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The two-electron self-consistent-field (SCF2) approach in which the wave function is constructed
from spin-unrestricted geminals (UG’s) optimized variationally is developed. It combines restricted-
geminal (RG)-SCF2 and unrestricted Hartree-Fock methods, thus accounting for both short-range
(intrapair) and long-range electron correlations. On this basis ground-state properties of the ex-
tended half-filled Peierls-Hubbard chains are calculated in a wide range of site-energy modulation
a and on-site electron-electron repulsion U. Treating a generalized-Peierls transition in slight-to-
strong correlation regimes within the same framework, the electronic-Peierls and spin-Peierls tran-
sition areas can be conventionally differentiated by bifurcation points in which UG-SCF2 solutions
separate from RG solutions. The corresponding phase diagram in the U-a plane is obtained. For
the monatomic (a = 0) chain, the predicted dimerization amplitude is in a good agreement with the
earlier Peierls and spin-Peierls calculations. For the diatomic strongly correlated chain, dimerization
sharply rises with a at the bifurcation point o and then rapidly drops near o = U/2; a property
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that can be related to phase transitions in some donor-acceptor molecular crystals.

I. INTRODUCTION

The wide variety of remarkable physical properties
and phenomena in the class of materials with low-
dimensional structure comprised of conjugated poly-
mers, metal-halide chains, and donor-acceptor molecular
crystals stimulates intensive theoretical investigations of
them. It has long been recognized that a satisfactory de-
scription of many-body interactions in low-dimensional
systems must include both electron-phonon (e-ph) and
electron-electron (e-e) contributions. They lead to a va-
riety of 2k instabilities involving Peierls (bond-order-
wave, BOW), charge-density-wave (CDW), and spin-
density-wave (SDW) instabilities resulting in broken-
symmetry states. The Hubbard model with occasional
long-range terms is believed to be a reliable basis for
treating the effects of e-e interactions. However, their in-
vestigation is much complicated due to the inadequacy of
the simple mean-field approximations for predicting the
electronic and lattice properties of these systems. Even
the unrestricted Hartree-Fock (UHF) method, which cor-
rectly represents electron correlations in the atomic limit,
proves to be insufficient. In particular, 2kz instabilities
of different types in one-dimensional (1D) systems turn
out to be competing, thus shrinking or collapsing the
area of existence of the combined instabilities,!*? such as
SDW-BOW predicted in the strong-correlation regime by
the spin-Peierls approach.

A number of different techniques developed for the
exact or approximate calculations of correlated many-
electron systems,® mainly the resonating valence band
(RVB) approach, Gutzwiller ansatz, Monte Carlo ap-
proach, spin-Hamiltonian method, perturbation, and
variational techniques have been applied to the Hub-

0163-1829/94/50(23)/16872(8)/$06.00 50

bard systems, yielding a considerable body of evidence
for their properties. Nevertheless, the exact or high-
accuracy calculations of extended correlated systems re-
main much too complicated even with up-to-date com-
putation facilities. Meanwhile, for investigations of the
sophisticated models of explicitly interacting chains or
considerations of clusters with the size sufficient to repre-
sent two-dimensional lattice structures, as well as for dy-
namics studies of correlated systems, simpler approaches,
suitable for systems with several dozens of sites, are very
desirable.

As it is concluded in Refs. 4 and 5 on the ground of
the exact numerical valence-bond (VB) and Monte Carlo
calculations of small rings, the ordinary Peierls (nonin-
teracting electrons) and the spin Pieierls (Heisenberg an-
tiferromagnetic model), the concepts derived from per-
turbation theory, can be considered as limiting cases of
“generalized Peierls transition” encompassing these lim-
its. Moreover, the analysis of the ground state in terms
of VB resonating structures* shows that on-site e-e in-
teractions represented by the Hubbard parameter U give
rise to a barrier to resonance, thus becoming the driving
force of dimerization. This finding suggests a possibility
for an adequate approximate description of the dimerized
ground state with the use of a simple wave function con-
structed self-consistently from correlated electron pairs
and corresponding to a single Kekulé structure.

In this way, to go beyond Hartree-Fock approximation,
the two-electron self-consistent-field (SCF2) method has
been implemented.®” The SCF2 wave function defined
variationally as the best antisymmetrized product of
strongly orthogonal two-electron functions (geminals)
is exact in the opposite limits of nominteracting and
strongly correlated electrons. The SCF2 method is
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size consistent, yielding exact results for noninteracting
dimers. Besides, the optimization with respect to lattice
variables can be easily included in a general SCF proce-
dure. Applying the SCF2 approach presented in Refs.
6 and 7, the Peierls-Hubbard models for the extended
chains have been considered, both for the monatomic®”’
and diatomic® cases, thus resulting in correct predictions
for the ground-state properties and soliton excitations
within a wide parameter range.

