa-
rameter of 3C SiC derived (s) from the slope of the longi-
tudinal phase function Pr, (q) at q = 0, (b) from the strain
derivative of the forces acting on the atoms, snd (c) from the
derivative of the stress with respect to the atomic displace-
ments.

(a)
0.3?9

(b)
0.3?8

(')
0.383

FIG. 6. Calculated longitudinal acoustic and optical
phonon frequencies (in units of the Rsman frequency) along
the A direction for diamond (dotted lines), silicon (dashed
lines), and the cubic phase of silicon carbide (solid lines).
The respective phases of the eigenvectors at the I point are
indicated.

the longitudinal eigenvectors with increasing [q[. The
amplitude of the longitudinal acoustic eigenvector of the
carbon atom is nearly zero at the L point. Thus in the
longitudinal acoustic mode at the L point almost the
whole vibrational energy of the crystal is concentrated
on the sublattice of the silicon atoms. For the longitudi-
nal eigenvectors at the X point, symmetry requires that
only one of the two difFerent sublattices vibrates, even
though it is a priori not clear which of the two atoms
vibrates in which of the modes at the X point. It is gen-
erally assumed that the lighter atom vibrates with the
higher &equency and vice versa. This is indeed brought
out by the results shown in Fig. 7.

D. Internal-strain parameter of 3C SiC

For 3C SiC, the internal-strain parameter ( has been
determined using the three procedures which have been
described in Sec. II C, see Eqs. (10)—(12). Once the phase
PL, (q) has been obtained, the first method is the simplest
one numerically.

The second method involves the derivative of the stress
tensor in the undistorted structure at zero macroscopic
strain with respect to the displacement of one atom in
the unit cell. In our case the atom at the origin of the
unit cell has been kept fixed, while the other atom at the
position 72 ——ao(1, 1, 1)/4 has been displaced along the

[111]direction. Such a displacement preserves the cubic
symmetry of the lattice.

Finally, the internal force E(r) acting on the atoms
converges slowly with respect to the kinetic-energy cutoff.
Therefore the third method of calculation of the internal-
strain parameter ( from the strain derivative of the in-

ternal forces requires a higher kinetic-energy cutoff if the
same accuracy is envisaged as in the other two meth-
ods. Another numerical disadvantage of this procedure
is the lowering of the crystal symmetry due to the applied
strain. Despite its disadvantages, this method has been
used to get an independent value of the internal-strain
parameter (. The internal forces acting on the atoms
have been calculated by applying a uniform strain along
the [ill] direction. A kinetic-energy cutoK of 70 Ry has
been used to achieve converged results for this method,
whereas a kinetic-energy cutofF of 55 Ry is sufficient for
the other two methods.

The calculated values of the internal-strain parameter
of 3C SiC are given in Table III. To the best of our
knowledge no experimental data for 3C SiC are available.

E. Elastic constants of 3C SiC

The calculation of the elastic constants &om the stress
calculations via Eq. (7) is easier than that from the
total-energy calculations. ' In this work the elastic
constants of 3C SiC have been determined &om self-
consistent calculations in strained geometries using the
stress theorem proposed by Nielsen and Martin. ' 3 The
elastic constants cqq and c~2 have been obtained directly
from the slope of the independent components aqua and
0 22 —033 of the stress tensor cr due to applied strain
g p ——gb qbpq. The results for the stress components
are shown for strain values of up to 2% in Fig. 8. There
are no internal displacements of the atoms for stress along

SiC SiC

cj .5— cj .5—
FIG. ?. Calculated amplitudes of the

eigenvectors of the carbon atom in 3C SiC
for vibrations with wave vector along the A
and b, direction for transverse (solid lines)
and longitudinal modes (dotted lines).

0
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100 TABLE IV. Calculated values of the elastic constants and
of the bulk modulus (in units of Mbar) of 3C SiC.

50
Theory
Expt.

C11

3.90
3.90

C12

1.34
1.42

p
c44
2.73

c44

2.53
2.56

Bp
2.19
2.24

—50

Derived from the stress-strain relation.
Obtained from the relation Bo = (cqq + 2cqq)/3.

'The experimental data are derived by Lambrecht et aL (Ref.
52) from sound velocities of Feldman et al. (Ref. 49).

