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We propose an energy functional for localized electron systems that corresponds to the
constrained-local-density approximation (LDA) but includes some corrections for spin and orbital
polarization to take Hund’s first and second rules into account. The discontinuity of the one-electron
potential known for an exact density functional can be easily incorporated in LDA in the scope of
our formalism. Applications of the method to the electronic structure and configurational stability

of d impurities in Rb are presented.

I. INTRODUCTION

It is well know now that the local-spin-density ap-
proximation (LSDA) fails to describe properties of sys-
tems with localized d and f electrons. Typical examples
of such failures are Mott insulators like 3d-transition-
metal oxides, where the LSDA cannot reproduce the well-
established correlation gaps nor the antiferromagnetic
ground states. Several different attempts [SIC-LSDA,*™3
LDA+U (Ref. 4)] have been undertaken to overcome
these limitations and repair the LSDA by introducing
some corrections for localized states.

On the other hand, there is a paradox that despite of
all limitations of LSDA it gives reasonable values for the
parameters characterizing the localized states. Indeed,
the values of the Coulomb interaction parameters (U)
obtained in the constrained-LSDA calculations for a va-
riety of strongly correlated systems® !! are surprisingly
accurate. This means that as long as we manipulate with
total energies in constrained-LSDA, we are quite success-
ful in describing the behavior of localized electrons, even
if we consider excited-state properties. But as soon as
we start using single-particle energies obtained in LSDA
for the ground state all deficiencies of such a treatment
become evident. This is not very surprising since LSDA-
eigenvalues themselves (at least for the ground state) do
not have a direct physical meaning. Some other rep-
resentations for one-electron spectra which would bet-
ter reflect the nature of the localized states are more
prefered.!? But, is the transformation to another set
of one-electron states very important and what is the
nature of the localized states? Let us consider a system
consisting of two well-separated atoms. We will neglect
any hybridization effects between the wave functions but
allow for charge transfer from one atom to the other.!3
If we still stay within the framework of the one-electron
picture this process can be described only as a transition
of an electron from a well-defined one-electron orbital
at one atom to the corresponding one-electron orbital at
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the other atom and the physical origin of the one-electron
states involved in such a process becomes very important
here. Perdew et al.* have shown that an attempt to use
one-electron states like those of LSDA, which are simply
derivatives of a smooth function (total energy in LSDA)
with respect to orbital populations, to describe the be-
havior of two different well-separated atoms leads to a
paradox: fractional electron occupations on each atom
of the considered system will minimize the total energy.
The only possible choice to avoid this is to use such a set
of one-electron orbitals on every site for which the energy
of the highest occupied or lowest empty state (thus, we
unavoidably must introduce some gap between these two
energies) would exactly agree with the cost to remove or
to add one electron to the shell of localized states, i.e.,
with the ionization energy or electron affinity, respec-
tively.

Now, let us look again at the total energy functional in
LSDA for isolated atoms to get some feeling of what one
should improve and how it could be done. First, we note
that the values of the total energy obtained in LSDA for
isolated atoms do not differ drastically from those ob-
tained in Hartree-Fock (HF) calculations. As the most
striking example, we can remind ourselves of the X, ap-
proximation proposed by Slater,'® where the parameter
a was chosen from the equality between total energies
in X, and HF approaches for isolated atoms. It looks
like that we should not change LSDA total energy at all
except for some small corrections arising from orbital-
polarization effects. This fact was intensively used by
Eriksson et al.,'® Norman,'” and Severin et al.'® to in-
clude the orbital-polarization effects (which are also a
consequence of localized states) into density-functional
formalism. But the localized nature of the states is also
omitted in such a consideration. What else can we do
if we do not want to change (drastically) the total en-
ergy of LSDA? The answer is very simple if we look at
the total energy as an one-electron part minus double-
counting term : ELSPA = 5~ ¢LSDAy, _ F, . The only
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one possible choice is to introduce some redefinition both
for the one-electron energies ¢ = eXSPA 4 AV and for
the double-counting term E} = E4. + Y ; AV: n;. Of
course, the one-electron states ¢ are then no longer re-
lated to the LSDA-total energy as its derivatives with
respect to occupations n;. However, we will show that
this relation can be still fulfilled for our corrected-LDA
total energy functional, the LDA+U energy.

