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Excitations of the two-dimensional electron gas, including many-body eKects, are calculated with
a variational Monte Carlo method. Correlated sampling is introduced to calculate small energy dif-
ferences between different excitatious. The usual pair-product (Slater-Jastrow) trial wave function
is found to lack certain correlations entirely so that back6ow correlation is crucial. From the excita-
tion energies calculated here, we determine Fermi-liquid parameters and related physical quantities
such as the efFective mass and the Lande g factor of the system. Our results for the efFective mass
are compared with previous analytic calculations.

I. INTRODUCTION

There has been a great deal of interest in the two-
dimensional (2D) electron gas which can be realized
at interfaces of GaAs/Al Gai As heterostructures and
metal-oxide-semiconductor structures. Since the elec-
tron density can be varied over a wide range, this system
provides a useful model of many-body effects in two di-
mensions. Furthermore, the fractional quantum Hall ef-

fect and high-T, superconductivity have generated more
interest in this system because they are believed to be
2D phenomena occurring in a strongly-correlated elec-
tron system.

Since the experimental work of Fang and Stiles on the
anomalous Lande g factor g* and of Smith and Stiles on
the many-body effective mass m* in Si inversion layers,
several attempts have been made to understand these
phenomena microscopically. Janak 6rst developed an
elegant theory of m* and g* in the 2D electron gas using
a static approximation to the screening. Further work in
Si inversion layers along similar lines has been reported
by different groups . Quinn and co-workers evaluated
these quantities using the Fermi-liquid interaction ap-
proach applied previously by Rice in the 3D electron
gas. Vinter used the plasmon-pole approximation to the
dielectric function in the self-energy expression and cal-
culated the effective mass based on a solution of an exact
Dyson's equation. Rice's method was based on a much
simpler on-shell approximation. Calculations including
both charge- and spin-fIuctuation-induced vertex correc-
tions have been done for the inversion layer by Yarla-
gadda and Giuliani and for the ideal 2D electron gas

by Santoro and Giuliani. Recently, Jang and Min re-
ported their calculations for the effective mass of the 2D
electron gas using the GR' approximation with several
types of dielectric functions.

The purpose of the present work is to use quantum
Monte Carlo methods to calculate Fermi-liquid parame-
ters. These are directly related to the Lande g factor and
the effective mass. In a previous paper, we investigated
ground-state properties of this system by both variational
and fixed-node Green's function methods with trial wave
functions including backflow and three body correla-tions
in addition to two-body correlation. In this paper, Lan-
dau Fermi-liquid parameters are determined by examin-
ing particle-hole excitation energies with the variational
Monte Carlo (VMC) method. In the process, we find
that the pair-product (Slater-Jastrow) wave function is
missing an important type of correlation between parti-
cles and holes with opposite spins. BackfIow correlation
is crucial for calculating these interactions.

The density is parametrized by r, = /a awohere ao
is the Bohr radius, a = 1/gvrp is the radius of a circle
which encloses one electron on the average, and p is the
number density. Since the energy unit of Rydbergs and
the length unit of a are used here, the Hamiltonian of the
electron gas is

where the constant is the term due to the uniform back-
ground of opposite charge. The calculations are done for
the density range, 1 & r, & 5, where most of experiments
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on this system have been done.
According to the Fermi-liquid theory, i the energy of

a low-lying excited state in an interacting Fermi system
whose distribution function divers fmm the ground state
by bn„can be expressed by

E Eo + ) e(~) bn„+—) f(r, K') hn„bn„,(2)

where Eo is the ground-state energy, e = (k, o) repre-
sents both momentum and spin state of a quasiparti-
cle, e(e) its energy, and bn„=n„—n„the difFerence
in the occupation number of a quasiparticle K, between
the ground state and an excited state. The interaction
energy f(e, e') between quasiparticles e and e' is of or-
der 1/N since two quasiparticles are less likely to interact
as the system is made larger. It can be separated into
spin-symmetric and spin-antisymmetric terms:

f(z, e'):—f'(k, k') + no'f (k, k'), 0 = +1. (3)

In a 2D isotropic Fermi liquid, f'( )(k, k')'s can be
Fourier expanded:

There have been very few quantum Monte Carlo cal-
culations of properties of excited states, particularly of
extended systems. So we discuss the problem of calcu-
lating these Fermi-liquid parameters in some detail. Our
approach is to estimate accurately the individual energies
of all the lowest single particle-hole excitations. Then the
excitation energies are fit by the Fermi-liquid expression
to obtain estimates of the parameters. There are two
important problems to be solved. First, one needs to
calculate difFerences in energy on the order of 1/N of the
total energy. Since these differences can easily be masked
by the statistical errors, a correlated sampling approach
is developed to calculate them. Second, one must deter-
mine the best way of determining the Fermi-liquid pa-
rameters &om excited-state energies of finite systems of
on the order of 100 electrons. To our knowledge, such
calculations have not been attempted before. In what fol-
lows, we will describe the basic scheme of obtaining the
Fermi-liquid parameters by the VMC method, present
results, and compare them with previous analytic calcu-
lations.

II. METHODOLOGY

f'( )(k, k') = ) f&'( ) cos(l8qq ), (4)
A. Variational Monte Carlo

if both k and k' lie on the Fermi surface. We work in
a finite system with periodic boundary conditions. Our
system is not isotropic but has the symmetry of a square.
Nonisotropic effects should decrease as the system size in-
creases and thus will be considered as "finite-size" effects
and discussed later.