One obvious drawback of the SCF2 method is that the
wave function constructed from the spin-restricted (sin-
glet) geminals (RG) overestimates the intrapair electron
correlations whereas the interpair antiferromagnetic ones
are neglected. To overcome this difficulty we developed
a new SCF2 technique in which spin-unrestricted, non-
singlet, geminals (UG) are admitted, as suggested in Ref.
9. The UG-SCF2 method combines two approaches to
account for electron correlations, reducing to RG-SCF2
and UHF methods as partial cases.

In this paper we present UG-SCF2 calculations for
monatomic and diatomic Peierls-Hubbard chains. Al-
though the UG-SCF2 technique is applicable to many-
electron models of arbitrary structure and parametriza-
tion, the simple monatomic case considered here, due to
availability of the well-established results of other calcu-
lations, presents a good basis to test the new approach
in different correlation regimes. We put more empha-
sis on the large-U area in which the antiferromagnetic
correlations are of prime importance. For less studied
diatomic systems, a new feature, to our knowledge, is
obtained. Namely, the UG-SCF2 calculations performed
in the strong-correlation regime, which is characteristic of
quasi-one-dimensional donor-acceptor crystals, show dis-
tinct interface between Peierls and spin-Peierls areas that
could be related to a phase transition of some quasi-ionic
crystals from regular to dimerized form.

The paper is organized as follows. In Sec. II the model
Hamiltonian is specified and the UG-SCF2 method is
outlined with reference to the Hubbard model under con-
sideration. Numerical results are reported in Sec. III
and discussed in Sec. IV. The concluding Sec. V out-
lines the further possible developments and applications
of SCF2 technique. The derivation of the UG-SCF2 en-
ergy expression for the general model is sketched in the
Appendix.

II. MODEL AND METHOD

The considered model of a diatomic polymer (AB), is
defined by the Peierls-Hubbard Hamiltonian which de-
scribes the chain involving N sites of two kinds, A for
odd and B for even sites, with N electrons that interact
adiabatically with the lattice,

H = E EmNmeo — E tm(ainaam+l,a+azn+1,aamo’)
mo mo

U
+—2— g‘;nm,nm,_,. (1)
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Site energies e,, are specified as being modulated with
amplitude a,e,, = (—1)™a. Transfer integrals t,, be-
tween nearest-neighbor sites m and m + 1 determine the
interaction of electrons with the lattice through the lin-
ear dependence on the corresponding bond deformations
(bond-length changes) gm, tm = to — t1gm, where t; is a
coupling parameter. The on-site e-e repulsion potential
is determined by the Hubbard parameter U.

The geminal approximation used here for the corre-
lated ground state of (1) is based on the accurate repre-
sentation of any singlet two-electron state in the so called
natural form G'|0) where |0) is a vacuum state and Gt
is a two-electron (geminal) operator defined as a linear
combination of products P,-T = AITAL; the operators AI‘,
are made of basis (site) operators af,, creating an elec-
tron with corresponding spin o (0 =1,]) on sites m by
the identical orthogonal transformations. Correspond-
ingly, the 2M-electron ground state can be approximated
by the antisymmetrized product of functions of M corre-
lated electronic pairs described by singlet geminals

M
o) =TI6i10), 6l=3 ek, Y k=1 (2

Anticommutation of the operators entering different gem-
inals essentially simplifies calculations, thus the restric-
tion of “strong orthogonality” is commonly used assum-
ing each Gl is constructed only from the operators A:.'a
which belong to one of nonintersecting subsets of the
complete set A:-'a (it is formally provided by the condi-
tion that nonzero £; would not be the case for different i
simultaneously). The wave function so defined is known
in quantum chemistry as the antisymmetrized product of
strongly orthogonal geminals (APSG) (see, for example,
Ref. 10) and usually applied in molecular calculations re-
lating orthogonal subspaces to construct geminals with
subsets of basis functions.

The APSG wave function can be compared with the
BCS one in “single-geminal” form, known in the theory
of superconductivity. The latter involves pair products
B,ZTBL‘ 1 of operators related to the plane waves with
quasimomentum k. By the transformation to real plane
waves BL,W = A;‘w + iAT_,w, k > 0, the function re-
duces to the form (2) with &; = §;, so that G; are

identical and involving all the pair operators P,I , thus
the strong orthogonality condition does not hold. Com-
paring the expansions of both wave functions on con-
figurations P,;’1 P,L ---P,:'M, one can find that the APSG

does not involve the configurations with P,I. which belong
to different subsets. Instead, all the conﬁgu.rations are
presented in the single-geminal function, however, their
weights bound to the products &, &y, - - - £k,, happen to
be unfavorable in some cases.

