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By use of the plane-wave method, we calculate the photonic band structure for electromagnetic waves
of E and H polarization propagating in a system consisting of an infinite array of identical, infinitely
long, parallel, metal cylinders of circular cross section, embedded in vacuum, whose intersection with a
perpendicular plane forms a simple square or triangular lattice. The dielectric function of the metal
from which the cylinders are formed has the simple, free-electron form e(w)=1 -—((of, /o?), where , is
the plasma frequency of the conduction electrons. For electromagnetic waves of both polarizations, the
problem of obtaining the photonic band structure is reduced to the solution of a standard eigenvalue
problem despite the frequency dependence of the dielectric constant of the two-dimensional, periodic
system. For electromagnetic waves of E polarization the photonic band structure at low filling fractions
of the metallic cylinders is a slightly perturbed version of the dispersion curves of electromagnetic waves
in vacuum, except for the appearance of a band gap below the lowest frequency band, whose width in-
creases with increasing filling fraction. A band gap between the first and second bands is present in the
photonic band structure of the square lattice, but no band gap is found in the band structure of the tri-
angular lattice. In the case of electromagnetic waves of H polarization the photonic band structure at
low filling fractions of the metallic cylinders is also, for the most part, a slightly perturbed version of the
dispersion curves of electromagnetic waves in vacuum, but possesses additional, nearly dispersionless,
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bands in the frequency range o <®,. A possible origin of these flat bands is described.

I. INTRODUCTION

There has been a growing interest in recent years in the
calculation of dispersion curves of electromagnetic waves
propagating in two-dimensional, periodic, dielectric
structures—the so-called photonic band structures of
these systems.! “22 They have also been the objects of ex-
perimental study.*'®23~2° A major reason for perform-
ing such calculations is the fact that periodic dielectric
structures offer the possibility of eliminating propagating
electromagnetic waves throughout a band of
frequencies—the photonic band gap. The absence of
electromagnetic modes in a certain frequency range can
modify the basic properties of many atomic, molecular,
and excitonic systems.*

As we have noted, all of the theoretical and experimen-
tal studies of the photonic band structures of two-
dimensional, periodic structures cited above have been
carried out for dielectric systems whose components are
characterized by dielectric constants that are real, posi-
tive, and frequency independent. It is, therefore, of in-
terest to explore the consequences for photonic band
structures of including in the systems for which they are
being calculated components that are not purely dielec-
tric media, but instead are metallic, and are characterized
by dielectric functions that are frequency dependent and
can be negative in some frequency range. In a recent ar-
ticle by McGurn and one of the present authors,’! we cal-
culated the photonic band structure of a system consist-
ing of an infinite array of identical, infinitely long, paral-
lel, metal cylinders of circular cross section, embedded in
vacuum, whose intersections with a perpendicular plane
formed a simple square lattice. The dielectric function of
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the metal from which the cylinders were formed was as-
sumed to have the simple, free-electron form

el0)=1—(0} /o), Ly
where o, is the plasma frequency of the conduction elec-
trons. The electromagnetic field in this system was as-
sumed to propagate in the plane perpendicular to the
rods, and only the case (H polarization) in which the
magnetic vector of the field was parallel to the rods was
investigated. The single, nonzero component of this field
was expanded in plane waves, and a homogeneous matrix
equation for the coefficients in the expansion was ob-
tained. Because the dielectric function of the metallic
rods was frequency dependent, the matrix elements in the
equation for the expansion coefficients were also frequen-
cy dependent. Consequently, the dispersion curves of the
H-polarized electromagnetic waves propagating in this
system—the photonic band structure—were obtained
not by diagonalizing a matrix, but by finding the frequen-
cies at which the determinant of the matrix in the equa-
tion for the expansion coefficients vanished for each value
of the two-dimensional wave vector k| of the electromag-
netic waves. This is a laborious computational pro-
cedure. In addition, there is always the concern that
some zeros may be missed if the increment in frequency is
insufficiently small. Finally, the band structure obtained
was found to converge slowly as the number of plane
waves retained in the expansion of the component of the
magnetic field parallel to the cylinders was increased.
This had the consequence that useful results could be ob-
tained only for very small values of the filling fraction,
i.e., the fraction of the total volume of the system occu-
pied by the metal cylinders.