The usual Fermi-liquid parameters F&' are defined
using the density of states v(s~) at the Fermi level eF for
an infinite system:

N 2
Fs(u)

( )
fs(a) &, m fe(a)

2

where the efFective mass is defined by

m T Bc
m' 2+2 Bk

The effective mass is also related to I'1' by

In the VMC method, a random walk generated using
the Metropolis algorithmis is used to evaluate matrix el-
ements of a trial wave function @T(R) with the correct
symmetry, where a "configuration" R is a coordinate in
the 2N-dimensional space. The configurations are sam-
pled from a probability density function, 4'&(R), called
the guiding function to emphasize its role in guiding
the random walks to important regions of configuration
space. The variational energy, ET, is just the average of
the local energy, EI,(R) = HOT(R)/@T (R), times the
weight factors io(R) = ~@T(R)~ / 4'~&(R). The detailed
form of our guiding function will be discussed later.

As in any other variational method, the choice of a
trial wave function is very important in the VMC method
to get a good upper bound to the exact energy. The
usual choice for a Fermi liquid is a pair-product (Slater-
Jastrow) trial function

1+ ys
1

The compressibility K', the spin-susceptibility y', and
the Lande g factor are given by

. (1+Fo) —.= . (I+Fo)

and

g*/g =my /m'g = (1+F;)-',
where e, y, and g stand for the compressibility, the spin-
susceptibility, and the Lande g factor of the noninteract-
ing system, respectively.

(10)

We use the two-body correlation function u(r) that mini-
mizes the variational ground-state energy in the random-
phase approximation (RPA) as derived by Gaskell and
found to work weO for metallic hydrogen and the elec-
tron gas.

In the present work, we also utilize improved trial func-
tions which include backBow correlation whose eKects on
the ground-state properties were investigated in the pre-
vious paper. Our improved trial wave function has the
forml3, 20,21
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@T(R) = Dt(e*"*""&) Dg(e'"- ""') exp —) u(r, ~)

where x. s are "quasiparticle" coordinates displaced from
the real coordinates with a backHow correlation function

4 ~ 4

N

x, = r, +) g(r,, ) (r, —r, ).
jgi

(12)

The state-dependent correlation, k (r, —r~)q(r, ~), incor-
porates backgois effects originally introduced to under-
stand the excitation spectra of liquid He by Feynman
and Cohen. Unlike our previous work on the ground
state of the system, we do not consider three-body cor-
relation in this problem because it was shown to have a
much smaller effect in our density range (1 ( r, ( 5)
compared to the backflow correlation. A test calcula-
tion at r, = 5 gave identical results for the Fermi-liquid
parameters within statistical errors with or without the
three-body force.

The backBow correlation function is parametrized as

B. Particle-hole excitations

Our excited-state trial functions, either of the pair-
product or back8ow type, are constructed by occupy-
ing diferent orbitals in the Slater determinants from the
ground-state trial function. The orbitals are specified
by single-body momenta and spins (k, 0'). The lattice
in Fig. 1 represents the momenta allowed by the pe-
riodic boundary condition and the circle shows the 2D
Fermi surface for a system of X = 58 electrons. A set of
all lattice points which are related to each other by the
symmetry of a square is called a sh, eL/. VA consider as

rI(r) = AB
p~+ ~~p+ p /

We determine the variational parameters in the trial wave

function by minimizing the ground-state energy. The
same parameters are used for all of our low-lying excited
states. Further details of optimization are given in Ref.
13. Optimized values for new variational parameters in
our parametrized backHow correlation function are given
in Table I. These are the same as in Ref. 13 except that
additional cases are presented here.

FIG. 1. Symmetrically distinctive particle-hole excitations.
The lattice points correspond to single-body momenta allowed

by the periodic boundary condition and the circle shows the
2D Fermi surface for a system of N = 58 electrons. The ~

and the Q represent a particle and a hole state, respectively.
All states (1—4') shown here share the same hole. A state o.'

represented by a primed label is symmetrically equivalent to
its corresponding unprimed state cx.

ground states, filled shells of these lattice points. Thus
our ground states are nondegenerate states of zero mo-

mentum and zero spin.
We now consider all of the lowest-lying (at the Hartree-

Fock level) particle-hole excitations from the ground
state, where a particle is excited from a k point {hole
state, kh, ) in the last occupied shell to a k point (parti-
cle state, k~) in the first unoccupied shell of the ground
state (see Fig. 1). This excitation has the same charge
and density as the ground state, thus finite-system ef-
fects should be less than would be obtained by inserting
or removing an electron. According to the Fermi-liquid
theory, summarized in Eq. (2), the energy of an excited
state o. in Fig. 1 is given by

= @o+e(k„)—e(kh, ) —) (f; 6 f, ) cos(l8 ),
1=0

(14)

where 0 is the angle between kz and kg, and the

+(—) sign corresponds to parallel (antiparallel) spins be-
tween particle and hole. If we know the energies of
the spin-parallel and spin-antiparallel excitations consid-
ered here, we can abstract the spin-symmetric and spin-
antisymmetric components, f&' and fP, which are related
to the Fermi-liquid parameters by Eq. (5).

