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We investigate the effect of strong electron-electron repulsion on the electron-phonon interaction
from a Fermi-liquid point of view. In particular we show that the strong interaction is responsible
for vertex corrections, which are strongly dependent on the v&q/&u ratio, where nJ; is the Fermi
velocity and q and u are the transferred momentum and frequency, respectively. These corrections
generically lead to a strong suppression of the effective coupling between quasiparticles mediated
by a single phonon exchange in the v&q/cu )) 1 limit. However, such efFect is not present when

vzq/ur (( 1. Analyzing the stability criterion for the compressibility, which involves the efFective
interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push
the system towards a phase separation instability. A detailed analysis is then carried out using a
slave-boson approach for the infinite-U three-band Hubbard model describing the basic structure
of a Cu02 plane in copper oxides. In the presence of a coupling between the local hole density
and a dispersionless optical phonon, we explicitly confirm the strong dependence of the hole-phonon
coupling on the transferred momentum versus frequency ratio. We also find that the exchange of
phonons leads to an unstable phase with negative compressibility already at small values of the bare
hole-phonon coupling. Close to the unstable region, we detect Cooper instabilities both in s- and
d-wave channels supporting a possible connection between phase separation and superconductivity
in strongly correlated systems.

I. INTRODUCTION

The interplay between the electron-phonon (e-ph) cou-
pling and the (strong) electron-electron (e-e) interaction
is an interesting problem, which still lacks a complete
understanding. At present this topic is very hot since
various facts indicate that the lattice can play a non-
negligible role in both the superconducting copper oxides
and the fullerenes. As far as these latter materials are
concerned, the strength of the interaction is still a matter
of a debate, but there is a rather large agreement on the
prominent role of the lattice. On the other hand, as far
as copper oxides are concerned, it is generally recognized
that the e-e interaction is very large in these systems, but
it is the relevance of the lattice that is questioned. How-
ever, various groups ' claim that there are both experi-
mental evidence and theoretical arguments supporting a
prominent role of the lattice in the cuprates. Moreover,
recent optical experiments in the mid-infrared frequency
region indicate the presence of polaronic effects for the
very lightly doped compounds, which are known to be
strongly correlated systems.

Various issues can be addressed in investigating the
role of the lattice in the presence of a strong e-e in-

teraction. In particular two questions can be raised,
which are relevant, both on a general ground as well as
in the framework of high-temperature superconductivity.
The Brst question concerns the possibility of having a
large phonon-mediated effective e-e coupling due to the
strong mass enhancement (m'/m )) 1) occurring in a
strongly correlated Fermi liquid: After all the dimen-
sionless coupling4 A = p2vo (p is the usual bare electron-

phonon coupling and vo is the free-electron density of
states) could grow very large because of the density of
states renormalization arising &om the mass enhance-
ment A -+ A = p2v', with v' = (m'/m) vo. This would
have crucial consequences both on transport properties
as well as on the Cooper pair formation. Moreover, a
large A would favor the formation of polarons.

The second question regards the possible occurrence
of instabilities in the electronic gas. Previous stud-
ies of single- and multiple-band Hubbard models in the
strong-coupling (U )) t) limit have revealed a strong ten-
dency of these systems to undergo phase separation (PS)
and charge-density-wave (CDW) instabilities as soon as
short-range interactions are introduced. This occurs irre-
spective of the magnetic (e.g. , nearest-neighbor Heisen-
berg coupling) (Refs. 5—11) or the Coulombic (e.g. ,
nearest-neighbor repulsion) (Refs. 12—14) nature of the
short-range interaction. In the framework of interest here
one can ask whether also an e-ph coupling can destabi-
lize the electron gas. The analysis of the stability with
respect to PS of a given model is particularly relevant
since the investigation carried out in models displaying
PS also showed that superconductivity takes place close
to the instability region ' ~~ ~s (the Cooper pairing oc-
curring as a precursor of PS due to the attraction even-
tually driving the system to the PS instability).

We anticipate here the answers to the two above ques-
tions, which will be analyzed in detail in the rest of the
paper.

As far as the erst problem is concerned, a general anal-
ysis performed within a standard Fermi-liquid scheme
with phonons coupled with the electron density reveals
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a dependence of the effective phonon-mediated e-e inter-
action on the ratio between the transferred moment»m

q and the frequency u, because of the vertex corrections
generated by the e-e interaction. This dependence can be
particularly strong in the presence of a large quasiparti-
cle mass enhancement. As a result, when vyq/u » 1,
we fiad that the screening of the quasiparticles strongly
enhances the vertex corrections. These corrections tend
to suppress the effective interaction so that the resulting
static coupling A is small. This is in agreement with pre-
vious calculations~s performed in a specific model, where,
however, the e-ph coupling arises &om the ion-positioa
dependence of the hopping matrix elements (the so-called
covalent e-ph coupling). On the contrary, in the opposite
limit vy q/ur « 1 the intraband quasiparticle screening is
inefFective, the physics being dominated by high energy
[e.g. , interband charge-transfer (CT)] processes, and a
large efFective e-ph interaction results.

The strong dependence of the vertex corrections on the
v~q/ur ratio renders the analysis of the efFects of the e-

ph coupliag particularly delicate, since difFerent physical
quantities may involve different vpq/~ regimes. In par-
ticular the e-ph scattering ia transport properties is dom-
inated by low-energy —high-momentum processes, which
sufFer a strong suppression due to the large vertex cor-
rections. As pointed out in Ref. 15, this will reduce the
relevance of the e-ph scattering particularly at low dop-
ing, where the e-e interaction efFects are more relevant.
Similar conclusions have also been recently drawnM from
the analysis of a single-band Hubbard model with elec-
trons coupled with an optical dispersionless phonon.

On the other hand an afBrmative answer can be given
to the second question concerning the occurreace of in-
stabilities in the electron gas. In fact, while the behavior
of A described above is generally true far from an instabil-
ity, it will be shown that a sufficiently large e-ph coupling
can instead produce a PS instability. ~~ This re8ects the
fact that the stability criterion~s for the symmetric Lan-
dau parameter, FD & —1, required for a positive com-
pressibility, involves the total (e-e and e-ph mediated)
interaction in the dynamical limit v~q/u ~ 0. At the
point where Fs ———1 the compressibility diverges and
nearby even the total static scattering amplitude [within
a random-phase approximation (RPA) resummation of
the phonon-mediated interaction] is large and negative.
Also this analysis can be carried out on a rather gen-
eral ground. However, the quantitative determination
of the instability conditions, being related to the subtle
interplay between various interactions, depends on the
couplings involved aad must rely on the treatment of a
specific model. For this purpose we shall consider a three-
band Hubbard model describing the holes in the Cu02
planes of the high-T, copper oxides. A coupling between
the local hole density and a dispersionless optical phoaon
wiH be speci6cally considered. To deal with the electronic
correlatioas in the strong-coupling limit we use the stan-
dard slave-boson technique within a 1/N expansion. The
analysis of this model explicitly detects the presence of an
instability region where the coxapressibility of the fermion
gas diverges and then becomes negative. Near the region
where the system becomes unstable, superconducting in-

stabilities are found by averaging over the Fermi surface
the interaction amplitudes in the Cooper channel.

The plan of the paper is as follows. In Sec. II we

address the two above questions working in the general
&amework of the Landau Fermi-liquid theory. The three-
band Hubbard model with the electrons coupled with a
dispersionless optical phonoa is introduced in Sec. III.
The instabilities are investigated in Sec. IV. Final re-
marks are contained in Sec. V.

II. PHONON-MEDIATED EFFECTIVE
INTERACTION: A FERMI-LIQUID DISCUSSION

One of the basic concepts of Landau Fermi-liquid the-
ory is the idea of mass renormalization. This idea is also
crucially present in the most common treatments of the
interacting Fermi systems. In particular it is naturally
introduced in the Gutzwiller treatment of the Hubbard
model and is at the basis of the Mott-Hubbard tran-
sition in this model. This very same basic concept re-
curs in other popular techniques like, e.g. , the slave-boson
technique ~~ 24

In the presence of a strong interaction the mass renor-
malization can be very large, m'/m » 1, and results
in an enhancement of the quasiparticle density of states
v' = (m'/m) v0. Then, as already discussed in the pre-
vious section, the natural question on the consequences
of this renormalization on the efFective phonon-mediated
e-e interaction is whether the bare (free electron) efFec-
tive e-e coupling A = p vp grows into A = p v' as an
efFect of the mass enhancement.

Without a significant loss of generality we address the
above question discussing the case of an optical phonoa
coupled to the local density of electrons by a constant
coupling p.2 In the presence of a (possibly large) e-e in-
teraction one has to worry about the e-ph vertex correc-
tions involving the e-e interaction, for which ao Migdal
theorem can be applied. The problem is conveniently cast
in the language of the standard Fermi-liquid theory,
by using the two relations connecting the density vertex
A(q, u) and the wave function renormalization z in the
dynamic and static limits,

z A (q = 0, (u -+ 0) = 1,
1

z A (q m 0, (u = 0) =
1+ I"p

Fp: 2v' I' is the standard Landau parameter and I
is the dynamic (q = 0, ~ ~ 0) effective e-e scattering
amplitude between the quasiparticles.