Like the common SCF (Hartree-Fock) wave function
defined as the best, by energy, antisymmetrized prod-
uct of one-electron functions, the APSG function can be
treated as a basis for a two-electron SCF method in which
the coefficients £; and geminals are optimized variation-
ally without any a priori restrictions besides the strong
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orthogonality conditions.
Proceeding to the spin-unrestricted SCF2 approach we
consider the operators A;’a, used to construct the geminal

operators G1 in (1), as made up of corresponding site
operators a}l _ by orthogonal transformations

AL, = Z CmiaaImy, Zcmiacmja = 61'_1' . (3)

The matrix elements C,,;,, together with the coefficients
&ki, are treated as variational parameters but now, con-
trary to the restricted SCF2 approach in which Cp,iy =
Cmiy, they may be different for different spins. Including

the cross terms AITA; 1+ A;TAI | to GL, as proposed in
Ref. 9, is inefficient in the case of fully optimized gem-
inals. They can be eliminated by canonical transforma-
tions of pairs of operators AIT,A;T and AL,A} | so the
class of variational functions cannot be expanded in this
way.

We apply the approximation (2) to the ground state of
a chain with even N = 2M. For the half-filled case, each
of the geminal operators involves two pair operators P:
with ¢ = k and 7 = k' where k' = k + M (here and below
index k running over the range 1-M can be associated
with the occupied states in the common Hartree-Fock
theory, the corresponding virtual states are numbered by
k', and indices i and j refer to the range 1-N).

The energy expression required to apply the varia-
tional method is derived in the Appendix. In the case of
the Hubbard e-e potential for which the corresponding
Coulomb and exchange integrals are equal, the general
expression (A4) simplifies and can be put in the form

E. = Ey + E, + E», (4)
Eo =Y wilh(ii 1) + h(ii )] + Zv,-uj(ii t3id), (5)

1

Ey =2 &éw (KK T kR 1), (6)
k
E, = Z vevi (kk — k'K, 1| kk — E'K', ), (7)
k

where v; = £2 with i = k or i = k/ are occupation num-
bers of one-electron states A!|0) and matrix elements are
specified as follows:

h(lla) = Z(sznia - ZthmiaCm+1,i6)7 (8)

m

(ijo | 5'0") = U Y CmicCrmijoCrmito'Cmjrar- (9)
m

When all v, = 1 (and, correspondingly, vz = 0) then
| &) turns into a one-determinant wave function, in this
case F; = E5 = 0, so Ey can be treated as an UHF en-
ergy generalized for the arbitrary occupation numbers.
Energy rise due to nonzero & is compensated by the
correlation terms E; and E;. The energy gain connected
with E; is favored by the rise of the negative products
&rér and the exchange integrals (kk’ 1| kk' |). As a con-
sequence, the variational optimization of geminals leads
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to the Wannier-type states k and k' localized near cor-
responding bonds, by contrast to the complete energetic
equivalence of plane-wave and Wannier states in the one-
determinant case. The term E; involves the energies of
the Coulomb interaction of difference electron distribu-
tions kk and k’'k’ for each of the spins, weighted with
Vgvg:. For a monatomic chain, this term is of importance
only in the unrestricted case. For the restricted geminals,
E; vanishes as the optimized states k and k' differ only
by sign at even sites due to the charge-conjugation sym-
metry of the Hamiltonian (1).”

It should be noticed that unrestricted-geminal energy
is invariant with respect to the interchange C,., <
Cmi,—o, thus any solution of the restricted-geminal vari-
ational equations at the same time satisfies the UG
variational equations as it is in the case of the one-
determinant Hartree-Fock theory. Evidently, for self-
consistent ground-state energies the inequality Fyg <
Egrc holds, so that in the case of different Fyg and Egrg
the former corresponds to minimum of the UG energy
surface while the latter, being the minimum point on the
RG surface, usually is unstable with respect to the spin
extension and realizes a saddle point on the UG surface.

In the adiabatic treatment of the Peierls-Hubbard
problem the total energy Er of the chain includes the
elastic energy contribution Ej,:,

K
ET = Ee + Elatta Elatt = _2" zm: Q,znw (10)

where K is the elastic constant of bonds. The equilibrium
structure of the system is determined by minimization of
Er with respect to all wave function (Crke,&k) and ge-
ometry (gm,) variables with the chain length being fixed.
The orthonormal sets of coefficients C,,,x, are determined
with the use of the multiconfigurational-SCF optimiza-
tion technique based on the pseudosecular method.!?