In the example shown in Fig. 1, there are eight equiv-
alent hole states and 16 equivalent particle states includ-

ing spin degrees of freedom, thus leading to 128 excited
states. But using the various symmetries of the square,

TABLE I. Optimized variational parameters of back6ow correlation functions for N = 26, 58.

r, =l
0.083
0.842
0.100
1.120

%=26
r =2 r. =3
0.090 0.095
1.181 1.037
0.088 0.080
0.703 0.405

r, =5
0.200
0.500
0.050
0.667

r, =l
0.083
0.761
0.200
1.276

N =58
r. =2 r. =3
0.056 0.095
1.097 1.046
0.124 0.040
0.255 0.547

r, =5
0.185
0.299
0.050
0.533
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it is seen that there are four different spin-parallel ex-

citations and four different spin-antiparallel excitations.
Those are labeled 1—4 in Fig. 1 and hereafter. Note that
each primed label shows a state symmetrically equivalent
to a corresponding unprimed state.

We assume that there is no change in correlation func-

tions (Jastrow factor and backfiow) between the ground
state and the excited states. Our trial function for a spin-

antiparallel excitation whose particle and hole states have

opposite spins is given by deleting one row of e'""'"& in
one Slater matrix and adding one row of e'"~'"& in the
other Slater matrix. The trial wave function for a spin-

parallel excitation is given by changing one row of either
Slater matrix of the ground-state wave function [Eqs.
(10) and (11)j from e'""'"~ to e*"&'"&. Unlike the ground
state these wave functions cannot be made real since they
involve e ' "'"~ and e' ~ "~ but not their conjugate func-

tions e'"" "~ and e '"~'"~. Since we consider only single-
particle excitations, the full complex wave function can
be written as a sum of two real and two imaginary func-

tions, each of which involves Slater determinants whose
elements have the form cos(k; x~) or sin(k; x~). We
have evaluated the matrix elements of the complex wave

functions using this form. Diagonal matrix elements are
purely real, which simpli6es their calculation.

Even though this excited state kom a spin-parallel ex-
citation is not an eigenstate of total spin S (actually
it is an eigenstate of S,), it is a state which is appro-
priate for the Fermi-liquid analysis using Eq. (2) be-
cause the spin quantization axes for its all quasiparti-
cles are the same. To demonstrate that we may equally
find the Fermi-liquid parameters using these spin-parallel
and spin-antiparallel excitations or eigenstates of S, we

have also done some test calculations using the total-spin
eigenstates. We consider spin-parallel cases of an excita-
tion o; shown in Fig. 1 and call the wave function of the
excitation whose particle and hole are spin up (down)

(@ ). These two states are obviously degenerate.(~) (2)

If we construct a mixed state of 4 = 4 + e' 4
the singlet state with S = 0 corresponds to b = 2nvr and
the triplet state with S = 1 to h = (2n + 1)vr, where n
is an integer. According to the Fermi-liquid analysis in
Ref. 23 applicable to the excitations whose particles and
holes have different spin-quantization axes, the energy of
a mixed-state 4 is given by

= Ep + e(kp) —&(A'g) —f (kg, ky)
—(2 cos b + 1)f (kq, k„).

Comparing this result to Eq. (14), the mixed state with
b = (2n+ 1)z has the same energy as its correspond-
ing spin-antiparallel excitation, which should be true be-
cause they are all degenerate triplet states with S = 1.
In addition, the mixed state with b = (n+ 1/2)vr has the
same energy as its corresponding unmixed spin-parallel

excitation (@ or 4' ). Table II shows energies of some
mixed states with phase factors b and their corresponding
spin-parallel and spin-antiparallel excitations calculated
for N = 26 at r, = 1 using the VMC with the Slater-
Jastrow trial functions. We have obtained the mixed-
state energies by calculating both diagonal elements and

off-diagonal elements between 4 and 4 . As can be(~) (2)

seen, the above argument from the Fermi-liquid analysis
is confirmed by our VMC calculations within the statis-
tical errors. Therefore, in order to obtain the respective
Fermi-liquid parameters (Ff and FP ) from the particle-
hole excitations shown in Fig. 1, we may either consider
total spin eigenstates with S = 0 and 1 whose energies
should be analyzed according to Eq. (15) or consider
the spin-parallel and spin-antiparallel excitations whose
energies can be analyzed according to Eq. (14). We fol-

low the latter case in this paper because it requires only

diagonal elements between 4 and 4' which are real.(~) (2)

The total momenta of these excited states, kz —kg, are
nonzero and thus they will be orthogonal to the ground
state. Thus the variational principle applies to the ex-
cited states. It is possible for two of the excited states
with the same spin con6guration to overlap with each
other and to be degenerate. For example, the state la-
beled 1 in Fig. 1 and its reBected state with respect to
k axis may have a nonzero overlap because they have
the same total momentum. We could construct a state
by mixing two states which has a lower energy than in-

dividual ones. However, this would require the energy
expression of Eq. (2) to be reformulated in terms of ma-
trices in the momenta, analogous to the spin case consid-
ered in Ref. 23 and discussed above. This is outside the
standard &amework of the Fermi-liquid theory assuming
a well-de6ned momentum for each quasiparticle. There-
fore, we neglect the overlap between the states with the
same total momentum in order to apply the Fermi-liquid
analysis to our calculation of particle-hole excitation en-
ergies.

In this paper, we determine various Fermi-liquid pa-
rameters using the VMC method and the Fermi-liquid
expression Eq. (14). We calculate directly energy differ-
ences between several excited states, AE p

——E —Ep,

TABLE II. Energies of mixed states 4' and their corresponding spin-parallel excitations and
spin-antiparallel excitations using the Slater-Jastrow trial functions for N = 26 at r, = 1. The
energies are in units of Ry.

E4

b = 2nvr

-8.9812(24)
-9.0322(24)
-9.0813(24)
-9.0992(23)

Mixed states
h = (2n + 1)z.