We first consider the effective e-e interaction arising
&om a single-phoaon exchaage at lowest order in p2.
Then the vertex corrections cannot include phonon pro-
cesses and the dynamic Landau scattering amplitude in
Eq. (2) is due to the e-e interaction only. To explic-
itly keep memory of this limitation we append a suKx e
to I' aad to any quantity not involving phoaonic pro-
cesses. Thus FD

' = 2v'I" . The relations (1) and (2)
are exact Ward identities, which must be satisfied irre-
spective of the details of the e-e interaction and show a
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drastic difference between the dynamic (q = 0, cu —1 0)
and static (q ~ 0, u = 0) limits. Whenever the ex-
change of a phonon takes place, the vertex corrections
must be included, leading to a different behavior of the
efFective interaction in the two limits. The effective di-
mensionless e-e interaction mediated by a single-phonon
exchange reads

v'I'~&(q, ~) = v'p z' A' (q, w)efF & ur

where cu(q) is the phonon dispersion. Here the presence
of z' indicates that we are considering the efFective in-
teraction between quasiparticles and A expresses the dif-
ference of the phonon coupling to the quasiparticles with
respect to particles. 26

The effects of the strong ~-q dependence of the elec-
tronic density vertex A', in I'~&(q, ~) [see Eq. (3)],can be
made apparent in the small -q and small-u limits, where
the relations (1) and (2) can be used. Then one obtains

v*t'~„" (q -+ 0, (u -+ 0) = —p2v*,
'UF q

(4)

v'I'P„" (q m 0, ur -+ 0) = —p
1+F.(')

K

~s(e)

~ o, (5)v* '
v~q

wh~~e ~' = ", is the compressibility of the Fermi
i+@ ()

liqmd in the absence of coupling with the lattice. It
should be noted that, in the present case of an optical
phonon, the phonon propagator tends to —1 in both lim-
its, Eqs. (4) and (5).

The difference between the dynamic and static cases
can be dramatic in the case of a Fermi liquid with a
large mass enhancement m'/m &) 1, but with a negligi-
ble compressibility renormalization (r.' = vo). 2~ In fact,
in the case under consideration, I"p

' is proportional to
the quasiparticle density of states, v' = (m' jm) vo &) vo,

and one has I"o
'

)& 1. Then Eqs. (4) and (5) read

v*1'., (q = O, ~ 1 O) = -p
~ ~

v, ,
ph

m*)'
gm)

Kv*t',~ (q m 0, (u = 0) = —p

so that the effective one-phonon-mediated e-e interac-
tion is large ( m /m) in the dynamic limit and small

( m/m') in the static one.
The strong ur-q dependence in Eqs. (6) and (7) con-

cerns the small-q and small-~ limits. This result relies
on quite general arguments, whereas the case of finite q's
and cu's will need the analysis of a specific model and will
be discussed in the context of the three-band Hubbard
model in the next sections. Our expectation, which mill

be confirmed by the analysis in Sec. IV, is that the prod-
uct z'A' will be roughly of order 1 (dynamical limit)
all over the region outside the particle-hole continuum,
while it wil} strongly deviate &om unity in the region of
the particle-hole continuum, where screening processes
take place. As a consequence the e-ph coupling (and the
e-e interaction mediated by phonons) will be depressed
by the e-e interaction in all processes involving small en-
ergy and large momenta (as in the low-energy lifetime
and transport).

The above conclusion on the irrelevance of the e-ph
coupling is based on a lower-order analysis in p . It evi-
dently contrasts with the fact that the stability criterion
Fp & —1 involves the full e-e interaction in the dynam-
ical limit, where the e-ph coupling is not depressed by
the "pure" e-e vertex corrections. Vhthin the same lim-
its discussed above (lowest order in p2) we have

Fo = 2v* (I —p'),
indicating that a sizable p can indeed lead to I"p & 1.
(Note that m'/m )) 1 requires a large bare repulsion
in units of the bare Fermi energy, as in the single- or
multiple-band Hubbard model near the metal-insulator
transition, but this does not imply a large I '.) The
lowest-order analysis showing the depression of the e-ph
coupling in the low-energy processes maintains its full va-

lidity with respect to the inclusion of higher-order terms
provided I"o in Eq. (8) is still of order m*/m. On the con-
trary, near the instability condition Fp ———1, the phonon
contributions to the vertex cannot be neglected and the
e-ph interaction is relevant even in the static limit. To
clarify this point we extend our analysis considering a
bubble resummation of the one-phonon processes, in the
framework of a standard RPA approach for the quasipar-
ticles.

As a first step we introduce an effective dynamic e-e
scattering amplitude I" (q, ur) with no phonon processes
included in it. Here and below, the subscript u indicates
that no intruband screening processes are present in the
considered quantity. The q m 0 and u m 0 limit of
1' (q, cu) reproduces the above Landau dynamic scatter-
ing amplitude I' of the Fermi liquid in the absence of
e-ph coupling.

The second ingredient of our analysis is the intraband
Lindhardt polarization bubble

where f (EI,) is the Fermi function and EI, is the quasi-
particle band. Here we have included the spin multi-
pllclty II1 file defln1tlon Of II(q, (d). Tllls bllbble call be
dressed with all possible intraband and interband purely
electronic screening processes within a RPA resumma-
tion, leading to

II(q, (u)

1+I" (q, (u)II(q, (u)

Finally me consider the self-energy corrections to the
phonon propagator arising kom the purely electronic
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processes. Once both the interband and the intraband
screening of the quasiparticles is taken into account one
obtains a RPA-renormalized phonon propagator with a
self-energy correction given by p2II,

I' (q, (u) —:I"(q, (u) + I'P"(q = 0, ur m 0) = I"(q, (u) —7

(12)

~'(q)
'(q) [1 —p'll. (q, ~)]

~'(q)
2 2 g q 1+1 (q,u)II(q, w)

&~~ 1+2 (q,~)II(q,~)

Notice that the quantity

has been introduced. Taking the limit q ~ 0 first and

then u ~ 0, I' becomes the Landau dynamic scattering
amplitude in the presence of an e-ph coupling.

We now can evaluate the total scattering amplitude
splitting the contribution of the purely electronic pro-
cesses and the contribution of the processes also involving
phono ns,

v'I'(q, (u) = v'I" (q, ur) 1 v'(u2(q) p2

1+.I'~ (q ~)II(q ur) [1+I' (q ~)11(q ~)] ~2 ~2( )
1+f' (q, )II(q, )

& z+r (q,~)a(q, ~)

(13)

1 V

[1 + F (q, 0)II(q, 0)] 1 + I' (q, 0)II(q, 0)
(14)

From this expression one can see that the condition for
a diverging static scattering amplitude, eventually lead-
ing to an instability of the Fermi liquid, results in the
condition on the Landau dynamic scattering amplitude

1 + I' (q m 0, ur = 0)II(q -+ 0, ur = 0) = 0,

The first term in the right-hand side (rhs) is the RPA
resummation of the purely electronic scattering ampli-
tude, while the second term arises &om the exchange of
a fully dressed phonon propagator [Eq. (11)].The factor
in front of this second term is due to the (purely elec-
tronic) vertex corrections connecting the boson propaga-
tor to the external quasiparticle legs. It is important to
notice that these vertex corrections included in the sec-
ond term are obtained by specializing Eqs. (1) and (2)
into s'A' = [1+I"(q, ur)II(q, u)] . Nevertheless, now
the attraction mediated by this second term can be large
even in the static limit if the denominator of the phonon
propagator becomes small. In fact, in the cu ~ 0 limit
one has for the attractive part of Eq. (13)

lattice even in the presence of a very strong e-e repulsion.
It must be noticed that this instability does not imply
the full phonon softening, since the determination of the
renormalized phonon frequency id(q) requires the value
of

1+I' (q, (u)II(q, ur)

1+I" (q, (u)II(q, ~)

in a range of &equencies where the numerator does not
vanish. The instability appears instead as an instabil-

ity of the overdamped zero sound driven by the e-ph-
mediated attraction.

The quantitative determination of the needed strength
of the e-ph coupling in order to have an instability must

rely on the analysis of a specific model. In fact, as is
apparent in its definition, Eq. (12), the strength and

the sign of I' depend on the balance between I"(q, u)
and p2. Moreover, as we shall explicitly see in the model
treated in the following sections, I" (q, u) in turn results
&om a cancellation between the strong bare repulsion
and the strong interband screening. How much is left
from this cancellation depends on the specific model one

is dealing with.

equivalent to the usual 1+FJ = 0, Eq. (8), since in this
limit II(q, ur) reduces to 2v'.

This result shows that a Fermi liquid can indeed be
destabilized by the coupling of the quasiparticles to the

III. MODEL

The model we consider is represented by the two-
dimensional Hamiltonian

+ ) (&pp;zp; pz „+H.c.) + Ud ) nd;tnd;g+ tuo) A,-A;
('~)~

) ~

A' + A
[ [+d (nd (nd')) + +'p (npi (npi))] (17)
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where e& and c„are the Cu and 0 energy levels, respec-
tively, t;~ = kt„~ is the Cu-0 hybridization, t~,~

= +t„„
is the nearest-neighbor O-O hybridization (for the choice
of the orbital phases and the related choice of the sign
of the hopping constants, see, e.g. , Ref. 28). U~ is the
on-site repulsion between holes on copper sites. Starting
from a Cu(3d )-O(2p ) vacuum state, holes on copper
d ~ y~ orbitals or on oxygen p or p„orbitals at site
i are created by the dt and pt operators, respectively.

ng; = g d, d; is the total density per cell of holes on

copper, while n„, = P „p, p; is the total den-
sity per cell of holes on oxygen. The boson creation oper-
ator A, creates a dispersionless phonon with frequency ~0
coupled to the local density of copper and oxygen holes by
the coupling constants Gp and G„, respectively. These
couplings can arise &om the dependence of the interionic
Coulombic repulsion on the relative position as well as
on the hole occupation. An estimate can be obtained
when only the nearest-neighbor (NN) Coulomb interac-
tion V([r, —r~~)ng~nyz is considered. Then, a first-order
expansion on the ion displacement and on the charge Huc-

tuations leads to an e-ph coupling of the form appearing
in the Hamiltonian (17), with

BV BV
Gg o(: (n„,), Gy (x (ng, ),

R R

where R is the equilibrium distance between NN ions.
Therefore, two different constants, G~ and G„, have been
introduced owing to the different average occupations of
the d and p orbitals and to the difference in ionic masses

I

entering the standard normalization factors implicitly in-
cluded in the de6nition of the G's. However, we do not
want to stress very much in the present context the rel-
evance of the specific form of the e-ph coupling appear-
ing in Eq. (18).so In fact we do not address the spe-
cific aspects (like, e.g. , symmetries and strengths) of the
phonons in the cuprates, our issue being the understand-
ing of the general properties of an Holstein phonon in
a strongly correlated system.