III. NUMERICAL RESULTS

Applying the approach outlined above, the ground-
state properties of the Peierls-Hubbard chains are cal-
culated with the ring boundary conditions to minimize
end effects. We consider normalized bond-length changes
dm = gm+/K/to, a dimensionless electron-lattice cou-
pling is g = t,4/K/to; measuring energy in to units we
set tg = 1. As a result of minimization of Er, the ground
state is obtained with the alternating charges Q,,, spin
densities p,,, and bond lengths d,,,

Qm =1+(-1)"Q, pm=(-1)"p,
(11)
dm = do + (=1)™d,

which can be characterized as CDW (Q # 0), SDW (p #
0), and BOW (d # 0) states or states with combining
instabilities.

Most of the calculations were performed for the N =
30 rings with g = 0.5 (this can be compared with g =
0.37, the estimation obtained for polyacetylene within
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the framework of the RG-SCF2 approach? and g = 0.39
as found in the exact diagonalization study'3). Separate
results were obtained for ¢ = 0.75. In addition, in the
U < 2 region where the size effects are noticeable the
N = 50 ring is also considered.

To elucidate the effect of removing spin restriction,
let us first discuss the results of the calculations for
monatomic rings without e-ph interaction. An analysis of
the ground-state energies is presented in Fig. 1(a). The
overall RG and UG electronic energies are close while the
contributions defined by Eqs. (5)—(7) are essentially dif-
ferent. Particularly, the E, energies both monotonically
rise with U, but the RG energy happens to be twice as
large as the UG one. The negative correlation contri-
bution to RG energy is connected only with E;, which
decreases with U almost linearly. In the UG case, E;
falls much slower and after U =~ 5 becomes even rising so
that the main energy gain at large U is determined by
the E; contribution which, as it was mentioned, is equal
to zero for the RG case.

The results for the ground-state energies calculated for
the monatomic rings with e-ph interactions are given in
Fig. 1(b). For convenience, the variational energies per
site are referred to the corresponding exact Lieb-Wu val-
ues gg calculated for the infinite undeformed Hubbard
chain.14

The plots in Fig. 1(b) show that the UG-SCF2 solu-
tions bifurcate from the singlet-geminal solutions when
electron repulsion exceeds some threshold Uy, the bifur-

Energy per site
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FIG. 1. Energetic  characteristics of monatomic

Peierls-Hubbard ring as functions of U, calculated by
UG-SCF2 (solid lines) and RG-SCF2 (long-dashed lines)
methods. (a) Energy contributions at ¢ = 0 defined by
Egs. (5)-(7); in this scale, the close plots of UG and RG
ground-state energies E are represented by a single curve. (b)
Ground-state energies calculated with different g and mea-
sured with respect to the exact energies for infinite ring.
Short-dashed line: the UHF energy at g = 0.
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cation point shifting to greater U as electron-lattice in-
teraction increases. The splitting of geminals is accom-
panied by a sharp rise of spin densities [Fig. 2(a)] and a
drop of dimerization amplitude [Fig. 2(b)] just above U.

Consideration of the energy data given in Fig. 1(b)
allows one to estimate the accuracy of different varia-
tional approaches. Small negative values near U = 0
are caused by the present choice of the N — oo ener-
gies as the reference ones [at U = 0 the exact N = 30
and N = 50 energies are lower by 0.0023 and 0.0008, re-
spectively, at U = 5 the corresponding differences reduce
to 0.0006 and 0.0002 (Ref. 15)]. In the U < 4 region
both SCF2 modifications are much superior to the UHF
method but for large U the UHF and RG-SCF2 ener-
gies fall close together whereas the UG energy is about
one-half as high. Thus, by allowing geminals to be spin
split, a considerable improvement of variational results
for strongly correlated chains is attained.

As can be seen in Fig. 1(b), e-ph interaction monoton-
ically lowers the energy. At g = 0.75 the decrease is so
considerable that the UG energy of the distorted chain
for U < 7 appears to be lower than the exact energy for
the undimerized state. This result directly proves that
even in the case of strong correlation the equidistant Hub-
bard chain is unstable with respect to Peierls distortion,
at least at e-ph interaction of sufficient strength. The
similar evidence was obtained earlier for U < 4.16

In the small-U region, U < 4, where removing spin
restrictions yields no effect, the UG-SCF2 results coincide

FIG. 2. Electronic and lattice characteristics of monatomic
Peierls-Hubbard ring as functions of U, calculated at g = 0.5
by UG-SCF2 (solid lines) and RG-SCF2 (long-dashed lines)
methods. (a) Amplitude of spin-density alternation p for dif-
ferent g. UHF result is depicted at g = 0. (b) Dimerization
amplitude d. Short-dashed lines: Gutzwiller-ansatz results
(dark squares) and spin-Hamiltonian calculations of the infi-
nite-size chain with the use of mean-field (bright circles) and
variational (dark circles) approximations.
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with the RG ones discussed in Ref. 7. Thus we only note
here that the predicted U dependence of dimerization
amplitude d is in agreement with that obtained by the
linked-cluster Gutzwiller-ansatz method,!® as it is shown
in Fig. 2(b).