The derivation of the functional will be given in
Sec. II. A first description of the method and its ap-
plications to the calculation of the photoemission and
Bremsstrahlung isochromat spectra of NiO, were pre-
sented in Ref. 19. Very recently, this functional has
been successfully applied to the investigation of electronic
structure and magneto-optical effects in CeSb (Ref. 20)
and Gd (Ref. 21). The aim of this paper is to give a more
extended analysis of the LDA+U formalism and show
how it is related to the model HF and LDA approaches.
In particular, we will show that it is simply a constrained
LDA with some additional corrections corresponding to
the spin and orbital polarization. We will also show that
the discontinuity of the one-electron potential known for
an “exact” density functional can be easily incorporated
in LSDA. Applications of the method to the electronic
structure and configurational stability analysis of d im-
purities in Rb host will be presented in Sec. III. Many
experimental?? 726 and theoretical?”?® efforts have been
concerned with these systems in recent years mainly due
to the discovery of a typically localized behavior for the d
states of transition-metal atom impurities in the sp hosts
leading to strong orbital moments and possibly to mixed-
valence behavior. The conclusions of our paper will be
summarized in Sec. IV.

II. METHOD

In general we will follow the LDA+U scheme proposed
in Ref. 4. We will also call our present formalism LDA+U
since it is based on the same ideas as its original version*
despite the fact that some differences between these two
approaches exist, especially in the choice of a reference
point between the LDA and the model-HF description
for the localized states. We start with the normal to-
tal energy functional in the framework of LDA [in prin-
ciple, the choice of the (non-spin-polarized) LDA as a
starting point is not very important and absolutely the
same manipulations can be performed for the total en-
ergy functional in LSDA]. Our main idea is to modify
that part of the LDA-total energy which is responsible for
the interaction between localized electrons and present it
in the same way as it appears in model (Anderson?® or
Hubbard®®) Hamiltonians. As a first step, we will remove
the hybridization between the localized states and the
rest of the system and consider the so-called atomic limit.
We allow only for charge transfer between these two sub-
systems and assume them to relax self-consistently on
such fluctuations. We will introduce a total energy func-
tional and show that for an integer number of localized
electrons this leads simply to a redefinition of the single-
particle energies by splitting them up into two parts for
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occupied and empty states, which represent the energy
costs to remove and to add one localized electron, i.e.,
the ionization energy and the electron affinity. The total
energy itself is that of a constrained LDA but including
some corrections for spin and orbital polarization to take
Hund’s first and second rules into account which are not
included in LDA.

Thus, we introduce a correction for localized states and
write down a total energy functional as

Elp,{n:}] = E*"A[p] + AEcor[{n}], (1)

where p is the total charge density, {n;} is the set of

orbital occupancies for the localized states. Then, we
will look for the AE_,; in the form
AEco[{n:}] = —Egp* [na] + E¥[{n:}], (2)

where ELPA is the electron-electron interaction for the
localized states in LDA which depends only on the total
number of localized electrons ng = )_; n; (in the follow-
ing, we will refer to the localized states as d states). We
suppose this dependence to be unsatisfactory and sub-
tract it from the LDA-total energy. Instead, we add the
Hartree expression for d-d interaction with a renormal-
ized Coulomb parameter U (here, for a while, we drop
the exchange interaction and nonspherical terms):

E¥l{n}] = ;U Y mins. 3)

i#j

Of course, the main question of such a consideration
is what is the reference point between LDA and Hartree-
Fock description for the localized states or in other words
what is a reasonable explicit form for the d-d interaction
in LDA? To answer this question let us consider more
thoroughly the scheme for calculating Coulomb and ex-
change (J) parameters based on the constrained-LSDA
formalism. As a first step in such an approach, the total
energy as a function of occupation number and spin mag-
netization mq of localized states should be extracted from
LSDA by applying a variety of constraints. These results
can be mapped then on an analytical dependence of the
total energy E(ng4, mgq) known for the considered model.
For instance, if we will restrict ourselves to the Hartree-
Fock approximation for the electron-electron interaction
and neglect orbital polarization effects, E(nq, mq) for the
integer occupations will be simply given by®

1 1 1
E(nd,md) = EUnd(nd - 1) - ZJnd(nd -2)— ZJm?i
(4)

The parameters of the electron-electron interaction (U
and J) can be considered as those which give the best
fit to constrained-LSDA results and the parametrization
(4). Thus, we come to the conclusion that despite of
all limitations of LSDA the parametrization (4) works
quite well and gives reasonable estimations for U and J
parameters in many cases. So, if we will return to the
previous consideration for AE.,,, it is quite reasonable
to define the energy of d-d interaction in LDA as
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1
Eg“?A = §Und(nd -1). (5)