A similar three-band Hubbard model was considered
in Ref. 15, where, however, an intersite "covalent" e-ph
coupling was considered arising from the ion-position de-
pendence of the hopping integrals,

Since our investigation concerns the interplay between
strong interactions and the phonons, we take the Ud ~ oo
limit. In a standard way we handle the no-double-
occupancy constraint on copper sites by means of the
slave-boson technique. Therefore, after performing
the usual substitution dt —+ d, b;, d, + b;d; the con-

straint becomes P dt d; +btb; = 1. To equip the model
with a formal small expansion parameter, we introduce
a standard large-N expansion, 22 where the spin index o.

runs from 1 to N. The constraint is relaxed to assume
the form P dt d; +btb, =

2 and the suitable rescaling

of the hopping tyg ~ tyg/y N must, in this model, be
joined by the similar rescaling of the hole-phonon cou-
pling G i G/~N in order to compensate for the pres-
ence of N fermionic degrees of &eedom. Once these trans-
formations are carried out, the partition function of the
final model can be written as a functional integral

Z = Dpt Dpa~Ddt Dd DbtDbDADADAte (19)

+) iA ~bb; ——
~

+H,
)' t N&(

2).
t d Bp' t Bb tBA4. ''
~ + p» +b. +A.tie B7. ' Bv ' B7.

t C7 aa=a, y

a=) d,'..d;. (s;+is;)+s„' )
XiCJ a,cr,a=a, y

»

4iC7

spy g P +a, , (Pi,~, y'pi, a,y + pi+—2Ã, n, y pi+2, , —y) + c c

(20)

(A, + A;) [G» (»»; —(»»;)) +G»(»»; —(»»;))[+»» $ A[A;,
» q0'

(21)

where a local Lagrange multiplier field A has been intro-
duced to implement the local constraint forbidding the
double occupancy on copper.

At the mean-field (N=oo) level, the model of Eqs. (19)—
(21) is equivalent to the standard, purely electronic three-
band Hubbard model without coupling to the phonons,
which has been widely considered in the literature.
In fact, at the mean-field level no role is played by the
phonons because our electron-lattice coupling depends on
the difference between the local and the average densities
and this difference naturally vanishes in the mean-field
approximation. The model displays a T=O Fermi-liquid

I

behavior for any finite doping b, where b is the deviation
from half-6lling, when one hole per cell is present in the
system. In the Fermi-liquid case the mean-field value of
the slave-boson Geld bo multiplicatively renormalizes the
hopping thus enhancing the effective mass of the qua-
siparticles (bo/~N ( gl/2). Moreover, at this level
the single-particle self-energy does not introduce a 6nite
quasiparticle lifetime. Then, in this model the single-
particle Green function of the physical fermions at N = 2
has a quasiparticle pole with a 6nite residue given by the
square of the mean-field value of the slave-boson 6eld bo.

On the other hand, at half-filling the system becomes
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an insulator if the bare charge-transfer energy diff'erence

e„—c& —4t~ is larger than a critical value ranging &om
3.35t~ when t~ ——0 (Ref. 32) to a smaller value = 2.5tpg
when t~ = 0.5t~. In the insulating phase bo vanishes,
leading to an infinite quasiparticle mass (m'/m = oo)
and to a vanishing quasiparticle spectral weight.

In order to get new physical effects &om the presence of
the coupling with the phonons, one needs to consider the
Quctuations of the bosonic fields. Since only a particular
combination a = (At + A)/(2~IV) of the phonon fields
A and At is coupled to the fermions, it is convenient
to use the field a and to integrate out the orthogonal
combination a = (A —At)/(2~N). Then the quadratic
action for the boson field a reads

the fluctuating part of the boson fields r, = re (1 + br;),
A; = —iAO + bA;, and a;. Writing the Haxniltonian of
coupled ferxnions and bosons as H HMF+ IIbos+ Hj„t,
where HMF is the mean-field Hamiltonian quadratic in
the fermionic fields, Hb, is the purely bosonic part, also
including the terms with the a, r, and A bosons appear-
ing in the action (20) and in Hph „,Eq. (22). H;„t con-
tains the fermion-boson interaction terms. More explic-
itly, Fourier transforming to the moment»m space, the
bosonic part reads

Hb, = N ) A" (q)B""(q)A"( q), —
qpv

2 2

H =N)- -+ "t'
0

(22)

where we have transformed the imaginary time into Mat-
subara &equencies. Moreover, working in the radial
gauge, 33 the phase of the field b; = ~Dr; exp(+iktk) is
gauged away and only the modulus field r, is kept, while
A; acquires a time dependence A, ~ A, + )9 P;. Thus
one can define a three-component field A" = (br, bA, a)
where the time- and space-dependent components are

I

without explicitly indicating the &equency dependence
for the sake of simplicity. The form of Eqs. (20)—(22)
allows us to determine the matrix B"'",whose elements
are all zero except for B = roAO, B ' = B ' = '

0,B"= ((u'+(u') /ur

To simplify the notation in HMF and in H;nt, we
introduce a three-component fermionic field
(di, , ip s, ip„s ) describing in momentum space the
fermions in the orbital basis. Then HMF can compactly
be written as HMF = P& p HM&(k)kI)'& 4's p, whereaP t

HMF (k) = 2rptpg sin—(k /2)

( —2ret~ sin(kp/2)

2retpg sin—(k /2) 2rotpg si—n(k„/2) )
2tppPi-

2tppPs— )

with ps = 2sin(k /2) sin(k„/2) and sg = so& + As be-
ing the mean-Geld-renormalized energy level of the cop-
per d orbitals. The above matrix can be put in diag-
onal form by a unitary transformation to the quasipar-
ticle basis @i, = Pp U p(k)@i, p leading to HMF =

E (k) l&k)@s, where Ei 23(k) are the mean-
field-renormalized quasiparticle bands (we choose the
band 1 as the lowest one, so that the Fermi level lies
in this band for doping b ( 1). This formalism allows to
write the boson-fermion interaction as

H;, = ) 4t, A" (k, q) I& *,
A" (q)

A:,q, cr

= ) @ts, A" (k, q)%'i, ~ A" (q).
k, q, a

(23)

The fermion-component index has been dropped and the
(3 x 3) boson-fermion interaction vertices A" in the or-
bital operator basis can be obtained from Eq. (21),

sin sin

A = —2rot&g Sin

l»ill( )
(i o oi

A = 000, A

4000)
( —2Gg o

0 —2G~ cos ~z

o o
0

—2G„cos ~2 )
(24)

while the quasiparticle vertices A~p (k, q) are defined as

k» )k q) U (k + ) A» (k q) Ut (k ) (25)

Introducing the ferxnionic bubbles coupled to the various
bosons,

II""(q,&u ) = . f [E (k+ &) —f [Ep(k —s2)j

E (k+ s2) —Ep(k —&3)
—i(u

A:,a,P
x A"p (k, q) Ap (k, —q), (26)

one can define the boson propagator
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D""(q,~ ) = (A"(q, ~ )4"(—q, —~ ))
= N '[2B+ II(q, u) )]„'. (27)

quasiparticles in the lowest band,

I'(k, k';q, ur) = —) A"„(k', q—)D" (q, ~) A„(k, q).
The factor of 2 multiplying the boson matrix B arises
from the fact that the bosonic fields in the presently used
radial gauge are real.

The set of formal tools is then completed by the intro-
duction of the effective scattering amplitude between the

(28)

Then the scattering amplitude in the Cooper channel is
given by

(k, k'; ) = —) A", ~,—k+ k'
~

D""(q = k —k', )A"„~—,k —k' (29)

It should be noted that the boson propagators are of order 1/K while the occurrence of a bare fermionic bubble
leads to a spin summation and is therefore associated with a factor N. Thus, in this I/K approach, the quasiparticle
scattering amplitudes are residual interactions of order I/K. The matrix form of the static density-density correlation
function at the leading order is

1
P-~(q ~ = o) = y ) .(~-(q) ~- (-q))

= &-'p(q ~ = o) + ~) x'.„(q ~ = o) D "(q, ~ = o) x'.p(q, ~ = o), (30)

where

is the orbital bare density-density correlation function,
and

x'„(q ~)

where o. = d, p, p„, and p = 1, 2, and 3.

IV. DYNAMICAL ANALYSIS

We now analyze the interplay between lattice and
holes in the strongly correlated system represented by
the model of Eqs. (19)—(21) focusing on the possible oc-
currence of instabilities.