In the large-U region, the RG and UG d(U) dependen-
cies are notably different. As can be seen in Fig. 2(b), the
SDW wave arising at U > Up strongly suppresses dimer-
ization. Besides, contrary to the RG d(U) dependence,
the UG d(U) plot in the log-log scale can be fairly well
represented by a straight line, specifically,

Ind = —1.10191n U + 0.3026. (12)
At large U the half-filled Hubbard model (1) is known

to be mapped on the spin-1/2 antiferromagnetic Heisen-
berg Hamiltonian,

Hy=Y JnSm-Smyr. (13)

For a dimerized state with the bond alternation d, the
exchange parameters J,,, = 4t2 /U are

Jn=J1+6(-1)™], J=4/U, é=2gd, (14)
thus allowing us to compare the present results with the
spin-Peierls calculations.

Most of the known studies on the spin-Peierls transi-
tion consider the behavior of the electronic energy only
at small §. One of the results available for comparison
with ours within a broader § range is obtained in Ref. 17
within the framework of Hartree-Fock approximation for
Hamiltonian (1). Using the corresponding analytic ex-
pression for the ground-state energy in the form given in
Ref. 18 we calculated the d(U) dependence by minimiz-
ing the total energy as a function of d. With the same
aim, we also used the results of the variational study of
the Heisenberg chain'® making sure that, for § within the
range 0-0.1976, the numerical data for the electronic en-
ergy per site €. are fairly well represented by the linear fit
€e/J = —0.22076 — 0.4348. The d(U) dependencies thus
obtained are depicted in Fig. 2(b). The plots show that
the UG d(U) dependency proves to be in much better
agreement with both the spin-Peierls calculations than
that obtained by the RG-SCF2 method predicting con-
siderably overestimated d.

The diatomic chain is described by the Hamiltonian (1)
with site-energy modulation o > 0. As in a = 0 case, at
small U the RG-SCF2 solution is also stable with respect
to spin splitting. So, to elucidate its effect at nonzero
a, we consider as an example the results of the calcula-
tions with large U; the case is important for applications
to charge-transfer molecular crystals. For these systems
with quasi-one-dimensional structure, U/to ~ 10— 70 due
to relatively small hopping integrals,2?° so we fix, for con-
venience, U = 16 and calculate the model (1) with varied
a.
When considering the results obtained with the re-
stricted geminals, depicted in Fig. 3, one can distinguish
two regions of a divided by the point a ~ U/2. In the
a < U/2 region the chain retains to a great extent its
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FIG. 3. Ground-state  properties of  diatomic
Peierls-Hubbard ring as functions of site-energy modulation
a calculated at g = 0.5 and U = 16 by UG-SCF2 (solid lines)
and RG-SCF2 (long-dashed lines) methods. (a) Total energies
per site; the inset shows the same dependencies (scaled down)
in the whole a range. (b) Amplitude of charge alternation Q
for both UG and RG cases; short-dashed line: UG amplitude
of spin-density alternation. (c) Dimerization amplitude d.

characteristics modified by CDW driven by site-energy
modulation. With « increasing, the charge transfer @
and dimerization amplitude d monotonically rise, and
the growth becomes faster as the point a = U/2 is ap-
proached.

When passing through o ~ U/2, the energy —2a of a
pair which occupy a site with lower energy e,, = —a, ex-
ceeds, by absolute value, the on-site e-e repulsion energy
U. As a result, the total energy is determined rather
by site-energy modulation than by correlation and lin-
early decreases with a [Fig. 3(a)]. The wave function as-
sumes one-electron character, describing pairs which oc-
cupy mainly even sites as it is represented by the charge
distribution [Fig. 3(b)]. In this case the odd sites turn out
to be almost empty, so bond orders and, consequently,
dimerization [Fig. 3(c)] sharply drop with o above U/2.

Removing spin restrictions imposed on geminals leads
to the bifurcation of the UG solution from the RG one
only for o smaller than a critical value ap = 6.165. It
can be clearly seen from the behavior of the spin den-
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FIG. 4. U-a phase diagram for diatomic Peierls-Hubbard
ring at g = 0.5. The location of RG-UG bifurcation points is
shown by solid line. Dimerization sharply falls near a = U/2
(dashed line).

sity which sharply drops when the critical point aq is
approached. By contrast to this, the effect for the charge
densities is negligible, and the magnitude of the charge
alternation @ remains unchanged within the accuracy of
calculations. The most pronounced effect concerns the
a dependency of the dimerization amplitude which un-
dergoes essential changes. As for the monatomic ring,
at small and intermediate o the UG alternation remains
about half as large as the RG one. The sharp rise of d
at the bifurcation point aq suggests that an additional
transition is the case, which is characterized, by contrast
to the transition near a = U/2, only by the dimerization
jump without noticeable changes of charges.