From the first point of view this decision looks strange,
because on the one hand, we blame L(S)DA and state
that this approach describes the behavior of localized
electrons much worse than the model Hartree-Fock ap-
proximation with renormalized parameters, and on the
other hand, we try to use for the interaction between lo-
calized electrons in LDA the same form as in the Hartree-
Fock method. But it is not exactly the same since in
Hartree-Fock approximation equation (4) is valid only
for integer occupation numbers and since only for inte-
ger values n; equal 0 or 1 expression (3) is identical to
(5) [the form of the Hartree approximation with frac-
tional number of electrons differs from (5) and will be
discussed later] whereas in LSDA, we suppose that the
dependence (5) is valid for arbitrary values of ng and my4
and even numerical differentiation can be used to extract
the U and J parameters from LSDA:

62E[nd, md] 62E[nd, md]
U= —F5 B S » (6)
and mgq=const 6md ng=const
8%E[ng, mg]
J = _26—171(21 . (7)
ng=cons

Finally, we come to the following form of LDA correc-
tion

1 1
AE . [{n:}] = —EUnd(nd -~ +3U > nin.  (8)
i#j

A few remarks concerning the new functional are ap-
propriate. If we will look at the energy of Hartree inter-
action alone as a function of number of d electrons in the
interval N < ng < N + 1 (where N is integer) it is easy
to show (we suppose that the occupations for lowest N
states in Eq. (3) are n; = 1 and the last partially occu-
pied state contains £ = ng — N electrons) that it can be
presented as

E¥[ng] = %UN(N ~ 1)+ UN=. )

By taking into account the values at the edges of in-
terval, we come to the following = dependence of EH,
EH[N +z]= (1 -2z)E¥[N]+ zE¥[N +1]. (10)
This means that the curve EH versus nq is a series
of straight-line segments and its derivative dEH# [n4]/0nq4
has discontinuities at the integer values of ngq. This result
has very important fundamental consequences concern-
ing the description of a system with fractional electron
numbers (for example, a system which could exchange
electrons with a reservoir). In quantum mechanics, an
open system with a fluctuating numbers of particles can-
not be described by a pure state. Instead of this, a statis-
tical mixture or ensemble of states with their respective
probabilities must be used. In this case, as it has been
shown by Perdew et al.,'* for the exact density func-
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tional the only allowed dependence of the total energy
on the number of electrons has the form of Eq. (10), i.e.,
consists of series of straight-line segments. Thus, we see
that the Hartree expression for the interaction of local-
ized electrons automatically satisfies the property of the
ezact density-functional formalism. This is the key for
the successful applications of Anderson?® or Hubbard3°
models for strongly correlated systems and at the same
time the basic limitation of LSDA being characterized
by a smooth dependence of total energy on occupation
numbers.

If we subtract from (9) the d-d interaction energy in
LDA parametrized in the form (5), we find out that inside
the interval N < ng < N + 1, AE,,, behaves as

AEoofa] = —%U:z:(a: ~1), (11)
and its derivative A E,,/8z (correction for one-electron
potential) is

3AE,
AVeor(z) = T;E = U(% —x)
(see Fig. 1). Thus, for integer occupations AFE¢,, van-
ishes but its first derivative undergoes a jump of hight
U. It means that in these points our correction gives a
redefinition of the one-particle energies for the localized
states:

(12)

U

E‘I;DA+U(N) = E‘I,‘DA(N) + > (13)

where the signs “+” and “—” correspond to the empty

and occupied states. By taking into account that U =
9eLPA /9ng |n,=N, we find
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FIG. 1. The dependence of the LDA+U corrections for the
total energy (AE) and for the one-electron potential on the
number of localized electrons.
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ePATU(N) ~ efPA(N £ 1), (14)

If we compare this expression with Slater’s transition
state formalism one can see that the eigenvalues for d
states in the LDA+U have the meaning of ionization and
affinity energies for the occupied and empty orbitals, re-
spectively. Any deviations of the total number of local-
ized electrons from the integer values increase the total
energy in accordance with the parabolic dependence (11).
Therefore, the effect of the term AFE.,, can be also con-
sidered as an additional constraint enforcing an integer
population of the localized states.