Two mechanisxns for driviug a system to an instability
can in principle be devised. A first one requires the com-
plete softening of a collective mode, leading to a ground
state with different symmetries. For instance, in our spe-
cific model, this mechanisxn could imply the softening of
the phonon, leading to a structural transition. To inves-
tigate this mechanism a dynamical analysis of the col-
lective xnodes of the system will be carried out in Sec.
IV A.

However, as we generally found out in Sec. II, au in-
stability can also occur when the criteriou for stability
Fg ) —1 is violated (and usually a PS will then take
place). In this case, the instability shows up as an over-
damping and eventually an instability of the zero-sound
mode, the other collective modes remaining massive, and
is a result of the delicate unbalance between the repulsive
and the attractive forces present in the system. Sections

A. Collective modes

The collective modes appear as poles of the density
susceptibilities. However, an important remark is that,
at leading order in the 1/N expansion, since the fermionic
polarization bubbles are nonsingular, the poles of the
density susceptibilities y coincide with the poles of the
boson propagator D""(q,~), joining two bubbles. There-
fore the boson propagator contains all of the relevant in-
formation on the collective modes. In particular, to Gnd
the dispersion of these modes ur = u(q), one has to solve
the equation

det(2B+ II) = 0. (33)

Quite generally the charge-density Buctuations in the
three-baud model can be decomposed into the fIuctua-
tions of a nonconserved Geld, n~ —n„, coupled to a Buc-
tuatiug conserved field, ng+n„. The mode describiug the
propagating total density 8uctuations is the zero-sound
mode. This mode is an acoustic massless mode, since
in the model of Eqs. (20)—(22), no long-range interac-

I

IVB and IVC are devoted to this particular aspect, fo-
cusing on the role of the various screening processes in
determining the instability.

The result of the analyses performed in Secs. IV A-
IVC is that the model of Eqs. (19)—(21) undergoes an
instability driven by the second of the above mecha-
nisms, and, in general, no optical mode softening is de-
tected. In particular the phonon does not become soft,
indicating that the instability cannot be associated with
the occurrence of any structural transition. A simi-
lar phenomenon occurs in the three-band Hubbard
model in the presence of a nearest-neighbor Coulombic
repulsion. In this latter case it is the attraction due to
copper-oxygen CT fIuctuations, which determines a PS
instability without being accompanied by any collective-
mode softening.



ELECIRON-PHONON INT&t,ACTION IN THE PRESENCE OF. . . 16 887

tion among the holes is included, which would otherwise
transform this mode into a plasmon. In the presence of
an overall attraction (0 & I p ) —1), the zero-sound
mode enters into the particle-hole continuum and be-
comes damped. On the other hand the p-d CT Buc-
tuations, being described by a nonconserved Beld, will

contribute to the CT "optical-like" mode. Of course
these Buctuations are dynamically coupled to the phonon
IIlode.

In order to simplify our analysis we first consider the

q = 0 limit because in this limit all intraband fermionic
bubbles vanish, thereby leaving the boson propagator in
a much more treatable form. Physically this is due to the
fact that in the q = 0 limit the total density field p(q) =
ng(q)+n~(q) = (1/gN, ) P&%'&+~ A+(k, q)@s x, with

(1 0
A.+ = 0 cos ~2

(0 o
0

COS ~~2

(34)

decouples from the dynamics because of particle conser-
vation. To allow for a simpler analytic treatment we
neglect in this section the direct oxygen-oxygen overlap

(t~ ——0). Thus the boson-quasiparticle vertices simplify
to the form

and the determinant can be evaluated as

1
det D— (0, u)

= (2~o) [1 —I (2b, —Ap)] —4G I . (36)
~p

The analytical treatment can then proceed further intro-
ducing the small rp approximation. This is justified at
low doping deep inside the region of parameters where
the system is insulating at half-filling. We recall that the
model we are considering at leading order in 1/N has a
vanishing rp approaching the insulating regime. Then it
is convenient to rewrite I(u) as~4

I(co) = 1 —a((u)rp

with

1 64t~4P~
( )-

ApN. &„-R.(Rz„- ~)

so that the determinant assumes the form

det D~ (0,—u)
1

A~2(k, q = 0) = " i
G)

,„„„„,„(0 'r

R

where 6—:e„—eg is the mean-Geld-renormalized atomic
level difFerence, G:—G„—G~, p&

= sin (k /2) +
1

sin (k„/2), and R» = (b, + 16t~2rp2p&
~

. Then the fol-

lowing expression for the polarization bubble results:

Sr4
, ((~o —~') [(&—Ap)' —~']

+Apso'[ —4G'urp + (~o —~') (2& —Ao) o'(~)]).

By expanding o. at zeroth order in so,

16t~274
o!((d) ~ ~2 ~2'

(38)

'~ 2~G)
II""(q = O, u) = —2rp iA —1 2iG I(ru),

( 24G 2iG 4G2 )
where

4t2 ~2

N, ~ RI, (R'„- ld')
'

(u, = (b, —Ap) (40)

with pz = (1,/N, ) g&p&2 ——1/2+ 2/z 0.702 and
74 —= (1/N, ) P„'Ys4 = 5/8+ 4/z' = 1.03, one obtains
the expression of the determinant at Grst order in rp. It
is immedia, te to recognize that, taking the rp ~ 0 limit,
one obtains two collective modes

Using Eq. (27) one obtains the following expression for
D—1.

2 = 2
(dph = (dp) (41)

D (q=0, ~)

( Ap —b,2I
a(l —EI)

2b,IG—i(1 —b I)
I

—2i IG

-2SIG
—2iIG

-4IG'+ -—
To 470

corresponding to the excitonic charge-transfer mode (n„-
n~ fiuctuations) and to the bare phonon mode. At this
leading level in the 1/N expansion the two modes do not
mix. On the other hand the equation detD = 0 can
be solved at rp2 g 0 giving

2 2 2
h = —((uo + ~,„,+ rpC (V) Ap + (((up —(u,„,) + Apso [2C ((u) (ur,„,—(up) + 16G urpj ) ~ )

1 2 2 2 2 2 Ap(~p+urs„, ) + ~(up —~z„,~+rp2 C(u) Ap + 2 C((u) (ur,„,—~p) +8G urp (42)
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where the short notation C (u) = (2b, —Ap) a (a = w)
was introduced and the result was expanded at first order
in rp. cu assumes the values u,„,or up corresponding to
the zeroth-order term in the expansion of u in r0.

Two cases can be distinguished in Eq. (42): ~,„, )
~p, the more physical one, and ~ ( 410 which can
only occur close to the metal-charge-transfer-insulator
transition, where the charge-transfer mode completely
softens. ' In the former case one has

this possibility requires a numerical analysis which was
indeed performed. The result is that the static suscep-
tibilities diverge first at q = 0 and the softening of the
modes at finite q only takes place inside the unstable re-
gion, characterized by Fp ( —1. This instability occurs
as a consequence of the repulsion vs attraction unbalance
generally presented in Sec. II, which we now elucidate for
the specific three-band model under consideration.

ur, = ~,„,+ ro Ao
~

C (~,„,) +
exc 0 J

4G 4)p
2

4) h = Kp —rphp
~exc 0

whereas in the latter case the modes are

4G2~0
(u, = u),„,+ roA0 i

C ((u,„,)—
0 exc)

4G (dp
2

g = (d0 + rPAP
0 exc

(44)

(46)

B. Landau Fermi-liquid analysis

In order to investigate the instability conditions of the
model we now turn to a Fermi-liquid analysis transposing
our 1/N calculation to the standard formalism presented
in Sec. II and identifying the Landau amplitudes at lead-
ing order in 1/N. In particular, starting from the defixu-
tion (28) of the singlet efFective scattering amplitude one
can introduce the standard Landau amplitudes

I' (k, k') = —lim lim ) A"„(k', —q) D""(q,~) A, i (k, q).

It should be noted that in both cases a "level repulsion"
occurs so that the higher-energy mode is pushed at even
higher energy, while the lower-energy one is made softer
by the reciprocal interaction. However, it is important to
stress the fact that this q = 0 analysis does not reveal any
complete softening of the collective modes in the limit of
vanishing rp, where the energies of the modes reduce to
their "bare" values u,„,and ~p. This indicates that any
occurrence of q = 0 instabilities in the small-rp region of
the system is not due to a softening of the modes. Of
course the above analysis was confined to the q = 0 case
and, therefore, it does not allow us to draw any conclu-
sion on the occurrence of a collective mode softening at
a finite wavelength or at large rp. The investigation of

To carry out an analytical treatment we again assume

t„z ——0. Then, since the model only includes a direct
copper-oxygen transfer integral, I' (k, k') depends on k
and k' only via pg and pg . Therefore, by taking the qua-
siparticles at the Fermi surface (where pi, =const= p~),
only the "zeroth" harmonic would be nonzero and given
by

I = —lim lim ) A~ii (kp, —q) D"" (q, (u) Aii (k~, q).

(47)

To explicitly get the expression of 1 we first calculate

G —z

i —ia(b, —Ao) Ao——
2r pah(ur) —2ir,'

Rq
2Rg~

.Rg~+b,
Z

2Rg, ~
2(G«„.+G„.„))

1 2Rg~
r( )=- .Rg, ~+6

2Nrp2 2Rg~

( —2(Ggu'„+Gpu„', ) j
r —ia(b, —Ao) 2rpah(~) l

X (b, —Ap)2a —2iro(b, —Ap)ah((u)

(& —Ao) "( ) 0 o 1+40 "( ). /( 0
— '))

(48)

(49)

with

Nr, =,
~

1+
~

(2Ri, —2b, +A, )
t'

8r02 ( Ri,~)
(Ggui, + G„ui, )

0

with a—:a((u)—:I((u) [1 —(2E —Ap+ 8r02V) I(u)) j
and h(u) = uoG /(wo —u ). This gives

r(~) = r, + a(~)r, (~),

lf 6, )mr, = —,—
~

1+
~
(R,.—2w+ A.)