—100
—0.02 -0.01 0

n
0.01 0.02 F. Mode Griineisen parameters

and thermal expansion coeRcient of 3C SiC

FIG. 8. Stress-strain relation in 3C SiC. g is the ampli-
tude of the external strain. The symbols indicate calculated
points, while the solid lines are linear least-squares fits. The
theoretical values of the elastic constants cqq, cq2, and c44 are
given by the slopes of the plotted curves.

the [100] direction.
The calculation of the elastic constant c44 involves the

internal strain as well, see Eq. (8). The clamped-ion term
c44 has been derived &om the slope of the stress tensor
caused by uniaxial strain along the [111]direction in ab-
sence of any internal displacements, see Fig. 8. The sec-
ond term of Eq. (8) has been evaluated using an average
value of the theoretical results for the internal-strain pa-
rameter (. The plots shown in Fig. 8 demonstrate that
a linear relation between stress and strain is quite ade-
quate for applied strain values of up to 2'%%uo in SiC. The
calculated elastic constants of SiC are compared with the
experimental data44 in Table IV. The deviation between
the theoretical and experimental values is less than 8'.

For an isotropic crystal the transverse sound velocity
would be the same in all directions, and for cubic crystals
one would get cqq —cq2 ——2c44. If the interatomic forces
are central the number of independent elastic constants
is reduced by the so-called Cauchy relations, in the case
of cubic crystals cq2 —— c44. The elastic constants of
SiC neither meet the isotropy condition nor satisfy the
Cauchy relation due to the presence of strong noncentral
forces.

SiC

In the /HA the anharmonic eKects are taken into ac-
count by allowing the phonon &equencies to depend upon
the volume. The volume dependence of the normal-mode
&equencies has been derived by calculating the inter-
atomic force constants and phonon &equencies for dif-
ferent unit-cell volumes around the equilibrium value.

The results for the mode Griineisen parameters pr (q),
see Eq. (15), along several symmetry directions are plot-
ted in Fig. 9. The mode Gruneisen parameters are
predominantly positive with the exception of the small
part of the lowest branches, corresponding to transverse
acoustic modes, around the I' and L points. This be-
havior of the Griineisen parameters of 3C SiC is similar
to that of diamond, for which all mode Gruneisen pa-
rameters are found to be positive, and in contrast to
that of silicon, for which almost the whole of the TA
branches of the mode Gruneisen parameters are strongly
negative. ' Our result for the mode Gruneisen param-
eter of the TA branch at the X point [pTA(X) = 0.13] is
somehow higher than obtained &om previous calculations
[pTA(X) = —0.38]. A similar discrepancy of theoretical
results from different pseudopotentials has been observed
in the case of Si.~s The Bachelet-Hamann-Schliiter (BHS)
pseudopotentials, as used in Ref. 5, give TA Griineisen
constants for crystalline silicon which are more negative
than those obtained &om softer pseudopotentials; ac-
cording to Eq. (14), the Griineisen constants from the
BHS pseudopotentials lead to a thermal expansion co-
eKcient of Si with a larger deviation &om experiment
in the low-temperature region, in contrast to those &om
softer pseudopotentials.

0-

I. I...
———I,

I

I-—
I

I

I

I

I

I

I

K X

/
/ r

/~

L X W

SiC 6-

FIG. 9. Theoretical dispersion curves of the mode
Griineisen parameters p/(q) of 3C SiC. Solid lines denote the
optical modes, dotted lines the longitudinal acoustic modes,
and dashed lines correspond to transverse acoustic modes
(along the high-symmetry directions [100] and [111]). Dia-
monds denote the rescaled experimental data from Olego et
al. (Ref. 51) using the theoretical values for Bo and Bo.

0
0 400 800

Temperature (K)

1200

FIG. 10. Thermal expansion coefficient a(T) of 3C SiC as
a function of temperature. Diamonds are experimental data
from Ref. 54.
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Sic

V3

4

500 i000
Temperature (K)

60

1500

FIG. 11. Calculated specific heat at constant volume
Cv (T) (solid line) and st constant pressure Cp(T)
= Cv(T) + 9TV(T)B(T)a (T) (dotted line) of 3C SiC ss a
function of temperature. Diamonds denote the experimental
data for the specific hest Cp(T) from Ref. 50. The difference
between specific heat at constant pressure and at constant
volume at a given temperature T has been determined using
theoretically obtained values for a(T) and B(T), see Ref. 48.