Thus, we have shown how the discontinuity of the one-
electron potential existing in an exact density-functional
formalism can be incorporated in LDA. Now let us turn
to a more realistic treatment of electron-electron inter-
action in the atomic limit and explicitly include the ex-
change and orbital polarization terms in the functional
(1). In the Hartree-Fock approximation, the d-d interac-
tion energy can be expressed in the general case as

1
EfF[{n;}] = 3 D Uy = J)niny, (15)
i#j
where U;; and J;; are orbital dependent Coulomb and
exchange parameters:
ﬂ> (16)

vy (sl a). s (s

Integration in (16) assumes also summation over spin
variables. The parameters U;; and J;; can be expressed
through Slater’s integrals F* 15

T12

T12

rk

=t [Tl [T ledr P (1)

>

and Clebsch-Gordan coefficients (a concrete form of these
expressions can be found, for example, in Ref. 19). pq4(r)
in (17) is the wave function for localized states and r-
(r>) is the smaller (larger) of r and r’. The index k
takes the values 0,2,4 and 0, 2,4, 6 for states of d and f
symmetry. Thus, in fact only three and four independent
parameters, respectively, are needed to define all values of
U;; and J;; (16). The principal question here is the choice
of F*. Tt is known that direct calculations of Slater’s in-
tegrals [Eq. (17)] based on the atomic wave functions
strongly overestimate them due to the neglect of renor-
malization effects. This is especially important for the
FO integral being identical with the Coulomb U param-
eter. Sometimes the use of LDA wave functions gives
quite reasonable values for F2, F%, and F® integrals,'5:17
because the overestimation arising from the neglect of
renormalization effects is approximately canceled by the
larger spatial extension of the LDA wave functions (due
to the improper cancelation of self-interaction in the LDA
potential) in comparison with HF ones. But this is a
rather accidental fact. This problem cannot be straight-
forwardly solved by mapping results of constrained LSDA
total energy calculations on the model (15) (even with in-
teger occupation numbers) since, the former has only two
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degrees of freedom for all possible constraints (number of
electrons and spin magnetization) and since, therefore,
only two parameters characterizing the interaction in the
system of localized electrons can be extracted. Usually,
these are the Coulomb and exchange interaction param-

eters which can be related to Slater’s integrals as!®
U=F° (18)
J= 1 (F? 4+ Py (19)
14 ’

However, in the following, we will exploit the well-
known fact that usually the ratios between F2, F* (and
F®) integrals are reasonably well-defined constants. For
example, HF calculations3! for 3d ions give values for the
ratio F*/F?2 varying between 0.621 and 0.629. Analytical
result for this case obtained with hydrogenlike functions
yield the value F*4/F? = 0.6514.32:33

With all parameters U;; and J;; determined, we can
perform now the same manipulations as in the simplified
scheme developed above where intra-atomic exchange
and orbital-polarization contributions where neglected.
We suppose that in LDA the interaction energy between
the localized electrons can be expressed in the form (4)
with mgq = 0 and replace it by (15). Finally, we come to
the following expression for the total energy correction
for localized states:

1 1
AECOt[{TL,’}] = —§Und(nd — 1) + ZJnd(nd — 2)
1
+5 ;(Uij — Jy)nin; (20)
i#j

and therefore the potential acting on the ith localized
orbital is

Vi(r) = VFPA(r) + AV, (21)
where
) 1 1
AVE = -U (nd - ~) +-J(ng—1)
2 2
+Y (Ug = Jy)m;. (22)
j

Both intra-atomic exchange and orbital-polarization
terms are included in expression (20) in the framework
of the one-electron approximation [thus, we do not pre-
tend here to describe properly all atomic multiplet struc-
ture which is based entirely on the many-determinant ap-
proach. It is well known that, in general, a many-electron
wave function in the form of a single Slater’s determinant
is not an eigenstate of the operators S and L%. There-
fore, the energy (20) cannot be presented as a pure term
and has contributions arising from different terms]. To
illustrate the role of intra-atomic exchange and orbital
polarization we list in the Table I the values of the cor-
rection (20) for the case of two d electrons, one of which
occupies the one-electron orbital with azimuthal quan-
tum number —2 and the other one an arbitrary orbital.
It is evident that the total energy now depends on which
states are exactly occupied by the electrons and takes
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TABLE I. Corrections for the total energy in LDA ob-
tained for the configuration d with different pairs of occupied
states (the ratio F*/F? = 0.625 between the Slater’s integrals
has been used).

Occupied states AFEcor

(—21,-17) ~1.51657
(-21,01) ~1.5165J
(—21,11) —0.8278J
(-21,21) ~0.1392J
(-21,-21) 0.7155J
(-21,-11) —0.4005J
(-21,01) —0.6300J
(-21,14) —0.4005J
(-21,2 ) 0.7155J

its minimal value when both have the same projection of
spin and the highest possible values of azimuthal quan-
tum numbers (an one-electron analog of Hund’s rules).
Moreover, we can see now that the lowest value of the
total energy is obtained for two different determinants
(-2 1,-1 1) and (-2 1,0 1). It is not surprising be-
cause both belong to the same many-electron ground-
state term 3F (for these determinants there is no admix-
ture of the next 3P term) and, therefore, should have
the same expectation values of the total energy (equal
—8/49F% — 9/441F*). This effect was omitted in the at-
tempts to include the orbital polarization effects in LSDA
in the form of the anzatz —BL2 (where B is Racah pa-
rameter) undertaken by Eriksson et al.!® and Norman.!?