2ro 2 i Rg~ p
- 2

+ 4ro (Gg —G„) (Ggu„+ Gpui, )
0

(51)

A simple expression for l can be obtained taking the
ur M 0 limit of the above formulas in the small-rp hmi .
It is worth noting that, whereas a(u) is always finite,
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both Fp and Fz grow very large when rp + 0. This is
reminiscent of the infinite U we started with. However,
a straightforward expansion of Eqs. (50) and (51) shows
that the leading terms of order 1/rp2 (which characterize
the model even in the absence of the e-ph interaction)
cancel and only finite contributions are left. Therefore
in this xnodel a finite efFective scattering amplitude is
the result of a cancellation between a very large bare
repulsion and a very large attraction due to interband
screening, to which a finite phonon contribution is added.

The resulting dynamical scattering amplitude is, for
rp —+0,

NF
4A, , (p,

2tp~ ——1 +
(A, ~)' ' ~~, 4t„'s~,

~

(ApG~ —b,Gg)
2Ap4Pp

(52)

The first term represents the purely electronic (interband
screened) repulsive contribution I" to I'„,i4 whereas the
second terxn is the attraction, which arises from the e-
ph interaction. In particular it would coincide with the
second term in the rhs of Eq. (12), if the simple case
G~ = Gq = g is considered and the identification p2-:
g2/ur is made. M One can easily check that the e-ph vertex
corrections in Eq. (52) (i.e., the factors A A$ with a, P =
p, d, which multiply G Gp/urp) can be written as

A = G (ky, ur =0),
d8'~

where Gzp(k, ur) = (td —Ei,) is the quasiparticle Green
function and the derivatives are taken at fixed doping
6. One can then discover that in a multiband model
the vertex corrections are still di8'erent from zero in the
dynamical limit [cf. Eq. (1) with z = 1 because we are
considering quasiparticles] and in fact can act to enhance
the vertices. For instance, at h = 0+, we obtain A„=
Ap/(Ap —6), which reduces to unity only in the Ap ~ oo
limit, i.e., e„—e& m oo. To obtain the vertex correction

in the static limit we need to evaluate s,, G i(k», ur = 0)
at fixed chemical potential. 3~ The result is

A

1+Nv'F+ (s4)

C. Phase diagram

The previous analysis of the restricted xnodel with
t~ = 0 provides valuable information on the possible oc-
currence of instabilities of the Fermi liquid. In particular,

where I" is the first term in the rhs of Eq. (52). Equa-
tion (54) shows the dramatic difference between the dy-
namic and static limits. As discussed in Sec. II, this is a
generic feature of strongly correlated systems, which one
has to take into account since it can strongly affect the
relevance of the e-ph coupling.

having found F, one can determine the Landau parame-
ter Ep —Nv'I' . Since the criterion for a finite positive
compressibility is Fp & —1, and since v' oc ~ && 1

1'0

in the small doping region, close to the insulating re-
gion (s —s&~ ) 3.35t~) the stability criterion reduces to
F ) Q. Taking into account the self-consistency condi-
tion Ap ——4t &p2/b, one is led to the inequality

(ApG& —b Gd) ( 4tpgAowo
~

——1 +-fp4 bl
Ap)

(ss)

Even for a weak e-ph coupling, this condition can easily
be violated (see below).

A clearer understanding of the stability condition can
be obtained by considering the phonon coupled sepa-
rately with the copper or the oxygen local density. In
the case of G~ = 0 the condition (55) becomes

(56)

whereas for Gz ——0 one has

G~2 Ap 4t~g (p4 b, 'l
d ( 0 p

tdo +' Ao ( '72 Ao $
(57)

Then one can easily recognize that, in the positive dop-
ing case with Ap & b, , the coupling of the phonon with
the oxygen holes G„ is more efFective in driving the insta-
bility. The role of Ap and 6 is interchanged at negative
doping so that Ap & 6 and in this latter case the cou-
pling Gp plays a major role in rendering the Fermi liquid
unstable. Notice, however, that the xnodel itself is not
particle-hole symmetric so that the expressions (56) and
(57) do not interchange in going from negative to positive
doping.

It is worth noting that, no matter how small the e-

ph coupling is or how large the phonon frequency is, the
instability will always take place by increasing the large
bare charge-transfer difFerence (sz —Pz)/t~ This is due.

to the fact that, for large (so —e&)/t~, one has Ap )& b,
for positive doping or Ap « 4 for negative doping. Then
it is possible to make the rhs of Eq. (56) or (57) smaller
than the lhs.

The estimates (56),(57) were derived for the three-
band Hubbard model with t~ = 0 close to the insulating
regime, ~here rp —0. To investigate the Bnite-doping
regime and the model with finite oxygen-oxygen hopping
we explicitly carried out a leading-order 1/N analysis of
the static q-dependent density-density response function

X(g, ~ = 0)—:([n~(g) + n&(g)] [n„(—g) + n&(—g)]), which
gives the compressibility of the system once the q -+ 0
limit is taken. This response function is obtained as a lin-
ear combination of the orbital density-density correlation
functions in Eq. (30). A divergent y(q, ur = 0) signals an
instability of the Fermi liquid occurring at a wave vector

We perforxned the calculations for many values of the
parameters, and specifically for various phonon &equen-
cies ~p and various e-ph couplings G„and G~, and
we particularly explored the range of parameters, which
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could be relevant for the copper oxides. According to
recent estimates ' we considered various values of ~0
ranging in the interval between 0.01 and 0.08 eV, partic-
ularly focusing on the 0.02 eV region, where the phonon
density of states is highest. As far as the e-ph cou-
plings are concerned, these quantities are not directly
accessible in experiments and their theoretical calcula-
tion is not easy due to the strongly interacting nature of
the high-temperature superconductors and to the nest-
ing occurring in their Fermi surface. 4 This is why we

explored many possible cases obtaining qualitatively sim-
ilar results. A reasonable choice is to use both G„and
Gg different Rom zero, because a coupling of the lattice
with both oxygen and copper hole density is naturally
expected. The values of Gg and G„were such that a rea-
sonable effective coupling A ( 1 results far enough Rom
the instability region. Moreover, the choice G„& Gp ap-
pears reasonable in the case of intermediate hole doping
according to the observations reported in the paragraph
after Eq. (17): (i) G„ is proportional to (nd), while Gs
is proportional to (n„), with (n") usually being larger
than (n~); (ii) a factor I/QMo is included in the defini-
tion of G„, whereas an analogous factor 1/QMc„enters
in Gp further justifying the assumption G„& G~, since
Mc„& M~. Both theoretical calculations and exper-
iments in superconducting cuprates support the above
qualitative arguments. The fact that oxygen holes are
more strongly coupled to the lattice than holes on cop-
per has relevant physical consequences in the light of the
above observation that, for positive doping, G„ is more
e8ective than Gg in driving the instability.

The phase diagrams in the (s„s~)/t„—~ vs b plane re-
sulting from the analysis of y(q, ur = 0) are shown in Figs.
1 and 2 for typical parameter sets. The instability line
indicates where y(q ~ 0, ~ = 0) diverges and it delimits
a region of negative compressibility. The most impressive
consequence of the coupling with the phonons is that a
large unstable region appears at large doping or at large
bare charge-transfer gap in both diagrams. It is worth
noting again that the instability is not related to any
collective mode softening. It can rather be interpreted
as due to the attraction arising from the e-ph interaction

t I I 1
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~ y y
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UNHTABLE

8TABLE

4.0
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FIG. 2. Phase diagram (s„—ss)/t~q versus positive dop-
ing 8 for t» ——0.2t„&, G~ = 0 15tpp GQ —0 ltpp and
up ——0.02t„g.

~ I ~ I I/I ~ I

l
I ~ ~ I

I
~ ~ ~

eventually resulting in the overdamping of the zero-sound
mode. Approaching the instability, the zero-sound mode
6rst enters the continuum and gets Landau damped. It
becomes overdamped and eventually the instability takes
place.

It is important to stress that the instability of the phase
diagrams in Figs. 1 and 2 is an electronic instability even
if it is driven by the coupling with the lattice. Moreover,
we find that the instability of y(q, ~ = 0) first occurs at

q -+ 0 and is therefore a signature of a long-wavelength,
static, thermodynamical PS region to be identi6ed by a
Maxwell construction. To make this point more explicit,
we report in Fig. 3 the Cooper-channel static scattering
amplitude between quasiparticles on the Fermi surface,
I'+(k~, k&, ~ ——0) [see Eq. (29) and cf. also the ur = 0
limit of Eq. (13)] for a system with finite t~(= 0.2t„&)
and at various dopings. According to the observation
already reported at the beginning of Sec. IV A, the scat-

,5 & ' ' c

I

& i i a

I

i » r

I

&» s

I

& i i s

I

& r4
C)

Il

3 0.2
U' 6=0.2

C4

C)

4J
I

CO

4.0
a =o.s

I

/

~ s a I

tI, . ~, I

0 0.05 0.1 0.15 0.2 0.25 0.3

FIG. 1. Phase diagram (s„—ss)/t~q versus positive doping
b for t» ——0, Gp: 0 15tpd& Gp: 0 1tpp& and up ——0.02t„g.