16 835 ©1994 The American Physical Society



16 836

A striking feature of the photonic band structure ob-
tained in this way was the presence, in the frequency
range 0 <w <o, in which €(w) is negative, of several very
flat, nearly dispersionless, bands that are superimposed
on dispersion curves, which otherwise are slightly per-
turbed versions of the dispersion curves for electromag-
netic waves in vacuum. The number of these flat bands
increased with increasing filling fraction. (Similar flat
bands were also found in this frequency range in the pho-
tonic band structure of metal spheres arrayed in an fcc
lattice’! and in a simple cubic lattice.?)

In this paper we exploit the special form of the dielec-
tric function (1.1) to obtain a standard eigenvalue prob-
lem for determining the photonic band structure of elec-
tromagnetic waves of both E and H polarization for an
arbitrary, periodic, two-dimensional system. The compu-
tational problem of obtaining the photonic band struc-
ture is greatly simplified thereby, and band structures for
larger filling fractions can be calculated accurately.

We begin by formulating the problem of obtaining the
photonic band structure of a periodic, two-dimensional
system of parallel metal cylinders for the case in which
the intersections of their axes with a perpendicular plane
form an arbitrary two-dimensional Bravais lattice. The
extension to more general two-dimensional structures is
straightforward.

Thus, we assume that the axes of the cylinders are
parallel to the x; axis, and that their intersections with
the x; x, plane form one of the five two-dimensional Bra-
vais lattices. The translation vectors of this Bravais lat-
tice are

x(D=1,a,+1,a,, (1.2)

where a, and a, are the two, noncollinear, primitive
translation vectors of the lattice, while /, and /, are arbi-
trary integers that we denote collectively by /. The area
a. of a primitive unit cell of this lattice is given by

a.=|a; Xa,| . (1.3)

The lattice reciprocal to the direct lattice whose points
are defined by Eq. (1.2) is defined by the translation vec-
tors

G (h)=hb,+h;b, . (1.4)

The primitive translation vectors b, and b, of the recipro-
cal lattice are the solutions of the equations

al'bJ:Z'ﬂ'SU N i,j=1,2 »

(1.5)
and h, and h, are arbitrary integers that we denote col-
lectively by A.

The dielectric constant of this system is now position
dependent, e(x“), where x;=(x,x,) is a position vector
in the x,x, plane. It is in fact a periodic function of x,
with the periodicity of the Bravais lattice defined by Eq.
(1.2),

e[x,+x,(D]=e(x)) . (1.6)

It can, therefore, be expanded in a two-dimensional
Fourier series according to
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iGyx
e(x)=3F &Gpe "', (1.7
G,
where the Fourier coefficient é&(G,) is given by
8G)=— [ d’e(xe "I (1.8)
a, va

The dielectric constant of the system being studied can be
written explicitly in the form

e(x)=1+[e(w)=1] I S[x;—x,(D], (1.9)
1

where the function S(x;)=1 if x is inside the cross sec-

tion of the cylinder centered at the origin of coordinates

and S (xIl )=0 if X, is outside this cross section. Thus, on

substituting Eq. (1.9) into Eq. (1.8), we obtain for &G )

&G,) =80+ [el@)— 11— [ dxS(xpe ™, (110

where the integral is now over the entire x,x, plane. If
we recall the definitions of () and S(x), Eq. (1.10) can
be rewritten in the form

@

’
w2

G,=0, (1.11a)

—iGxy

o, 1
P 2
e(G“)— 5 —C fd xuS(x")e s G”;éo , (1.11b)

where

1 2

=— 1.12
r= [d*,sx) (1.12)
is the filling fraction. In the particular case of metallic
cylinders whose cross section is a circle of radius R,
S(x)=6(R —x,|), where 6(x) is the Heaviside unit step
function, and we obtain for é&(G)

2

@p
aG)=1-r22 | G,=o0, (1.13a)
w
4G )= — 22 2GR #0 (1.13b)
6 == — Py y .
Il 2 GMR Il

where J,(x) is a Bessel function.

We now apply these results to the determination of the
photonic band structures of E- and H-polarized elec-
tromagnetic waves in the system described by this dielec-
tric constant.

II. E POLARIZATION

In the case of E polarization we seek solutions of
Maxwell’s equations, which have the forms

E(x;t)=[0,0,E3(xniw)]exp(—iwt) ,
H(x;2)=[H,(x|0),H,(x|0),0]exp(—iwt) .

(2.1a)
(2.1b)

The Maxwell curl equations for the three nonzero field
components are
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aH2 __a_}.I_l___.l__D = —j— e(x )E3 , (2.2a)
ox,; 0Ox, ¢’ !