Since the description of electron-electron interaction
in the LDA+U approach is based on a model similar
to the Hartree-Fock method (with renormalized parame-
ters), we inevitably come to the necessity to handle state-
dependent potentials and problems connected with the
appropriate choice of orbitals for corrections like (23).
Sometimes this can be done starting from some physical
assumptions (for example, the choice of real harmonics
is quite suitable for transition-metal oxides* due to the
strong crystal-field effects). But unfortunately this be-
comes practically impossible for more complicated sys-
tems (as an example of this, we can refer to the problem
of the formation of orbital magnetic moments which is
usually a result of the competition between the crystal-
field and spin-orbit interactions which have different sets
of eigenvectors) and some numerical scheme is needed
for these aims. We will divide this problem in two steps.
First, we look for the subspace of occupied states min-
imizing the total energy functional (1). This problem
is very close to the one appearing in the SIC-LSDA
formalism? and the steepest descent method3* can be
used to solve it. In this minimization scheme, we define
a set of occupied one-electron states as

| @770 =l ¢7) — aP(h"PA + AV,) | o7 (23)
and iterate this equation to self-consistency. hPA in (23)
is the LDA part of the Hamiltonian, P is the operator

projecting vectors on the subspace of empty states
Qacc

P=1—Zl<p?)(<p?l, (24)
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o is a admixture coefficient. It is evident that conver-
gence of (23) will be achieved when the condition

(‘Pk l hLDA ‘ %) =0,

determined by the symmetry properties of the operator
hLDA s fulfilled for every i and k from the subsets of
occupied and empty states, respectively. Then, (23) is
reduced to the set of regular one-electron equations with
nondiagonal Lagrange multipliers €;;:

(R™PA + AVE) | 07) =Y e | 03)-
7

(25)

(26)

We should note here that in comparison with the
SIC-LSDA formalism, the second minimization step (the
minimization of the total energy with respect to uni-
tary transformations among the occupied states?) is not
needed in the framework of the LDA+U method since the
functional (20) is invariant (due to the well-known prop-
erty of the Hartree-Fock approximation) under transfor-
mations of such kind. Thus, the one-electron spectra for
the localized states can be found simply by the diagonal-
ization of the Lagrange parameter matrix:

llesll = (w5 | (BEPA + AV, [ @)l

Due to the condition (26), all matrix elements between
the occupied and empty states vanish and diagonalization
of ||eji|| can be performed independently for both sets of
states.

(27)

III. RESULTS AND DISCUSSION

The calculations for the electronic structure of all d im-
purities in Rb were performed in super-cell geometry us-
ing the ASA-LMTO method33:38 in the scalar-relativistic
approximation. The bcc-based super-cell T Rbg (T de-
notes a transition metal atom) has been used where a
T impurity atom has only Rb atoms as first and sec-
ond nearest neighbors. The impurity-impurity distance
is di; = v/2a, corresponding to a third neighbor distance
in the bcc lattice (a - lattice constant). We have found
this to be a quite reasonable approximation. For exam-
ple, test calculations using the larger super cell T Rby
with d;; = v/3a led to small changes for the U and J
parameters of about 3% (the values of U for an Fe impu-
rity in the configuration d” calculated using FeRbs and
FeRb; super cells are 0.309 and 0.319 Ry, respectively).
Thus, we might expect that the size of the super cell will
be important only for such cases where a localized state
appears very close to the Fermi level, for example, in sys-
tems which are candidates for a mixed-valence behavior.
That is why in this paper we restrict ourselves only to a
qualitative description of such processes.

A. Calculations of Coulomb
and exchange interaction parameters

The U and J parameters calculated in accordance with
Eqs. (6),(7) for all 3d, 4d, and 5d impurities in Rb are
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presented in the Figs. 2 and 3. The main result of these
calculations is the strong dependence of the U parame-
ters on the valence configuration [in this work, we have
considered only T2 and T'* states which correspond to
the configurations (sp)2d™ and (sp)'d™*!] of the impu-
rities. This effect appears to be most significant for 3d
impurities where the difference between U parameters for
both configurations reaches 30% and can play a very im-
portant role in the determination of the ground-states
configuration for these systems. The source of such an
unusual behavior is the relaxation of the d wave func-
tion which becomes more extended when the number of
d electrons increases (in more detail, this effect is dis-
cussed elsewhere3”). Within every row the dependence
of the Coulomb parameters on the atomic numbers can
be well interpolated by the straight lines.