FIG. 3. EKecti~e static quasiparticle scattering amplitude
versus transferred momentum well outside (b = 0.2, dotted
line), slightly outside (b = 0.225, solid line) and well inside

(b = 0.3, dashed line) the unstable region. The parameters
are as in Fig. 2 with e„—e& ——4.9t g. The instability occurs
at b = 0.23. The scattered quasiparticles are on the Fermi
surface and q is in the y direction, q = (0, q).
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1
K OC

~m
d —2) (58)

d =3.
)

(59)

tering amplitude carries information on the instability
because a divergency in this quantity can only be due to
a divergency in the boson propagator also entering the
expression for y(q, ur = 0), with q = kz —k&. Thus a
divergent scattering amplitude directly signals a diver-
gent y(q, u = 0). As can be seen in Fig. 3, the diver-
gency can also occur at sizable q's inside the unstable re-
gion. This can have relevant physical consequences, once
a long-range Coulomb force is considered in the model.
This latter interaction would stabilize the system in the
regions of the phase diagram where y(q, ur = 0) shows di-
Vergencies at low q. This would prevent the occurrence of
PS, but would leave open the possibility of finite-q insta-
bilities: Most probably a sizable unstable region would
survive to the introduction of a long-range Coulomb re-
pulsion in the phase diagram parts where y(q, ur = 0)
was diverging at sizable q s; i.e., the divergency of the
density-density response function would first occur at
a finite q, leading to the formation of incommensurate
CDW's. A similar phenomenon was first suggested for a
different model in Ref. 14 and seems to be confirmed by
a static analysis of a pseudospin model in Ref. 42. Of
course the above argument misses the dynamical aspects
of the problem, and should be taken as purely indicative
of a possible scenario. One should also take into account
that superconductivity can take place near the instabil-
ity line where Fo ———1 and act to stabilize the system
(i.e., superconductivity could partially or fully preempt
the instability region).

A few comments on the difference between the two
phase diagrams of Figs. 1 and 2 are in order. It is appar-
ent that the prominent effect of the direct oxygen-oxygen
hopping is a stabilization at low doping and large e„—e&o.

In order to clarify this point we performed a calculation
of the compressibility both in the presence and in the
absence of t~ in the limit of very large (so —s&~)/t„~
and small positive doping. Due to the slave-boson mean-
field band renormalization the lowest quasiparticle band
closely approaches the bottom of the intermediate band,
mostly of oxygen character. This latter band is a Bat non-
bonding oxygen band in the absence of t~ and acquires
a dispersion 4t~ in the presence of direct oxygen-oxygen
hopping if the mixing with the copper d ~ „~ orbitals
is neglected. In the (so —e~&)/t„g ~ oo and b -+ 0+
one has a vanishing distance between the renormalized
d atomic level and the bottom of the pure-oxygen band
laaL Gp 4tpp 8'p M 0 In this limit the calculation
greatly simplifies and, for tzz g 0, the compressibility
per spin assumes the form

This result is suggestive of a decoupling between the p
and the d levels occurring when (s„—s~&)/t~ ~ oo: The
compressibility for the interacting system of (1+0+)holes
in the mixed p-d quasiparticle band bears resemblance to
the compressibility of a system of b = 0+ noninteracting
holes in the pure-oxygen band. In this latter system the
compressibility coincides with the density of states, which
is of order 1/t~ and is independent of doping in two
dimensions, whereas it vanishes with doping in the d = 3
case. This is precisely the result reported in Eqs. (58)
and (59), respectively, once one remembers that, in the

(s„—ez)/t„~ -+ oo and b -+ 0+ limits, b, is vanishingly
small.

Equations (58) and (59) also express the fact that in
the large (so —e&~)/t„g'and low-doping limit, the com-
pressibility of the system diverges when t~ tends to zero
(even for the three-band Hubbard model in the absence
of e-ph coupling). Since e' = v'/(1+ Nv'I" ), this re-
sult can be rephrased as I tpp. Thus, when tpp -+ 0
and the quasiparticle density of states v' is large, even
a very small attraction leads to a negative I', immedi-
ately resulting in a violation of the stability condition
Eo ——Nv'I' ( —1. This clarifies why the region with
infinite compressibility at low doping and large e„—c&
in the phase diagram of the system of Fig. 1 (t~ = 0)
is more extended than the one for the system of Fig. 2.
Notice that the three-band Hubbard model with t~ = 0
and e„—e& ——oo case is strictly analogous to the U = oo
single-band case. 6

D. Cooper instability

Finally we investigated the possibility of Cooper pair-
ing. As already pointed out, superconductivity can ap-
pear as a precursor of the PS instability. In particular
a simple argiiment can be put forward12, 13 suggesting
that a region of large compressibility is a good candidate
in order to find superconductivity. In the general lan-
guage of Landau Fermi-liquid theory the compressibility
can be written as z = vo —/ (1 + Fo). Then, if the com-
pressibility gets large without being accompanied by a
large mass enhancement (as happens near the instabil-
ity line), this means that the denominator is becoming
small, indicating a negative Fs (indeed Fo = —1 at the
instability line). Although this parameter is related to
the quasiparticle scattering in the particle-hole channel,
it seems reasonable to expect attraction in the particle-
particle channel as well. According to this plausibility
argument and according to the previous experience in
other strongly interacting models, we therefore investi-
gated the Fermi surface average of the particle-particle
scattering amplitude defined in Eq. (29),

f Jdkdk'b(E(k) —y)b(E(k') —p)g (k)I'~ (k, k', = 0) g, (k')

f dkb(E(k) —p)gi(k)2
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with g„(k) = cos(k ) + cos(k„), g„(k) = [cos(k )—
cos(k„)j, gg, (k) = cos(k ) —cos(k„), and gg, (k)
sin(k ) sin(ks) projecting the interaction onto the s-wave
and d-wave channels. (Notice that Ax ) 0 means attrac-
tion. ) Whereas the couplings Ag are found to be gen-
erally attractive near (and inside) the unstable region,
we find s-wave Cooper instabilities only very close to
the instability line. The results are tabulated at vari-
ous doping concentrations for the case with

happ
——0 and

(e'„—s&)/t~g = 3.3tzg in Table I and for the case with

t„„=0.2tpd and (s„—e'&)/t„~ = 4.9t„~ in Table II. In
both cases the phonon &equency and the e-ph couplings
are ~0 ——0.02tpg, Gp —0 15tpp and Gg ——0.1tpg, re-
spectively. With the set of parameters related to Table I
the critical doping for the occurrence of the instability is
6, = 0.21, whereas for the set of Table II the instability is
at b = 0.23. Our analysis indicates the sure existence of
d-wave pairing in sizable regions of model (21) in the limit
of large N near the instability, whereas the occurrence of
s-wave pairing takes place in a much narrower region.
However, it should be emphasized that the presence of an
8-wave static Cooper instability only in a narrow region
by no means excludes the possibility of having 8-wave
superconductivity in a much larger area of our phase di-
agram. Only an appropriate Eliashberg dynamical anal-
ysis can allow to draw a conclusion, especially in the light
of the considerations on the strong frequency dependence
of the vertex corrections discussed in Sec. II. Of course
the same applies to the attraction in the d-wave channels,
which could also be greatly favored by dynamical efFects.
The full Eliashberg dynamical analysis unfortunately in-
volves a difBcult complete treatment of the momentum
and frequency dependence of the efFective scattering am-
plitude, which is beyond the scope of the present paper.
Nevertheless, valuable information can be gained &om an
analysis of the e-ph vertex. The aim of this analysis is to
provide useful quantitative indications on the behavior
of the e-ph interaction as a function of both momentum
and imaginary &equency in various parts of the phase di-
agram as a preliminary step towards the implementation
of the full Eliashberg treatment of the effective phonon-
mediated e-e scattering amplitude. Also in this case we
checked that our results do not qualitatively change by
varying the model parameters. In particular we choose
the values of the various quantities in order to allow for a
possible connection with the experimentally known fea-
tures of the copper oxides. We choose the value of the
bare atomic level difference e„—e& ——4.9tpg so that a CT
optical gap in the insulating phase of about 2tpg would
result. Assuming the usual value of tpg ——1.3 eV for the
copper-oxygen hopping integral, this latter value turns
out to be 2.6 eV, and is not much larger than the ex-

TABLE II. si-, 8q-, di-, and dq-wave coupling constants
for various doping and for the model with ep EQ 4 9tpp,
t» ——0.2t~q, G„= 0.15t„g, Gg ——D.lt~g„and coo ——0.02t~q.
The instability line is at b = 0.23.

b

Ag,

Ag,

0.15
-0.58
-0.55
-0.063
-0.021

0.20
-0.48
-0.65
0.017
0.012

0.229
1.2

5 ~ 5 8 ~

(c)

~ 8 ~ 8

perimentally known values of the CT gap in the insulat-
ing phase of the superconducting copper oxides (e.g. , in
Ref. 44 the reported value for LazCu04 is 2.3 eV). As
values of the phonon frequency we take 0.02tpg 0.026
eV and 0.08t„g 0.104 eV. The first value was chosen be-
cause in this &equency region the experimental phononic
density of states is large, whereas the larger value was
used to extend the region where dynamical eB'ects can
take place before the phonon &equency cuts ofF the ef-
fective interaction. The value of the e-ph couplings was
chosen accordingly in order to obtain reasonable values
of X.4'

We first report in Fig. 5 the interaction (slave-boson)
renormalized vertex between phonons and quasiparticles

b

Ag,

0.15
-0.75
-0.044

0.20
-0.5
0.2

0.208
0.43
0.35

0.22
-0.45

TABLE I. Si- and di-wave coupling constants for various
doping and for the model with 6'y Ep: 3 3t~p tpp
Gp: 0 15 tlap Gp: 0 1tpp, and ceo ——0.02t~& . The instability
line is at b = 0.21.