O, .

BTI__.,_H2 , (2.2b)
8E; o

o, =i H1 ) (2.2¢)

When we eliminate H, and H, from these equations, we
obtain as the equation satisfied by E;
2 2 >
& +e(x) %5 | E5=0.

o] 2.3)

2
axl

To solve Eq. (2.3) we use the expansion (1.7) and write
E3(x|®)in the form

E3(x"|w)_ ZB(kan")el(k||+G|) 3l

G
where k =(k k,,0) is the two-dimensional wave vector
of the wave. When these expansions are substituted in

Eq. (2.3), we obtain as the equation satisfied by the
coefficients {B(k|G)}

(2.4)

(ky+G,'B(k)|G))= zEaGn G)B(k|G})
G
=“’—2€(0)B(k,,|G")
Zé‘(G" B(KIG)) ,
o
2.5)

where the prime on the sum over G| indicates that the
term with G=G, is omitted. The use of the result for
&G,) given by Eq. (1.13) in Eq. (2.5) transforms the latter
into

S |k +G 1, o +fok p 211G, ~GjlR)
S TV es T e (I6,—GjlR)
I
wZ
XB(k)|G))=—B(k,|G), (2.6)
c

which has the form of a standard eigenvalue problem for
a real, symmetric matrix. In solving Eq. (2.6), it should
be kept in mind that 2J,(x)/x equals unity at x =0.

J
S |(k;+G,)% ,+fi°—2J(|G" GilR) A,(k|G))
o %G 7 ¢ (IG;—GjlR)
2[—(kl+Gl)(k2+G2)SG",GﬁAl(kHIGﬁ)-f- (k1+G1)28
Gj

_'(k1+G1 )(k2+G2)8G
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III. H POLARIZATION

In our first approach to the case of H polarization, we
seek solutions of Maxwell’s equations that have the forms

H(x;¢)=[0,0,H;(x,|w)]exp(—iwt) , (3.1a)

E(x;t)=[E,(x)|0), E,(x)|@),0]exp(—iwt) .  (3.1b)
The Maxwell curl equations in this case are

dE, OE, ®

=%y, 3.2

ax1 ax2 ! c H3 ( a)

0H; o @

ax1 =1?D2=I'C—G(X")E2 ’ (3.2b)

o0H,

ax2 ‘__17D1—_l E(X”)E1 . (320)

In this case it is convenient to eliminate H; from Egs.
(3.2) to obtain a pair of coupled equations for E; and E,;

o’E, 9'E,
_ o Ea_x; (x") El , (3.3a)
9’E, 9JE,
3% 0%, ——é? e(x”) E2. (3.3b)
We expand E,(x)|@) and E,(x|e) according to
Eq(xjlo)=3 4,k |G)e 1TV | a=12. (4

Gy

When we substitute Eq. (3.4) together with Eq. (1.7) into
Egs. (3.3), we obtain as the equations for the coefficients
{A41,(k|G))},

(ky+Gy) 4,(k)|G)—(k,+G )k, +G,) 4,(k)|G))

2
=2-38G,—G))4,(k|G)),
Gy

(3.5a)

—(kl+G,)(k2+G2)Al(k"|G")+(k +G,)*4,(k|G))

22 2?(GH Gf‘)Az(kl,lGl',)
Gj

(3.5b)

The use of the result (1.13) for &G,) in Egs. (3.5) yields
the pair of equations

2
’ _ W
||’Gi|A2(k“lG") __Z—Al(k"IGl!) ’

(3.6a)

+f2_2J(|G" GiIR)
Si 7 ¢ (|G;—Gi{IR)

,42(1:”|G,'|]=“’—2 2(k,|Gy) .

(3.6b)
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Equations (3.6) constitute a standard eigenvalue problem
for a real symmetric matrix. However, the size of the
matrix to be diagonalized in the case of H polarization, is
twice that of the matrix to be diagonalized in the case of
E polarization, when the same number of plane waves is
used in the expansions (2.4) and (3.4).