-9.1651(24)
-9.1744(23)
-9.1751(24)
-9.1656(23)

b = (n + 1j2)~
-9.0778(23)
-9.1054(23)
-9.1288(24)
-9.1326(24)

spin-parallel
excitations
-9.0785(23)
-9.1047(23)
-9.1286(23)
-9.1326(23)

spin-antiparallel
excitations
-9.1638(46)
-9.1757(45)
-9.1757(45)
-9.1638(46)



1688 YONGKYUNG KWON, D. M. CEPERLEY, AND RICHARD M. MARTIN 50

and determine the Fourier components fi' and fP by fit-
ting them to the form

bE p = ) (f; + fi ) [
—cos(lo ) + cos(lgp)] . (16)

Then the efFective mass is obtained by

i 2~fS)
—i

which follows from Eqs. (5) and (7). Other dimensionless

Fermi-liquid parameters I'"l' can be determined using

Eq (5.) from f&' and the mass.
Here we note that there is also an alternative approach

for calculation of the effective mass which involves energy
differences between excited states and the ground state.
To simplify the calculation, only spin-parallel excitations
are considered here. From Eqs. (5) and (8), we get

2 (K y m&
Nr2 (r' y' m*)

And we assume that near the Fermi surface

(19)

[This is better than Eq. (6) for a finite system since one
does not know what to use for the Fermi wave vector in a
finite system. ] Inserting Eqs. (18) and (19) into Eq. (14),
we get

2bEp+
i

—+ —,Kr2 I r' y*)
m1(, , 4)—

]
k' —k„'+—

)m*7,' g
" X)

—) (f&'+ fi ) cos(lg ),

(20)

where AE 0 ——E —Eo. If energy differences between
the ground state and several excited states shown in Fig.
1 are calculated and the compressibility and spin suscep-
tibility of the system are known, one can abstract the
mass from Eq. (20). The first term is due to the one
body excitation of the particle-hole pair, the second to
the interaction energy of the particle-hole pair in the fi-

nite box. While the Erst term dominates at small r„
they become equally important at large r, . In Sec. III
we also consider this alternative method for the effective
mass using our VMC results; however, we f1nd it less
satisfactory than our other approach, because of larger
f1nite-size effects.

C. Importance of backflow

A simple argument shows why the backfiow correla-
tion is crucial in understanding the excited-state ener-
gies. Consider two spin-antiparallel particle-hole exci-
tations 1 and 4 in Fig. 1 which have the same spin-up
hole state and whose spin-down particle states have oppo-
site momenta to each other. Suppose the wave function-
of state 1 is @i ——DtDi exp( —P) where P will include

ground-state (bosonic) correlations. The wave function
of state 4 is 44 = DtD& exp( —P), where D* indicates
a complex conjugate. The probability densities, i.e., the
squared modulus, of two wave functions are obviously the
same. Explicit calculation shows that the real part of the
local-energy difference between two states is given by

Re [El,(1) —Er, (4') ]

2 ). V';Dt (V';Dg
r, Dg ( Dg

V;D~ )
(21)

D~

(Of course the average imaginary part of the local energy
vanishes. ) If the wave functions are of the Slater-Jastrow
type, this real part of the local-energy difFerence is zero
since it is a sum of terms V';D~ V';D~, where the deriva-
tives of the determinants are taken with respect to only
one electron i. Clearly each term vanishes since a given
electron belongs to only one of the determinants. There-
fore, two states 1 and 4' have the same variational energy.
It follows that all odd order spin-antisymmetric Fermi
liquid parameters are equal to their corresponding spin-
symmetric parameters [see Eq. (16)]. This is a defect of
the Slater-Jastrow wave function and is the reason why
the backHow correlation is so important to account for
particle-hole excitations. On the other hand, the quasi-
particle coordinate x, is affected by the positions of all
particles through backfiow correlation [see Eqs. (11) and

(12)] so that backfiow trial functions do not have this
defect in general. Our results show that energies in this
pair of states is highly correlated, so the difFerence can
be more easily computed.

D. Correlated sampling method

Energy differences between the excited states under
consideration are very small because they are determined
by the second-order terms in the total energy expression
of Eq. (2). In order to calculate very small energy dif-
ferences, we use a correlated sampling method, where
energies of all related states are calculated with the same
set of configurations.

We sample configurations from a guiding function @o
and then use the set of con6gurations to determine all of
the relevant state energies as ratios of weighted sums.
The energy of state o. is given by

) .~-(R') EÃ(R')

(22)) ui (R;)
2

where R s are a series of random walkers in 2N dimen-
sion sampled with the probability density proportional
to 4'&, El = II@ /@ is a local energy of state o. , and
ui (R;) = ~4' (R;)~ /4&(R;) is the weight in state cx.

The local energies between the various states are highly
correlated since all the potential energy terms are the
same and the kinetic energy coming from the pair cor-
relation is the same. Thus in taking energy difference
between states, much of the noise is canceled out.
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The optimization of the guiding function has been con-
sidered in Ref. 26. Clearly it must be chosen to be
nonzero at any point in con6guration space where any
of the states under consideration are nonzero. We use
the form

(R) = ap @ (R) + ) ~@ (R)~ (23)

where 40 is the trial function for the ground state, @
for excited state o, , and ao is a constant. The sum in Eq.
(23) is over all excited states to be calculated. In order to
calculate energy differences between the ground state and
excited states, ao should not be zero. After some numer-
ical experimentation, for the spin-parallel excitations, we
found that ao should be approximately set to the number
of excitations considered. As seen below, this choice of
parameter ao makes the correlated sampling quite effi-
cient between the excited states as well as between the
ground state and the excited states.