FIG. 4. (a) Diagramxnatic representation of the renorxnal-
ized quasiparticle-phonon vertex. The electronically screened
vertex is reported in (b), where the open dot is the bare
phonon-quasiparticle vertex and the thick dashed line is the
resummed slave-boson propagator diagrammatically repre-
sented in (c). No phonon propagators are included in the
resumxnation (c).
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FIG. 5. Interaction-renormalized quasiparticle-phonon ver-
tex at fixed low (q = 0.06, solid line) and large momenta

(q = 2.20, dashed line) as a function of the transferred Mat-
subara frequency u. The parameters are as in Fig. 3 with
b = 0.225. The scattered quasiparticles are on the Fermi sur-
face and q is in the y direction, cl = (0, q). The inset shows
an enlargement of the low-frequency region. The quasipar-
ticle density of states is v' l3/t~q per cell. The vertical
lines indicate the phonon frequency and half the quasiparti-
cle bandwidth.

without phonon processes included in it (see Fig. 4) as
a function of the Matsubara frequency. Two of these
quantities can be joined to a bare phonon propagator to
give the one-phonon effective scattering amplitude spe-
cializing to the three-band Hubbard model the general
expression (3).

On the other hand, joining two of the above vertices
with a fully renormalized phonon propagator leads to the
full phonon-mediated scattering amplitude in the Cooper
channel. This quantity was represented by the second
term of Eq. (1$) in Sec. II and is reported in Fig. 6 for
the three-band Hubbard model as a function of the Mat-
subara frequency. The momenta of the external fermions
correspond to the Cooper channel with k and k' on the
Fermi surface.

It is clear that the results reported in Figs. 5 and
6 quantitatively confirm the general qualitative analy-
sis of Sec. II. Figure 5 displays the strong dependence
of the one-phonon vertex &om the momentum vs &e-
quency ratio. A typical bandwidth of about 0.2t„~ was
chosen, giving a Fermi-surface density of states = 13/t~~.
We only report the results corresponding to a doping
b = 0.225 since no significant dependence of this ver-
tex &om the doping is detected, so that the closeness
to the instability is immaterial in this quantity. On the
other hand, it is apparent that a rapid increase occurs in
the phonon-quasiparticle vertex, when the &equency be-
comes larger than a screening frequency ~.„(q) (oc q at
small q). This is most evident at low momenta, where the
phonon-quasiparticle vertex G g increases fast by more
than one order of magnitude, from the small (see inset
in Fig. 5) value at zero frequency up to a sizable value
at large &equency. The Fermi-liquid analysis of Sec. II
would suggest that the screening energy u„,(q) would be
given by vFq at small q and by the renormalized band-
width W at large q. However, our numerical results re-
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FIG. 6. EfFective dynamic full-phonon-mediated scattering
amplitude at fixed low (q = 0.06, solid line) and large mo-
menta (q = 2.20, dashed line) versus transferred Matsubara
frequency. The parameters are as in Fig. 3. The calculations
are performed well outside (b = 0.2, diamonds) and slightly
outside (6 = 0.225, crosses) the unstable region. The scat-
tered quasiparticles are on the Fermi surface and q is in the
y direction, q = (O, q). Inset: same quantities on a larger
energy range.

veal that the screening energies are much larger and, at
least at large q, they are more properly described by the
bare bandwidth Wo. 5

Analyzing in detail the contributions coming &om the
vertex corrections, we discovered that in this "high"-
energy region the interband screening acts to enhance
the vertex at; small q's by a factor of about 1.5 with re-
spect to the bare vertex (Go 0.2). The bare value is
only recovered at very high energy (much larger than the
interband CT energy b, ) and/or large q.

More dramatic are the momentum and doping depen-
dences of the attractive scattering amplitude in Fig. 6.
In the stable region (b = 0.2), a maximum in the attrac-
tion is observed at finite &equency and low momentum.
This maximum is a result of the balance between the
energy dependence of the vertex correction and of the
boson propagator (see the inset). The interaction at low
momenta is by far larger than the attraction at large
momenta. The same behavior as a function of momenta
holds near the unstable region of doping (b = 0.225), but
at low energy and small momentum the attraction is not
suppressed by vertex corrections, because in the vicinity
to the instability line the attraction reaches its maximum
at~=0.

Figures 7 and 8 report the total efFective scattering
amplitude in the Cooper channel I' (k~, k&, ~„) (con-
tinuous lines) resulting Rom the sum of the attractive
amplitude (dotted lines) of Fig. 6 and the repulsion aris-
ing from purely electronic scattering processes (dashed
lines) as a function of Matsubara &equencies at small (a)
and large q (b).

The calculations being performed close to the instabil-
ity, we see that the e-ph interaction gives a large contri-
bution to the total interaction at small q, leading to an
overall attraction at low &equencies. On the contrary, at
large q the full interaction is only governed by the pure e-
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e repulsion and no phonon energy scale is detectable in its
frequency dependence. Figure 8 reports the same quan-
tities of Fig. 7, but for a larger phonon frequency (con-
sequently t & has been increased, G& ——0.3t~g, to drive
the system unstable at reasonable doping b, = 0.185).
Qualitatively the results of Fig. 8 show the same be-
havior depicted in Fig. 7, but it is evident that the
phonon-mediated attraction extends over a larger f're-

quency range. %e also found that in this latter case
the attraction persists up to larger momenta. At large
q [Fig. 8(b)j the results for 1 +(k~, k&, ur„) are still very
similar to those of Fig. 7(b).

Finally Fig. 9 reports I'+(k~, k&, ~„) as well as its
attractive and purely electronic repulsive components at
b = 0.2. Due to the depressing efFect of the vertex at
low frequencies, the phonon contributes very little to
I' (k~, k&, u„) even at small q. Nevertheless, as it is also
apparent &om Fig. 6, at &equency of the order of ~0 the
attractive part contributes sizably to the total interac-

1.0

tion. This clearly indicates that at small q, contrary to
the static attraction, which is strongly suppressed by the
vertex corrections, the 6nite frequency attraction persists
in regions of doping that are far from the instability line.

The analysis summarized in Figs. 5—9 is of obvious
pertinence in a complete Eliashberg treatment of the su-
perconductivity problem. In particular it is evident that
the enhancement of the attractive part of the scatter-
ing amplitude near the instability line can be responsi-
ble for large critical temperatures despite the small m-

ph coupling. The closeness to a PS instability appears
therefore as a favorable condition in order to obtain high-
temperature superconductivity f'rom a phonon-mediated
attraction similarly to what suggested in the context of
purely electronic pairing mechanisms.

V. CONCLUSIONS
In the present work we investigated the e-ph interac-

tion in the presence of a strong local repulsion within a
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FIG. 7. (s) Effective dynamic quasiparticle total (solid
line), purely electronic repulsive (dashed line), snd
full-phonon (dotted line) scattering amplitudes in the Cooper
channel at fixed low momentum (q = 0.06) ss s function of
the transferred Matsubara frequency. The parameters are as
in Fig. 3. The calculations are performed slightly outside
(b = 0.225) the unstable region. The scattered quasipar-
ticles are on the Fermi surface and q is in the y direction,
q = (0, q). The quasipsrticle density of states is v' 13/t~q
per cell. The vertical lines indicate the phonon frequency and
half the quasiparticle bandwidth. (b) Same ss in (a) but at
large momentum (q = 2.20).

FIG. 8. (a) Eifective dynamic quasiparticle total (solid
line), purely electronic repulsive (dashed line), snd
full-phonon (dotted line) scattering amplitudes in the Cooper
channel st fixed low (q = 0.07) versus transferred Matsubara
frequency. The calculations are performed at 8 = 0.18, close
to the unstable region, occurring at b = 0.185. The phonon
frequency is ~ = 0OSCpp& Gp = 0.3Cpp and Gp = 0.14pp.
The scattered quasiparticles are on the Fermi surface and
q = (0.053, 0.03) (~q~ = 0.06). The qussipsrticle density of
states is v' 9/t„q per cell. The vertical hnes indicate the
phonon frequency and half the quasiparticle bandwidth. (b)
Same as in (a) but with large moments q = (0, 2.25).
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FIG. 9. Effective dynamic quasiparticle total (solid hne),
purely electronic repulsive (dashed line), and full-phonon
(dotted line) scattering amplitudes in the Cooper channel at
fixed low momentum (q = 0.083) versus transferred Mat-
subara &equency. The phonon &equency is ~ = 0.02t„z,
G„=0.15t~g, and Gg ——0.1t„g and the calculations are per-
formed at 8 = 0.2, far from the unstable region, occurring
at b, = 0.225. The scattered quasiparticles are on the Fermi
surface and q = (0.078, 0.028) (~q~

= 0.083). The quasipar-
ticle density of states is v' 9/t~z per cell. The vertical
lines indicate the phonon frequency and half the quasiparti-
cle bandwidth.

general Landau Fermi-liquid &amework. Using standard
Ward identities, we pointed out the strong dependence of
the e-ph vertex on the momentum vs &equency ratio in
a strongly interacting system displaying a large effective-
mass enhancement, but not too large compressibility. In
particular we showed that the dimensionless attractive
quasiparticle scattering mediated by a single-phonon ex-
change coupled to the electronic density is strongly sup-
pressed by vertex corrections due to the e-e repulsion
when e~q ) u. On the contrary the dimensionless ef-
fective one-phonon-mediated attraction is strongly en-
hanced by the effective mass increase when v~q ( ur.