The determination of the exact locations of the UG-RG
bifurcation points is troublesome because of the shallow
energy surface and, consequently, slow iteration conver-
gency where the nonsinglet geminals turn into the singlet
ones. Thus to diminish computations when scanning the
a-U plane we searched for the points in which the RG-
UG energy differences per site approach the fixed small
value of 107%. The location of the RG-UG bifurcation
points thus obtained at different U is shown in the U-a
phase diagram (Fig. 4). As can be seen, the plot ag(U)
is near the straight line which is almost parallel to the
line a = U/2.

IV. DISCUSSION

The calculations performed demonstrate that the UG-
SCF2 method yields the correct picture of interplay of the
intrinsic BOW and SDW instabilities in the 1D Peierls-
Hubbard correlated system, including also the CDW
driven by site-energy modulation (a spontaneous CDW
formation is possible only in models with nonzero inter-
site e-e potentials?!). The method allows us to get cor-
rect predictions for electronic and lattice properties de-
scribed within the same framework in the whole range
from small to large U. Although electronic- and spin-
Peierls transitions formally have the same general origin,
the latter can be conventionally attributed to the param-
eter range bounded by the bifurcation points in which
the UG solution becomes distinct from the RG one. The
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corresponding areas are designated in the U-a phase di-
agram (Fig. 4).

In comparison with the previous RG-SCF2 approach,
the new UG-SCF2 one leads to considerable gain in vari-
ational energy in intermediate- and strong-correlation
regimes due to consideration of antiferromagnetic corre-
lations. It should be noticed here that the energy gain is
yielded at the cost of higher-multiplicity pollution of the
wave function. The exact ground state of the systems un-
der consideration is singlet, so, rigorously speaking, the
spin properties should be determined by the spin correla-
tion functions. In principle, the higher-multiplicity con-
tributions can be removed by the known spin-projection
methods. However, even within the present scheme one
may consider spin densities (if arising from nonsinglet
contributions) to be a useful characteristic of interactions
determined by spins, like it is commonly accepted in one-
determinant UHF treatments.!2

For the monatomic Peierls-Hubbard chain, the results
of the present calculations are in line with the qualitative
explanation of the effects of e-e correlation on dimer-
ization behavior in terms of the approximate geminal
approach.?? Thus the shape of the d(U) dependence is de-
termined by two factors: (1) geminal localization which
strengthens the bonds of geminal locations with loosen-
ing of the other ones, and (2) the growing weights of
antibonding states k' in geminals, which acts just in the
opposite direction. Geminal localization, which increases
with U due to E; energy gain, produces dominating effect
at small and intermediate U, thus forming the ascending
part of the d(U) dependence. With further U increase,
the geminal localization approaches saturation so that
the rising k’-state weights become the main factor which
determines the descending tail of the d(U) curve.

The dimerization reduction at large U in the UG cal-
culations against the RG ones can be related to the lo-
calization characteristics of the optimized k and k' states
used to make up the geminals. When spin restrictions
imposed on the geminals are removed, the bond-type lo-
calization of these states changes to the atom-type one,
that results in the reduction of the bond orders. A simi-
lar effect in the one-determinant UHF approach leads to
the complete disappearance of the dimerization at large
U.

Most of the previous studies on the Peierls instabil-
ity emphasize the problem of existence of dimerization
by examining the energy behavior at small distortions.
In contrast to this, the SCF2 method is aimed to di-
rect calculations of dimerized lattice structure affected
by correlated electrons. Since the optimized geminals
are localized the resulting wave function formally corre-
sponds to a single VB structure. This imposes evident
limitations near the d = 0 point where the contribution
of another Kekulé structure is important. Nevertheless,
away from this point the drawback is essentially com-
pensated by full optimization, thus the method correctly
predicts the main trends in the behavior of dimerization
though, quantitatively, its magnitude sometimes turns
out to be overestimated some.

For the diatomic chain, the results obtained here can
be related to the problem of phase transitions in donor-
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acceptor molecular crystals. The alternating donor and
acceptor molecules in these systems are commonly rep-
resented by the model (1) with large U, in which low-
and high-energy sites are associated with donor and ac-
ceptor molecules, respectively; the interchain Coulomb
interaction in the mean-field approximation is effectively
taken into account by renormalization of a. Since neu-
tral donors involve two electrons on the highest occupied
orbital and the neutral acceptor has the empty lowest
virtual one, the small charges Q on even sites in the
model (1) correspond to the quasi-ionic state of the crys-
tal, whereas large Q relate to the quasineutral state.