There is a computational difhculty in calculating en-

ergy differences between the ground state and excited
states in the spin-antiparallel excitations with correlated
sampling because two Slater determinants in the excited
states have different sizes from corresponding ones in the
ground state. For a given con6guration, we need to calcu-
late Slater determinants and their first and second deriva-
tives in all states involved. If the Slater matrices have
the same size and we know the cofactor matrix of one
Slater matrix (for example, of the ground state), then we
can quickly calculate all Slater determinants and their
derivatives of the other states. This is more complicated
for difFerent-sized matrices. We do not consider this dif-
ficulty here because all Fermi-liquid parameters can be
calculated from Eq. (16) using only cases with same-
sized matrices. Furthermore, even if one uses Eq. (20)
which involves the energy differences between the ground
state and excited states, one can nevertheless 6nd the ef-
fective mass using only spin-parallel excitations. Hence
we do one calculation to 6nd the energy differences be-

tween the spin-parallel excitations (and the ground state)
and another calculation with ao ——0 to 6nd the energy
differences between the spin-antiparallel excited states.

Table III shows energies of the ground state and four
different spin-parallel excitations along with energy dif-
ferences between them calculated for N = 58 at r, = 1 by
the correlated sampling method. Diagonal elements show
the energy of each state, and off-diagonal elements show
the energy differences. With the Slater-Jastrow func-
tions, the energy difFerence AEq4 between states 1 and
4 has error of 4.6 x 10 while Eq and E4 have error of
1.7 x 10 . The error bar of the energy difference must
be calculated directly since the energy estimators in the
various states are highly correlated. The error in a Monte
Carlo calculation is inversely proportional to the square
root of computer time. Hence the correlated method is
about 54 times as efficient as the ordinary method where
Eq and E4 are calculated with independent runs. One
gains in eKciency both because the energies are corre-
lated and because the calculation of the local energies of
many excited states at once is much faster than doing
the calculations separately. For example, to in Eq. (22)
is obtained from a dot product of one row of the cofactor
matrix of the ground-state Slater determinant with the
corresponding row of the excited-state Slater determi-
nant which involves the particle-state orbitals. This only
takes N operations, as opposed to doing a new random
walk which takes N operations. The local energies for
the excited states can be obtained from the ground-state
local energy and cofactor matrices with the order of N
operations/state for the Slater-Jastrow wave functions.
Using the backfiow wave functions, we have about the
same gain in efBciency. We also note that the statistical
error of the energy difference depends upon the states in-
volved. It is much smaller for the cases when the particles
of two states have opposite momentum while sharing the
same hole state [for example, 1 and 4'(or 4) in Fig. Ij.
This point will be mentioned again in the next section.

We have also checked how the correlated sampling

TABLE III. Energies (E ) of and energy differences (EE p = E —Zp) between particle-hole
excitations whose particle state and hole state have parallel spins. Results for the states with the
same symmetry have been combined together. Calculations are done for N = 58 at r, = 1.0 (S.J.:
Slater-Jastrow wave function, B F :backf. fo.w wave function). State 0 means the ground state and
states 1—4 are excitations as labeled in Fig. 1. A diagonal element represents energy of each state
and an off-diagonal element shows energy difference between the state in the row and one in the
column. About 10 configurations were averaged over for the Slater-Jastrow energies, about 4 x 10
for the backQow energies. The energies are in units of Ry.

S.J.

B.F.

E

E4

E4

-22.5150(190)

-23.3280(70)

-0.2570 (110)
-22.2580(170)

-0.2360(100)
-23.0920(120)

-0.2370(120)
0.0203(62)

-22.2780(170)

-0.2190(100)
0.0170(30)

-23.1090(130)

Eg
-0.2270(120)

O.O299(63)
0.0096(40)

-22.2880 (180)

-0.2160(100)
0.0205(30)
0.0035(19)

-23.1130(130)

E4
-0.2280(110)
0.0291(46)
0.0085(65)
-o.ooo8(69)

-22.2870(170)
-0.2080 (110)
0.0285(36)
0.0115(37)
0.0081(35)

-23.1210(1.40)
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method scales with the number of particles. Since phys-
ical quantities which should be size independent are ex-
pressed in terms of N f~'s, we compare here CPU times
which give the same statistical error in N(f~ + fP) in
different size calculations at r, = 5. Using the Slater-
Jastrow trial function, we find the CPU time needed
for equally accurate results scales as the fourth power
of the number of particles between N = 28 and 98
This is exactly the scaling one expects from an uncor-
related method of calculating energy differences. Thus
our method has only changed the prefactor of the scaling
of the CPU time with N (by roughly a factor of 100),
not the exponent. With the backflow wave functions,
the exponent goes as roughly 5 between N = 26 and 58.
This is because of the increased computational work as
explained in Ref. 13. As expected, increase in the system
size is more expensive with the backflow wave function
than with the Slater-Jastrow wave function. The calcu-
lations reported here take on the order of 10 hours on
an IBM RS6000 workstation. It is likely that these cor-
related sampling methods would be much more e%cient
in systems where the electrons are localized, i.e., in an
insulator. There the excited state would only differ from
the ground state in a localized region, not throughout
the whole simulation cell.

One might worry that because the backflow functions
have only been optimized in the ground state the excited-
state energies will be systematically higher. With vari-
ational methods, one always must be concerned about
such a bias. But we notice &om Table III that actually
the excited states drop about 2.2'Fo more than the ground
state so that backflow correlations are more important
in the excited states, possibly because they have nonzero
momenta. We hope that relative energy differences be-
tween the excited states will be less affected by a bias.
We intend to check if such a bias exists by a Green's
function Monte Carlo calculation of excited-state ener-
gies. We see that state 1 gains most energy by including
backflow correlation. That is related to the mass increase
with backflow, which will be reported in the next section.