These results stay valid within a random-phase resum-
mation of phonon exchanges, provided the system is far
&om an instability. This strong momentum vs &equency
dependence of the e-ph coupling shows up in different
ways in different physical quantities. In particular it
was found in a three-band Hubbard model with inter-
site "covalent" e-ph coupling, that phonons contribute
little to the quasiparticle scattering as far as transport
properties are concerned. We expect a similar depression
for the e-ph coupling considered in this paper. This is
so because transport properties involve low-&equency-
high-momentum processes, where the large-momentum
limit of the e-ph interaction is mostly involved. In this
limit the e-ph interaction is strongly suppressed, partic-
ularly in the low-doping regime, where the effects of the
strong e-e interaction play a major role. A different be-
havior is expected in other quantities where large &e-
quencies are more relevant. This is in agreement with re-
cent calculations 6 performed in a single-band Hubbard
model with an on-site "ionic" e-ph coupling, which show,

indeed, that the Eliashberg function a F(ur) determining
superconductivity is much less reduced than the analo-

gous quantity determining the transport properties.
These remarks are obviously relevant in any dynam-

ical analysis of the phonon contribution to the pair
formation in strongly interacting systems like, e.g.,
high-temperature superconducting cuprates, fullerenes or
Baq (K, Pb) BiOs. In particular, our work calls for

a critical reanalysis of effective potential models in the
Eliashberg approach of pairing, " when a strong e-e in-

teraction is present in the systems. Most of the work in
this field has, in fact, been carried out using model po-
tentials, where the momenta are averaged on the Fermi
surface. This leads to a trivial momentum dependence

(likely overestimating the role of large momenta), which

misses the peculiar strong momentum vs &equency de-

pendence revealed in the interacting systems.
Our general analysis also showed that the e-ph cou-

pling can drive the strongly correlated system to an in-
stability. This was speciacally shown for the three-band
Hubbard model in the U m oo limit, where more spe-
cific features arise. In particular it was evidenced that
the Fermi-liquid system has diverging long-wavelength
density fluctuations in some regions of the (s'„—s&)/t„~
vs b phase diagram, even with a reasonably small e-ph
coupling. This is due to the phonon-induced attraction
leading to the violation of the stability criterion Fo ) —1.
In analogy with other cases this appears as an in-
stability of the zero-sound mode. Moreover, it was found
that superconducting pairing both in the 8- and d-wave
channels occurs close to the instability region. It is worth
stressing that the detected Cooper instabilities occur in
the presence of an infinite local repulsion U. The general
considerations of Sec. II show that one is not allowed to
draw any naive conclusion on the extension of the super-
conducting region on the basis of a static analysis which
neglects the presence of the e-e interaction in the e-ph
coupling once strong correlations are present. However,
it should be noticed that the results of Sec. II indicate
that, if a system displays Cooper phenomenon in a static
(u = 0) analysis including vertex correction, the pair-
ing can only be favored by the extension of the analy-
sis to finite frequencies. We also like to point out that
phonon corrections to the e-ph vertex, which are usually
neglected according to the Migdal theorem, have re-
cently been considered in Ref. 49. Their analysis showed
that these corrections, which are not negligible if the
phonon &equency vs bandwidth ratio is sizable, tend to
suppress the vertex in the large v~q/~ region, whereas
they tend to enhance the e-ph coupling when u~q/u is
small. These corrections tend therefore to cooperate with
the strong interaction effects discussed in the present pa-
per.

Our results suggest that, if high-temperature super-
conductivity is driven by e-ph coupling, this is possibly
due to the fact that the system is close to a PS instability,
where the argument of the vertex suppression does not
apply. If this is the case, superconductivity itself would
possibly provide the system a stabilizing mechanism with
respect to PS.

By increasing the bare e-ph coupling, one could indeed
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get a sizable attractive A, (u = 0) at small and interme-
diate doping if, for instance, the e-ph-mediated at trac-
tion is evaluated at order p2 [a similar calculation has
been carried out in Ref. 50 for the single-band infinite-U
Hubbard model with a covalent (intersite) e-ph coupling].
However, at the same time, Fo (which is less affected by
e-e vertex corrections), evaluated in the normal state,
should be largely negative (Fs « —1) and one should
worry about the stability of the system. The straight-
forward approach would be to allow for pairing and then
evaluate &" and then check for thermodynamic stability.
This requires the evaluation of e-e screening effects in the
superconducting state, where hopefully the (partial or
full) opening of the gap will stabilize the system. In this
paper we have kept the aptitude to evaluate the dimen-
sionless couplings A~ in the stable region where Fp Q 1,
leaving to a future work the analysis of the region with
Fp & —1 in the normal phase.

The generality of the arguments presented in Sec. II
and the qualitative independence of the results obtained
in the framework of the three-band Hubbard model by
varying the e-ph couplings G„and Gd and other param-
eters of the model (like, e.g. , the phonon frequency us
or the oxygen-oxygen hybridization t„„)witness that our
results are rather robust and should also depend little
on the particular choice of the phonon considered in the
model. The choice taken in the model (17) was dictated
by simplicity, but we do not expect qualitative differences
in the physics of more realistic models. Besides super-
conductivity, our results provide a possible explanation
for other features of the superconducting cuprates. In
particular our results concerning the presence of incom-
mensurate CD&'s would explain the formation of the su-
perstructures, which are present in many copper oxides,
if this phenomenon has an electronic origin.

A relevant issue related to the work presented here con-
cerns the possible formation of polarons in the three-band
Hubbard model. The treatment of this long-standing
problem is beyond the scope of the paper, but it is worth
emphasizing that the band narrowing occurring at low

doping due to strong e-e repulsion could suggest an eas-
ier polaron formation.

Some insight on this can be gained, for instance, from
the analysis of Monte Carlo calculations showing that
a polaronic regime may take place in a single-band model
with one single electron coupled via a short-range inter-
action g to optical phonons. The polaronic regime occurs
as soon as the e-ph coupling g exceeds a critical value g .
The numerical analysis shows that the critical value de-
pends on both the electronic bandwidth ( t in Ref 51).
and the phonon frequency (uo), and it can be represented
by the condition g2/(t(uo) = A, 1 in the adiabatic,
t )) wo, regime or by the condition g, /uo ——n 1 in
the antiadiabatic, t && uo, regime.

The numerical Monte Carlo analysis only concerns
the case of one single electron in a lattice, whereas the
presence of other interacting electrons may modify the
above picture. As discussed in Sec. II, the high sensi-
tivity of the vertex corrections as a function of &equency
and momentum renders the above conditions for polaron
formation rather ambiguous, since it is not clear which

frequency vs momentum regions dominate the e-e screen-
ing processes dressing the e-ph coupling g (cf. Sec. II).
A quick inspection of the (c,. e, (a, + a;)) correlation func-
tion shows that a rather natural guess is that the rele-
vant frequencies are smaller than the phonon frequency
4)p while the relevant momenta are of the order of k~.
Then the effective quasiparticle-phonon coupling deter-
mining the possible formation of polarons would be in the
static or dynamic limit depending on the ratio between
the phonon frequency and the screening energy w„,(q).
According to our numerical analysis, this latter quantity
is of the order of the bare bandwidth TVp. In the anti-
adiabatic regime for the bare bandwidth (ao & Wo) the
quasiparticle-phonon interaction would not be screened
and the e-e repulsion would favor the polaronic regime by
determining a reduction of the electronic kinetic energy.
The same reduction persists when the adiabatic condi-
tions (~o & Ws) are realized, but the suppression of the
e-ph couling due to vertex corrections will dominate so
that the polaron formation will be more difIicult. How-

ever, to settle this point would require a further detailed
analysis. Notice that the lattice-driven instability of the
Fermi liquid, which we showed to occur in the three-band
Hubbard model for not too large e-ph coupling, does not
appear to be related to the formation of polarons in the
system. In fact the instability occurs at small q's (specif-
ically at q = 0), while the formation of local polarons
involves all q s. Moreover, the polaron instability is asso-
ciated to the rapid softening and hardening of the phonon
mode, while our dynamical analysis has shown that the
instabihty is a consequence of an overdamping of the zero
sound, the phonon remaining massive.

A last remark can be made concerning the possible for-
mation of bipolarons. The expectation is that that, even
when the antiadiabatic conditions are realized, the large
repulsion is able to stabilize the system against bipolaron
formation. This does not exclude the possibility af a dy-
namical binding of the polarons.

A support for our results concerning the presence of a
lattice-driven instability comes from the numerical exact
diagonalization of the three-band Hubbard model with e-

ph coupling in a small cluster. 52 This calculation shows
that a CDW occurs at finite doping (one hole in a cluster
of four Cu atoms with surrounding oxygen) if the e-ph
coupling does not exceed a critical value. Above this
value the system enters, instead, a small-polaron regime.
It is tempting to associate the CDW in the small cluster
to the unstable region in the in6nite system considered
in this paper. Of course, in the case investigated in the
present paper by continuously increasing the doping, the
instability first occurs at zero wave vectors, but this be-
havior could hardly be detected in a finite small cluster,
where there are few available momenta and where the
doping cannot be varied smoothly (the addition of a sin-

gle hole already produces a doping around 0.25).
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