The problem of the neutral-ionic phase transition ex-
hibited, for example, by the tetramethylparaphenylene-
diamine-chloranil (TMPD-CA) crystal, has been inten-
sively investigated by the VB method (see, Ref. 23, and
references therein) predicting, in accordance with the ex-
perimental evidence, a dimerized quasi-ionic phase and a
regular quasineutral one. The RG-SCF2 method yields
the same result. The sharp fall of dimerization when
passing through the transition point dividing quasi-ionic
(o < U/2) and quasineutral (a > U/2) regions [Fig. 3(c)]
can be related to this transition. More detailed consid-
eration is presented elsewhere.?

The present UG-SCF2 results can be connected
with another type of phase transitions observed in
tetrathiafulvalene-bromanil (TTF-BA) crystal. As it was
found in,?* this complex, remaining quasi-ionic at all
temperatures, shows a sharp drop of magnetic suscepti-
bility below 50 K accompanied by the stack dimerization.
As concluded in Ref. 24, “The critical remaining question
concerns the driving force behind this dimerization. Is it
a spin-Peierls transition, as has been speculated?”2® The
data obtained here can provide us with further informa-
tion on this problem.

The transition observed in Ref. 24 seems to be related
to the bifurcation point which appears at ap = 0 [Fig.
3(c)]. Really, this point is located in the quasi-ionic re-
gion without marked charge changes near the transition.
Besides, dimerization rapidly falls as o decreases, passing
the critical value. Magnetic properties are not calculated
here. But, qualitatively, spin instability of geminals be-
low ap just means the appearance of low-energy states of
higher multiplicity, triplets in the first turn, which being
occupied with temperature lead to paramagnetism of the
system.

V. CONCLUSION

The results of this study show that the geminal tech-
nique both in the RG-SCF2 and UG-SCF2 modifications,
one of the simplest approaches to go beyond Hatree-Fock
approximation, appears to be a useful tool for direct
unified calculations of electron and lattice properties of
various extended systems in slight-to-strong correlation
regimes.

Possible further developments and applications of the
SCF2 approach can be outlined as follows. First, though
the technique is specified in the present study for the
Hubbard half-filled 1D case, its generalization for the
structures with holes as well as for the 1/3- or 1/4-filled
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states both for short- and long-range e-e potentials is
straightforward. Again, as being less critical to IV limita-
tions, the approach can be readily applied to 2D models.

Secondly, the SCF geminals can be used as a conve-
nient basis for calculating the correlated excited states.
Due to the localized character of geminals, a restricted
configuration-interaction treatment leads to an exciton-
like description which turns out to be more relevant for
the low-energy excitations with pronounced two-electron
contributions (for the monatomic chain they are of A,
symmetry, the same as that of the ground state?®). Be-
sides, for optimized geminals the generalized Brillouin
theorem holds,?” thus much simplifying consideration of
the one-electron excitations.

Finally, the present approach is equally applicable to
regularly dimerized structures or lattices distorted by
kinks. Thus it is expected to be helpful for considera-
tion of the soliton excitations not only for the monatomic
Peierls-Hubbard systems,” but also for the diatomic ones.
The latter, due to the rich picture of interplaying BOW,
SDW, and CDW 2kr symmetry breakings, seem to be
interesting objects for investigation of the solitons of dif-
ferent types, e.g., such as those introduced in Ref. 28 to
explain some properties of donor-acceptor crystals.
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APPENDIX A: UNRESTRICTED-GEMINAL
ENERGY EXPRESSION

We sketch the derivation of the unrestricted-geminal
energy expression needed to apply the variational
method. The system of an even number 2M of elec-
trons is assumed to be described by the Hamiltonian of
the general form

H = H] + H2
=" h(ijo)Al, Ajo

ijo
+% Z (’L]O’ l i’jlal)AZaAI’a’Aj'a'AJ’U'
iji'jloo’

(A1)

. t .
Since the operators A, are made up of site operators

al,, by the orthogonal transformations (3) which may
be different for different spins, the transformed one- and
two-electron integrals, h(ijo) and (ijo | ¢'j'0’), depend
on spin.

When obtaining the average energy E = H in the state
(2) the Wick theorem or the Feynman diagram technique
can be applied. First, one can use the commutation of
different geminal operators GkG;’ = G}Gk provided by
the equality &x;&;; = 0 at k # | (the strong-orthogonality
conditions). As a consequence, when considering the vac-
uum averages (Gpr---G1 | -+ | GJ{ . GL) the unlinked
parts of the diagrams are separated contributing factors
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1, as (GkGI) = 1 due to the normalization of Gi. Thus
the average of H; reduces to

H, = Z(Gk | Hy | G}) = Zélii(Pi | Hy | P}). (A2)
k ki

In the last sum, obtained after expanding G and G;L
through pair operators P and P,I according to (2), only
diagonal averages are retained as (P; | Hy | P}) =0 at
1 # j due to the one-particle character of H;.