IV. CONCLUSIONS

The thermal expansion coefficient of 3C SiC has been
derived following Eq. (14) with results displayed in
Fig. 10. The theoretical results are in good agreement
with the experimental values keeping in mind the rather
small relative volume change of the order of about 10
in the temperature range investigated. In the high-
temperature regime all phonon modes are excited, and
the thermal expansion coefficient tends to saturate at
a constant value. The deviation between the theoreti-
cal and experimental data in the high-temperature range
is probably caused by anharmonic eff'ects of higher than
third order which are not taken into account by the quasi-
harmonic approximation. As in the case of diamond and
at variance with most of the other tetrahedral semicon-
ductors, there is no temperature range with a negative
thermal expansion coefficient. The negative expansion
coefficient of silicon in the low-temperature regime is
caused by the the negative contributions of the trans-
verse acoustic modes of the mode Gruneisen parameters
unlike in the case of SiC, where these contributions are
too small.

The calculated specific heat at constant volume

Cv(T) and at constant pressure Cp(T) = C~(T) +
9TV B(T)n2(T) of 3C SiC is shown in Fig. 11. In the
low-temperature region the difference between Cv (T)
and Cp(T) is negligible, and it remains small also at
higher temperatures due to the weak thermal expansion
of this compound.

along the bonding and stacking directions.
Because of the very small energy difFerences between

the investigated SiC phases reliable theoretical pre-
dictions about thermodynamic stability and possible
temperature- and pressure-induced phase transitions are
only feasible if the contributions of the lattice vibrations
to the total energy are taken into account. For instance,
the inclusion of the energy contribution of the zero-point
motion raises the static value of the lattice parameter of
3C SiC by about 0.3'Fg. s On the other hand, these small
energy differences could play an important role with re-
spect to the relative stability of the difFerent polytypes.
Despite longstanding interest, the phenomenon of poly-
typism of SiC is still not properly understood, and ba-
sically this refIects a lack of understanding of polytype
stability.

In this context the investigation of the dynamical and
thermal properties of these phases is relevant. The sim-
ilarity of the structural properties leads also to resem-
bling dynamical properties for the difI'erent structures,
like efI'ective charges or phonon-dispersion curves along
the stacking direction. The directional dependence of the
dispersion curves at the I' point, usually a fingerprint
of uniaxiality, nearly vanishes. The phonon-dispersion
curves of cubic SiC are intermediate between those of
Si (with dispersion curves typical for most of the III-V
compounds) and diamond, but definitely not their aver-

age. In addition to the rescaling of the frequencies by the
diff'erent masses a rearrangement of the charge distribu-
tion takes place. Therefore, in contrast to the elemental
crystals, SiC turns out to have a noticeable ionicity, i.e. ,

charge asymmetry.
Furthermore, several thermal properties of the 3C SiC

have been derived using the quasiharmonic approxima-
tion, i.e. , the specific heat at constant volume and at
constant pressure as well as the thermal expansion coef-
ficient and, as a by-product, the mode Griineisen param-
eters. For these quantities first-principles results have
been lacking so far, even though knowledge of them might
be the key to a deeper understanding of the material
properties of SiC and, consequently, of polytypism.

In fact, despite the generally excellent agreement of the
theoretical results determined from the minimization of
the total static energy with the available low-temperature
experimental data, this procedure neglects the efI'ects of
the vibrational energy and entropy of the crystal. These
efI'ects should be included in a consistent ab initio cal-
culation of the equilibrium properties at zero and finite
temperature. From this point of view, this investigation
of the lattice-dynamical properties is a fundamental pre-
liminary step for a completely consistent description of
the stability in these systems.

We presented a first-principles calculation of static, dy-
namical, and thermal properties of three SiC polytypes
within the pseudopotential approach to the density-
functional theory in the local-density approximation.
The ground-state properties of the cubic 3t and the
hexagonal 2H and 4H polytypes of SiC have emerged to
be very similar, especially concerning ground-state ener-

gies and volumes as well as the valence charge densities
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