The values of J parameters also depend on the valence
configuration of the d impurity but this dependence is
somewhat less pronounced than that of the U parameters
(for example, in the 3d-impurity case the effect is less
than 20%). We also note that the J values are practically
the same for all 4d and 5d impurities in Rb as was already
mentioned in Ref. 28.

B. Ground-state configurations
for d impurities in Rb

In this section, we will turn directly to a discussion
of the stability of different electronic configurations of
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FIG. 2. The parameters of the effective Coulomb interac-
tion for 3d, 4d, and 5d impurities in Rb.
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FIG. 3. The parameters of effective exchange interaction
for 3d, 4d, and 5d impurities in Rb.

d impurities in Rb within the LDA+U formalism. In
Table II, we show the typical values of LMTO-potential
parameters,

A= lpu(c,9)P2 (28)
for d impurities in Rb (where C is the band-center corre-
sponding to the boundary condition that the logarithmic
derivative of ¢4 at the Wigner-Seitz sphere S is —f — 1),
which can be considered as a measure of the hopping ma-
trix elements in the Anderson model.3®® As example, we
have chosen isoelectronic impurities from the middle of
the 3d—(Mn), 4d—(Tc) and 5d—(Re) series. One can see
that the magnitude of A is rather small and has for all
these series the same order as that of 4f states in rare-
earth compounds. Thus, in a first approximation, we
completely remove the hybridization between d states at

TABLE II. The potential parameter A for different config-
urations of Mn, Tc, and Re impurities in Rb (in Ry).

Impurity Configuration A

Mn a5 0.0004
Mn d8 0.0013
Tc d® 0.0012
Tec dt 0.0022
Re d® 0.0019
Re d8 0.0032
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the impurity site and all other electronic states and allow
only the charge transfer between these two subsystems.

We will stick to this approximation in the following.
Moreover, we assume the following order for the occupa-
tion of the one-electron states: first m = —2,-1,0,1,2
for spin up and then m = 2,1,0,—1, -2 for spin down,
which corresponds to the Hund’s first and second rules.
Since in this work we restrict ourselves to the atomic-
sphere approximation in which the LDA part of potential
is spherically symmetric at the impurity site, the condi-
tion (25) is automatically satisfied for complex harmon-
ics and this choice of basis set is quite appropriate for
the construction of corrections in the LDA+U formalism
(22).

All calculations were performed in accordance with the
following scheme. We assumed first some set of single-
particle levels to be occupied for a given configuration
(input). Then, using the single-particle LDA energies
for the d states and the calculated U and J values for
this configuration, the positions of occupied and empty
states in LDA+U with respect to Fermi level can be
found (output). Since the single-particle eigenvalues in
the LDA+U formalism are directly connected with ion-
ization potential and electron affinity, only knowledge of
the single-particle energies is quite sufficient to determine
the stability of the given configuration. The condition for
charge equilibrium between the localized states and the
host (which appears here as a reservoir) can be expressed
in the simple form:

€max(nd) < Er(ng) < €min(na), (29)

where €pax (€min) is the highest (lowest) occupied
(empty) one-electron level in LDA+U and EFr is the
Fermi level. Therefore, the considered configuration is
only stable, if the output eigenvalues are consistent with
the assumed input configuration. Otherwise, occupied
(empty) states are situated above (below) the Fermi level
and the considered trial configuration is evidently not
stable since removal (addition) of one electron would
lower the total energy.

Positions of single-particle d levels of all transition-
metal impurities are presented in Fig. 4 for both config-
urations. One can see that most d impurities in Rb have
the configuration d"*! in the ground state (valence state
T'*). Two exceptions to this rule are Mn and Re having
the configuration d°. Moreover, we also find that for the
Pd impurity in Rb neither the d® nor the d° configuration
is stable since in the ground-state it has a fully-occupied
d shell (d'°). One comment illustrating the need for an
accurate choice of the U and J parameters in LDA+U
calculations should be added here. As it was mentioned
in the previous section, the U and J parameters for 3d
impurities in Rb strongly depend on the configuration.
For example, for the Mn impurity in Rb the Coulomb
interaction parameter is 0.39 and 0.29 Ry for configura-
tions d® and d®, respectively. If we tried to apply LDA+U
scheme for this case but with the same values of U and J
(equal, for example, those for configuration d®) we would
get the paradoxical result that neither the d® nor the d®
configuration of Mn is stable and that the addition of
one electron to d® and removal of one electron from d°
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would lower the total energy. This example shows that
the values of the electron-electron interaction parame-
ters for different configurations should always be consis-
tent with the shift of LDA single-electron energies which
takes place during such a transition.