The average of the two-electron operator H, reduces
in a similar manner. Considering two ways of separation
of the unlinked parts one gets

Hy =Y (Gi | Hz | G}) + S (GiGx | Ha | GLG))
k

k<l
= Zﬁkiﬁkj(Pi | Hz | Pit>
kij
+ ) €L&% (PP | Hy | PIP}). (A3)
klij
(k<)
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The averages of H; and H; with the pair operators in
(A2) and (A3) are calculated in a straightforward way.
The final energy expression is

Evc=Y_ &kh(iio) + Y &ribri(ijo | ij,—0)

kio kijo

+ ) & l(iio | o) + (iio | jj,—0)
klijo
(k<)

—(ijo | ijo)). (A4)

In the one-determinant case (§xi = Orivk, vk = 1,0)
Eq. (A4) reduces to the known UHF energy expres-
sion. Again, at Crmit = Criy, Eq. (A4) turns into the
RG energy?® involving the two-electron integrals only of
Coulomb and exchange types. In the general case the
second sum in (A4) contains also generalized exchange
integrals.

! H. Fukutome and M. Sasai, Prog. Theor. Phys. 87, 41
(1982).

2 H. Fukutome and M. Sasai, Prog. Theor. Phys. 69, 373
(1983).

3 Interacting Electrons in Reduced Dimensions, edited by D.
Baeriswyl and D. K. Campbell (Plenum Press, New York,
1989).

*S. Mazumdar and S. N. Dixit, Phys. Rev. Lett. 51, 292
(1983).

® J. E. Hirsch, Phys. Rev. Lett. 51, 296 (1983).

® V. A. Kuprievich, Teor. Eksp. Khim. 22, 263 (1986) [Theor.
Exp. Chem. (USSR) 22, 245 (1986)).

"V. A. Kuprievich, Phys. Rev. B 36, 3882 (1989).

8V. A. Kuprievich, Int. J. Quantum Chem. (to be pub-
lished).

® A. L. Chugreev and I. A. Misurkin, Teor. Eksp. Khim. 23,
665 (1987) [Theor. Exp. Chem. (USSR) 23, 613 (1987)].

1 R. McWeeny and B. T. Sutcliffe, Methods of Molecular
Quantum Mechanics (Academic Press, London, 1969).

1 A. V. Luzanov and V. V. Ivanov, Teor. Eksp. Khim. 26,
385 (1990) [Theor. Exp. Chem. (USSR) 26, 363 (1990))].
12y, A. Kuprievich, in Self-Consistent Field. Theory and Ap-

plications, edited by R. Carbo and M. Klobukowski (Else-
vier, Amsterdam, 1990), pp. 136-156.
13 V. Vaas, H. Biittner, and J. Voit, Phys. Rev. B 41, 9366

(1990).

4 E. H. Lieb and E. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

15 K. Nashimoto, Int. J. Quantum Chem. 28, 581 (1985).

'® D. Baeriswyl and K. Maki, Phys. Rev. B 31, 6633 (1985).

'7 L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 44, 1008 (1963) [Sov.
Phys. JETP 17, 684 (1963)].

'® G. Beni, J. Chem. Phys. 58, 3200 (1973).

1*D. J. Klein and M. A. Garcia-Bach, Phys. Rev. B 19, 877
(1979).

20 A. Painelli and A. Girlando, Phys. Rev. B 87, 5748 (1988).

21 §. Mazumdar and D. K. Campbell, Phys. Rev. Lett. 55,
2067 (1985).

# 1. 1. Ukrainskii, Zh. Eksp. Teor. Fiz. 76, 760 (1979) [Sov.
Phys. JETP 49, 381 (1979)].

23 A. Painelli and A. Girlando, Phys. Rev. B 45, 8913 (1992).

24 A. Girlando, C. Pecile, and J. B. Torrance, Solid State
Commun. 54, 753 (1985).

2% J. B. Torrance, J. J. Mayerle, and J. I. Crowley, Bull. Am.
Phys. Soc. 23, 425 (1978).

26 Z. G. Soos, S. Ramasesha, and D. S. Galvao, Phys. Rev.
Lett. 71, 1609 (1993).

27 B. Levy and G. Bertier, Int. J. Quantum Chem. 2, 307
(1968).

8 N. Nagaosa, Solid State Commun. 57, 179 (19886).

?* W. Kutzelnigg, J. Chem. Phys. 40, 3640 (1964).