III. EFFECTIVE MASS AND OTHER
FERMI-LIQUID PARAMETERS

In this section we present results for Fermi-liquid pa-
rameters obtained by analyzing quantum Monte Carlo
calculations of the particle-hole excitation energies ac-
cording to Eq. (14). Our results for the effective mass
will be compared to the ones previously obtained by sev-
eral analytic methods.

We consider separately two kinds of excitations, one
whose particle state and hole state have parallel spins
and one with antiparallel spins to find the respective spin-
symmetric and spin-antisymmetric Fermi-liquid parame-
ters. In order to extrapolate our results to the thermo-
dynamic limit, the finite-size efFects must be removed.
We anticipate that the effect of small system sizes that
we use will be canceled out in energy differences between
excited states. We first try to confirm this by examining
the effective mass using Slater- Jastrow wave functions for
which we can more easily study their size dependence.

A. Slater- Jastrow calculations

As discussed above, there are two ways to use our re-
sults to find the effective mass. In order to calculate the
mass from energy differences between the ground state
and excited states [Eq. (20)], we need to know the com-
pressibility and the spin susceptibility of the system. The
compressibility of the electron gas can be calculated using

TABLE IV. Spin-parallel Fourier components f&' + fP at
~, = 5.0 obtained by fitting energy differences between the
excited states to Eq. (16). The calculations are done with the
Slater- Jastrow wave functions. The bottom row represents
ones by fitting all calculations of different sizes at once. The
unit of the components is Ry.

N =26
N =58
N =98

&(fi + fP)
-0.034(1)
-0.036(6)
-0.038(8)
-0.034(1)

IV(f2+ fs)
-0.001(1)
-0.000(7)
-0.001(7)
-0.001(1)

&(fs + fs)
-0.001(1)
-0.001(6)
-0.001(8)
-0.001(1)

where E (r, ) is the correlation energy per electron. We
obtain the compressibility from the correlation energy
calculated in our previous work. The spin susceptibility
was estimated by calculating the energies to Hip entire
shells of spins by Tanatar and Ceperley. 4 By fitting the
energy differences to Eq. (20), we obtain the many-body
effective mass of the system. The mass with this method
shows very strong size dependence. At r, = 5.0, m'/m
is 1.61(3) for N = 26, 2.07(13) for N = 58, and 1.51(7)
for X = 98. We do not understand quantitatively why
the effective mass calculated this way is sensitive to the
size of the system and gives different results from our
other method which we are about to discuss. We have
not pursued this point because it seems likely that the
system size affects differently the ground state and the
low-lying excited states. Another possibility is that there
is a systematic effect coming from using wave functions
optimized only in the ground state.

We now investigate the mass calculated by our method
which uses only energy differences between excited states
[Eqs. (16) and (17)]. Since the effective mass is related
to Fi which is equal to Fz with the Slater-Jastrow wave

function, we need consider only spin-parallel excitations.
Recall that N ft should be independent of system size be-
cause the interaction term f between quasiparticles is of
order X . We do a least-squares fit of NEE~p using
Eq. (16) to determine the best parameters Nf~, where

1 & l & 3 with all of the excited states. These are shown
in Table IV for N = 26, 58, 98 at r, = 5.0. As can be
seen, our results for Nf~'s are independent of the sys-
tem size within the statistical errors. The bottom row of
Table IV shows the results by one fit of considering the
whole data from three different sizes at once. The reason-
able y value shows that the results are independent of
X within our statistical errors. The effective mass deter-
mined from Eq. (17) is found to be about 0.9m with very
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results for the effective mass calculated with the Slater-
Jastrow trial functions are summarized in Table V.

We have seen so far from the Slater-Jastrow calcula-
tions that the method for computing the effective mass
from energy difFerences between the excited states gives
results that have small dependence on the system size.
In fact, as is shown in Table V (part II), all results from
this method are independent of the system size to within
the statistical errors. Since we are unable to carry out
backflow calculations on the largest system we consider
only the two smaller sizes for the backflow excited-state
calculations.

B. Back8ow calculations

FIG. 2. The effective mass vs the density parameter r,
in the 2D electron gas. Our Monte Carlo estimation with
the Slater-Jastrow and the back8ow wave functions is shown

by and ~, respectively. The dotted lines show the re-
sults calculated by Lee et al. (Ref. 7) with different schemes

(E: Rice's method; Q: Vinter's method; and: Hedin and
Lundquist's method). The solid lines show the results using
the GW approximation with various dielectric functions in
Ref. 12 (Q: RPA; E: Hubbard approximation; and
modified Hubbard approximation).

little density dependence throughout our density range
(1 & r, & 5) (see Fig. 2 and Table V).