On the other hand, one can also look at the configu-
rational stability using a total energy analysis. It would
be interesting to see if in LDA+U this leads to the same
result as the above discussion of the single-particle ener-
gies. The differences of total energies between both con-
figurations of d impurities in Rb, AE = E(d"*!) — E(d")
are shown in Fig. 5. We can see that only two impuri-
ties are characterized by a positive difference AE, i.e.,
Mn and Re. All other impurities have a d**! ground-
state configuration. Thus, in LDA+U both schemes, the
single-electron levels and the total energy analysis, are
completely consistent and give an identical description
of the configurational stability.

Thus, in the 3d and 5d series both Cr and Mn, W,
and Re, respectively, have a d® configuration. This a
consequence of the exchange interaction which favors a
half-filled d band. For both d® and d® configurations the
total energy in LDA+U can be rewritten as

1
E = ELDA _ ZJmf, (30)

since in these cases the orbital polarization effect gives no
contribution to the total energy. This is quite obvious for
the configuration d® where all spin up states are occupied
and all spin down ones are empty, but it is also true for
the configuration d® since it has only one electron with
spin down interacting with a spherically symmetric shell
of spin up electrons so that the total energy does not de-
pend on the orbital quantum number of the spin down
electron. The last term in Eq. (30), the intra-atomic ex-
change term being responsible for the Hund’s first rule,
evidently prefers the configuration with the highest spin
magnetic moment and takes its minimal value for the
configuration d® (mgq = 5). This is the driving force
which can stabilize the configuration d® instead of d®. In
Table III, we have plotted the above two contributions,
i.e., LDA and intra-atomic exchange, to the total energy
difference AE between the two configurations d® and d°
for the isoelectronic impurities Mn, Tc, and Re. The
exchange part AEY is always positive since both the mo-
ment and the J value are larger for configuration d® (see
Fig. 3). The continuous decrease between the third and
fifth series reflects the decreasing J values of Fig. 3. On
the other hand, the LDA contributions favor the d® con-
figuration, signalizing the usual tendency of larger band
fillings with increasing valence. The large value obtained
for Tc is an atomic effect. In the 4d series the 5s level is
shifted to higher energies with respect to the 4d levels, fa-
voring a somewhat larger d population. Therefore, for Tc
the d® configuration is more stable. For Re one expects
the same effect to occur but in the 5d series relativistic
effects become important in addition and favor smaller d
occupancies so that in the end the d® configuration wins
for Re.

In all our calculations, we have neglected the lattice
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relaxation around the impurities. However, due to the
large volume differences between the alkali metals and
the transition metals, large relaxations are expected to
occur around the impurities. In order to illustrate pos-
sible relaxation effects, we have performed calculations
for homogeneously compressed MnRbj supercells, assum-
ing equal Wigner-Seitz spheres for both the Mn and Rb
atoms (see Fig. 6). The theoretical values for the equi-
librium volume of the MnRbj; supercell differ drastically
from that of pure Rb metal: corresponding Wigner-Seitz
radii are 4.5 for the MnRbj supercell and 5.04 for pure
Rb with a difference of more than 10%. We also note
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that both configurations have about the same equilib-
rium volumes. Due to the relaxation the one-electron, d
levels drop approximately by 10 mRy with respect to the
Fermi level. Thus, we suspect that for several d impuri-
ties in Rb the relaxation effects could change the ground-
state configurations. As an example, we might consider
the Re-impurity in Rb where the highest occupied state
for the configuration d® is located at 6.6 mRy above the
Fermi level. Therefore, we have found this configuration
to be unstable for the lattice parameter of pure Rb, but
it might be stabilized by the relaxation. Other candi-
dates are Rh and Pt impurities in Rb host which could

Nb Mo Tc Ru Rh Pd
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which were supposed to be occupied (empty).
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transform to the configurations d° and d°, respectively.