Finally, we note that there is yet a third way to es-
timate the efFective mass. In analyzing the 6nite-size
effects in the Slater-Jastrow calculations for the ground
state, Tanatar and Ceperley24 argued that one of their
fitted parameters, bi(r, ), corresponds to the inverse of
the effective mass. In order to extrapolate to the thermo-
dynamic limit, they used the following scaling equation:

1
Eiv ——E~ + bi(r, ) ATN + bz(r, ) —, (25)

where EN and E is the energies of a 6nite system with
periodic boundary condition and the infinite system, re-
spectively, and ATN is the difference between the kinetic
energies of N noninteracting electrons and the in6nite
system at r, = 1. Considering Eq. (2) but now taking
for bn„the difFerence in occupation of a finite system and
the infinite system, the energy of a finite system can be
expressed by

m ATNE =E +, +"-
8

To get improved estimations for the effective mass and
other Fermi-liquid parameters, we now use the backflow
wave functions. Only energy differences between excited
states are considered here because, as we have discussed
in the previous section, this method leads to results which
are little affected by the system size and are consistent
with ones derived Rom the ground-state calculations.
These calculations are done for N = 26, 58 at r,
1, 2, 3, 5, with the results for the cases of spin-parallel ex-
citations and spin-antiparallel excitations shown in Ta-
bles VI and VII, respectively. The energy differences
between some states have much smaller statistical un-
certainty than others, especially for spin-antiparallel ex-
citations, because some states are more correlated with
each other. In fact, the states having the most statisti-
cal correlation are degenerate at the Slater-Jastrow level.
They are the ones that we discussed in Sec. II C. Appar-
ently the statistical fluctuations in these states are almost
identical since the differences only come from the back-
flow terms. As can be seen, all 6ts have reasonable y2
values.

Combining fitted values for the first-order components,
fi' + fi, in Tables VI and VII, we determine the effective
mass of the system from Eq. (17). The results for m* are
given in Table VIII along with the dimensionless Fermi-
liquid parameters Iii' and I"i defined in Eq. (5). Figures

TABLE V. The effective mass obtained by several differ-
ent methods with the Slater-Jastrow wave functions. I corre-
sponds to the method where the energy differences between
the ground state and excited states are analyzed and II to the
method where the energy differences between excited states
are analyzed. III shows the masses obtained from 6nite-size
analysis of ground-state calculations [a: Tanatar and Ceper-
ley's work (Ref. 24). b: Our ground-state work (Ref. 13)].

within the parabolic assumption, Eq. (19), of the quasi-
particle energy spectra By comp.aring Eq. (26) with
(25), we see that r2bi (r, ) corresponds to m/m'. Their re-
sult for the mass is m'/m = 0.90(l), 0.97(5) for r, = 1,5.
We also obtained the same parameter in our ground-
state work, is which leads to m'/m = 0.90(1),0.90(5) for
r, = 1,5. These values from the ground-state calcula-
tions are quite consistent with our present results derived
&om energy difFerences between the excited states. All

N=26¹5s
N=gs
N=26
N=ss
N=gs

r, =1.0
1.07(1)
1.02(2)
1.24(5)
0.91(l)
0.90(1)
0.90(2)
0.90(1)
0.90(1)

r, =3.0
1.21(2)
1.23(3)

0.90(1)
0.89(1)

r, =5.0
1.61(3)

2.07(13)
1.51(7)
0.90(1)
0.90(3)
0.89(3)
0.97(5)
0.91(5)
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TABLE VI. Energy differences (AE s = E —Es) between particle-hole excitations whose
particle state and hole state have parallel spins. States 1—4 are excitations shown in Fig. l.
Calculations are done with the backfiow wave functions. Values for parameters fitted to Eq. (16)
are shown at the bottom along with y values. Energy unit is Ry.

N =26

N =58

NAEJ. 2

NAEg3
NAEg4
NAE23
NAEg4
NAE34
NAEg2
NAEg3
NAEg4
NAE23
NAE24
NAE34

&(fi'+ fi )
&(f:+f:)
&(f:+f:)

x'

0.5(1)
1.0(2)
1.2(2)
0.5(2)
0.7(2)
0.2(2)
1.0(2)
1.2(2)
1.6(3)
0.2(2)
0.7(3)
0.5(3)

-0.69(5)
-0.13(5)
-0.11(4)

4.0

r. =2
0.16(4)
0.30(4)
0.32(2)
0.14(3)
0.16(4)
0.03(3)
0.18(8)
0.31(7)
0.38(4)
0.12(3)
0.19(8)
0.07(7)
-0.18(1)
-0.05(2)
-0.01(1)

2.1

p. =3
0.07(2)
0.12(2)
0.11(1)
0.05(1)
0.05(2)
-0.01(2)
0.13(4)
0.17(4)
0.16(2)
0.04(3)
0.03(4)
-0.00(4)
-0.064(3)
-0.031(5)
-0.003(3)

5.4

r, =5
0.029(9)
0.033(8)
0.020(5)
0.004(6)
-0.008(8)
-0.011(8)
0.011(20)
0.024(20)
0.027(14)
0.012(13)
0.016(21)
0.003(20)
-0.011(2)
-0.014(3)
-0.002(2)

4.8

2 and 3 show the mass as a function of the density calcu-
lated by our VMC method along with some previously-
calculated values using various other methods. We see
significant mass enhancement from the Slater-Jastrow
values by including backflow correlations over the density
range considered. Our effective mass has quite different
values &om ones calculated by other methods. Note that
the mass m'/m is less than 1 for r, ( 3 and increases
to & 1 for larger r, . It has rather similar density de-
pendence to one calculated for the 3D electron gas by
Rice. According to Fig. 3, our mass turns out to be
close to that obtained by Santoro and Giuliani when

including only charge-fluctuation-induced vertex correc-
tions beyond RPA. However, our results do not agree
with their results that include both charge and spin fluc-
tuations. The spin fluctuations were claimed to be im-

portant to give correct "bandwidth" masses m, which are
defined by ti2k&~/2m = e(kF) —e(0), in "jellium" metals
such as Na, Al, etc. by Zhu and Overhauser.

From the previous Monte Carlo results for the com-
pressibility from Ref. 13 and the spin susceptibility by
Tanatar and Ceperley along with the effective mass
determined here, we can obtain the zeroth-order param-
eters, Fo and Fo, through Eq. (8). Note that the Lande

TABLE VII. Energy differences (b,E p = 8 —Ep) between particle-hole excitations whose
particle state and hole state have antiparallel spins. States 1—4 are excitations shown in Fig. 1.
Calculations are done with the backfiow wave functions. Values for parameters fitted to Eq. (16)
are shown at the bottom along with y values. Energy unit is Ry.

NDEg2
NAEg3
NEEg4
NDE23
NAE24
NDE34
NEEg2
NEEg3
NEEJ4
NEE23
NAE24
NEEg4

~(fi —fi )
~(f2 —f2)
~(fs —fs )

x'

T8 —1

0.20(14)
0.09(13)
-0.20(1)
-0.10(2)
-0.39(12)
-0.2S(13)
0.13(14)
0.06(14)
-0.19(2)
-0.08(2)
-0.33(14)
-0.24(14)
0.108(4)
-0.15(4)
-0.001(1)

3.1

pg 2
0.09(6)
0.03(6)
-0.14(1)
-0.07(1)
-0.23(6)
-0.17(5)
0.18(8)
0.14(8)
-0.12(1)
-0.04(1)
-0.29(8)
-0.26(8)
0.074(3)
-0.12(2)
-0.001(3)

7.5

pg —3
0.088(19)
0.033(19)
-0.095(3)
-0.053(3)
-0.184(19)
-0.129(19)
0.133(41)
0.096(42)
-0.085 (5)
-0.037(5)
-0.218(41)
-0.180(41)
0.052(2)
-0.092(7)
-0.004(2)

5.3

r, =5
0.074(11)
0.040(11)
-0.053(2)
-0.035(2)
-0.127(11)
-0.092 (10)
0.051(23)
0.030(23)
-0.048(3)
-0.022 (3)
-0.099(24)
-0.079(23)
0.02S(1)
-0.061(4)
-0.004(1)

14.8
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Fs
Fa
F8
Fa

Fa
m'/m
9'/g

r, =1.0
-0.60(1)
-O.34(3)
-0.14(2)
-O. 19(2)
-o.o7(2)
0.01(2)
0.93(1)
1.52(6)

r, = 2.0
-0.99(1)
-0.41(8)
-0.10(1)
-0.24(1)
-0.16(3)
0.07(3)
0.95(1)
1.7(2)

r, =3.0
-1.63(1)
-0.49(7)
-0.03(1)
-0.26(1)
-o.27(3)
0.14(3)
0.99(1)
2.0(3)

r, =5.0
-3.70(3)
-0.5(1)
O.12(2)
-o.27(2)
-o.5o(5)
O.32(5)
1.06(1)
1.9(4)

TABLE VIII. Fermi-liquid parameters, the effective mass,
and the Lande g factor calculated variationally with back-
iow wave functions. The zeroth-order parameters are ob-
tained from the compressibility from Ref. 13 and the
spin-susceptibility data in Ref. 24 along with our effective
mass.
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g factor is determined by only Fo. Table VIII shows
the Fermi-liquid parameters, the effective mass, and the
Lande g factor obtained by our best variational calcula-
tion.

IV. CONCLUSION

FIG. 3. The effective mass vs the density parameter r, in
the 2D electron gas. Our Monte Carlo estimation with the
back6ow wave functions is shown by ~ . The dotted lines show
the results including charge- and spin-Buctuation-induced ver-
tex corrections with an on-shell approximation (: RPA; x:
charge fluctuation only; and: charge and spin Suctuation)
and the solid lines show the results with an exact Dyson's
equation (E: RPA; Q: charge lluctuation only; and +:
charge and spin Suctuation) in Ref. 11.

We have investigated particle-hole excitations in the
2D electron gas with the VMC method. We have found
f'rom a simple argument that the pair-product (Slater-
Jastrow) wave functions have a serious defect and back-
flow correlations are crucial. We use the form of back-
fIow which was previously shown to significantly improve
the ground-state energies and here we find a significant
mass increase with the backfiow correlation.

We have developed a correlated sampling method
which is very efBcient for calculation of small energy dif-
ferences between excitations which are closely related.
Fermi-liquid parameters are determined &om these en-

ergy differences. We have tested various approaches to
the derivation of the Fermi-liquid parameters, especially
the effective mass, &om our VMC calculation of particle-
hole excitation energies, and we have shown that the
problems introduced by finite-size effects are best elim-
inated if we use a method involving only energy differ-
ences between the excited states with the same number
of electrons.

Our primary results are given in Table VIII and com-
pared with previous work in Figs. 2 and 3. Our effec-
tive mass is less than bare electron mass m for r, ( 3
and greater than m for larger r, . This density depen-
dence is similar to Rice's results for the 3D electron gas.
Our results for the effective mass are close to ones cal-
culated including only charge-Huctuation-induced vertex

corrections by Santoro and Giuliani; however, they are
significantly different &om other previous results. Using
our calculated mass along with the previous Monte Carlo
calculations of the compressibility and the spin suscep-
tibility, we have estimated the zeroth-order Fermi-liquid
parameters, Fo and Fo.

We emphasize that the present results are variational
and depend upon the accuracy of our variational func-
tion. In order to go beyond this variational study, tran-
sient estimate calculations of the excited-state energy
differences with the method proposed by Ceperley and
Bernu are in progress.
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