In addition to lattice relaxations, also, relativistic ef-
fects can become very important, especially for 5d im-
purities. In this work, we used the scalar-relativistic
formalism which includes the Darwin and mass-velocity
terms but completely neglects the spin-orbit coupling.
The importance of spin-orbit coupling for 5d impurities
can be illustrated by the following example. For a Re
impurity in Rb, we estimated the spin-orbit coupling
constant (£) as 13.3 and 11.9 mRy for the configura-
tions d® and dS, respectively. In the first order of the
perturbation theory the spin-orbit interaction shifts the
one-electron levels by ££,s,. Thus, for the d® configura-
tion of Re the highest occupied state will be located at
6.6 —11.9 x 2 x 1/2 = —5.3 mRy with respect to the
Fermi level and this configuration will be already stable.
Correspondingly, for the first empty state of d® configu-

TABLE III. The LDA (AE"P*) and intra-atomic exchange
(AE’) contributions to the total energy differences (AF) be-
tween the configurations d® and d® for Mn, Tc, and Re impu-
rities in Rb (in Ry).

Impurity AEMDA AE’ AE

Mn —0.112 0.174 0.061
Tc —0.153 0.117 —0.036
Re —0.080 0.101 0.022

|
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FIG. 6. The total energies and positions of one-electron d
levels with respect to the Fermi level for the supercell MnRbs
as a function of the Wigner-Seitz sphere radii. The equilib-
rium Wigner-Seitz sphere radius for pure Rb is indicated by
an arrow.

ration, we would get 11.2 —13.3 x 2 x 1/2 = —2.1 mRy
and, therefore, the spin-orbit interaction makes this con-
figuration unstable.

Finally, we note that in all our calculations, we have
neglected the hybridization between the localized d states
of the impurity and the sp states of the Rb host. Within
the LDA+U approach hybridization leads to a resonance
broadening of the d levels. This has basically two con-
sequences. States close to the Fermi-energy can become
partially occupied. In addition, states well below the
Fermi energy, which are practically fully occupied, also
do not have an integer local occupation number since part
of the weight resides on the neighboring sites. Previous
calculations?® based on an “older” LDA+U scheme, but
including hybridization clearly showed, that even for rela-
tively narrow resonances the local d charges and moments
show significant deviations from integer values. We also
expect similar modifications for our present results, once
hybridization is included.

Due to these approximations, i.e., the neglect of lat-
tice relaxation, hybridization, and spin-orbit coupling,
our present results have a more qualitative character and
cannot make reliable predictions for the ionic configura-
tions of the impurities. But, nevertheless some qualita-
tive comparisons with available experimental data can
be done. From the ionic-type analysis applied to the
experimental results obtained with the time-differential
perturbed 7-ray distribution method,??72¢ Ni impurities
in Rb host were reported to have a d° configuration (spin,
orbital, and total moments are correspondingly S = 1/2,
L =2, and J = 5/2) which is in good agreement with our
estimations. Experimental results for Fe impurities in Rb
can be well understood assuming the Fe(d®) configuration
with § = 2, whereas we found it to be Fe(d”). These dis-
crepancies probably arise from the approximations used
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in our calculations as already mentioned above. On the
other hand, interpretation of the experimental results
is often rather ambiguous and strongly depends on the
choice of used model parameters. Both more realistic
calculations of the electronic structure and more care-
ful analysis of experimental data are needed to clarify
the ground-state configuration of Fe impurities in Rb.
The magnetic behavior of Mo and Ru impurities in Rb
and Cs has been explained by assuming predominant d°
and d7 (S = 5/2 and S = 3/2, respectively) configu-
rations for them?* 26 which is in good agreement with
our findings. Pd ions in Rb and Cs were predicted to be
nonmagnetic.?® It is consistent with the fully-occupied
d'° configuration of Pd impurities obtained in present
work. Tc impurities in Rb were reported in Ref. 26 as an
example of d system with mixed-valence behavior. In our
calculations, we found that Tc has the electronic config-
uration d® in the ground-state but the energy difference
between the d® and d® configurations for Tc impurity
in Rb is relatively small (0.036 Ry/impurity site). Other
candidates for mixed-valence behavior in accordance with
our calculations could be some impurities from the 5d
row (which were not investigated experimentally yet): Re
(AE =0.022 Ry/impurity site) and Ta (which has prac-
tically the same total energies for the configurations d3
and d%).
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IV. SUMMARY

In conclusion, we have derived a version of the LDA+U
formalism which allows us to reproduce the “atomic
limit” in band structure calculations and is suitable for
the description of systems with strongly localized elec-
trons. We have shown that it can be considered as a
constrained LDA with additional corrections describing
the spin- and orbital-polarization effects. The disconti-
nuity of the one-electron potential known for an “exact”
density functional is also incorporated in this formalism.
The method has been applied to the analysis of the elec-
tronic structure and configurational stability of d impu-
rities in Rb. We have shown that in this formulation of
the LDA+U method the single-electron levels and the
total energy analysis are completely consistent and give
an identical description of the configurational stability.
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