IV. RESULTS
A. E Polarization

We first consider the case of E polarization for both a
simple square lattice of lattice parameter a for which the
primitive translation vectors are

a;=a(1,0), a,=al(0,1), (4.1a)

while the primitive translation vectors of the reciprocal
lattice are
b,=27(1,0), b,=27(0,1), (4.1b)
a a

and for a triangular lattice for which the primitive
translation vectors are

a,=a(1,0), a,=a(L,1v3), (4.2a)

and the corresponding primitive translation vectors of
the reciprocal lattice are

=27, -3, b2=2—”(0,%\/§) _
a a

b, (4.2b)
The filling fractions of the metallic rods are f=7R?/a’
and f=27/V3)R?*/a? for these two lattices, respective-
ly.

In Fig. 1(a) we present the photonic band structure of a
square lattice when the filling fraction of the rods is
f=0.001. A total of 197 plane waves was used in obtain-
ing this result. We have taken w,a /27c =1, which is the
value of wa /2mc at which the change in sign of e(w)
occurs. For small filling fractions, namely up to f=0.1,
we have obtained a band structure that is not significantly
different from the dispersion curves for electromagnetic
waves in vacuum. However, for higher values of the
filling fraction, the band structure differs substantially
from the dispersion relation for electromagnetic waves in
vacuum and reveals the existence of an absolute band gap
between the first and second bands, which appears for
values of the filling fraction f 2 0.25. The presence of the
band gap is illustrated in Fig. 1(b), where the photonic
band structure for E polarization when f=0.7 is shown.
The variation of the width of the band gap with the filling
fraction is nonmonotonic. We have found that the op-
timal filling fraction, which is defined as the value of f
that gives the largest width of the band gap, is £ =0.7. In
Fig. 2(a) we plot the width of the band gap as a function
of the filling fraction. In Fig. 2(b) we plot the ratio of the
width of the band gap to the frequency at the center of
the band gap as a function of the filling fraction. From
the latter figure, we see that this ratio can be as large as
17% for a filling fraction f=0.65. A total of 197 plane
waves was used in obtaining the results for all values of
the filling fraction.
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In Fig. 3(a) we present the photonic band structure of a
triangular lattice when the filling fraction of the rods is
f=0.001. A total of 271 plane waves was used in obtain-
ing this result. The band structure for small values of the
filling fraction resembles the dispersion curves for elec-
tromagnetic waves in vacuum. It changes as the filling
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FIG. 1. The photonic band structure of a square lattice of
metal cylinders in vacuum. E polarization: (a) f=0.001. (b)
f=0.7. A band gap is present in the latter structure. The num-
ber of plane waves used in these calculations is (NG) = 197.
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fraction increases. However, in contrast to the band
structure for the square lattice, we have not found an ab-
solute band gap in the frequency range studied, as is seen
from Fig. 3(b), where we present the photonic band struc-
ture for a filling fraction of f=0.5. A total of 271 plane
waves was used to obtain this result.

It should be noted that the convergence of these calcu-
lations is rapid, and relatively small matrices are required
for an accurate determination of the photonic band struc-
ture for the case of E polarization.

A notable feature of the results for the photonic band
structures for electromagnetic waves of E polarization in
square and triangular lattices of metallic cylinders in vac-
uum presented in Figs. 1 and 3, respectively, is the pres-
ence of a band gap below the lowest frequency band. The
existence of this gap is a consequence of the metallic na-
ture of the cylinders, and has its origin in the second term
inside the braces on the left-hand side of Eq. (2.6). Its
width is seen to increase with increasing filling fraction f.

B. H Polarization

In Figs. 4 and 5 we present the photonic band struc-
ture for the case of H polarization for the square and tri-

0.18 : : : :
016 (@
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0.10 |
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0.06 |
0.04 1
0.02 1

Awa/2mc

0.00 1 I . I . | .
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0.18 T T T T T T
0.16

0.14
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Aw/we
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FIG. 2. (a) The width of the band gap present in the results
displayed in Fig. 1(b) is plotted as a function of the filling frac-
tion f. (b) The ratio of the width of this band gap (Aw) to the
frequency at the center of the gap w, is plotted as a function of
the filling fraction f.

16 839

angular lattices, respectively, when the filling fraction of
the rods is f=0.001. A total of 197 plane waves for the
square lattice and a total of 271 plane waves for the tri-
angular lattice was used to obtain these results.

In contrast to the case of E polarization, we have also
found flats bands in the region 0 <o <o, which are su-
perimposed on a band structure that resembles the
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I
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0.0 L 1 1 1 1 1 1

FIG. 3. The photonic band structure of a triangular lattice of
metal cylinders in vacuum. E polarization (a) f=0.001. (b)
f=0.5. NG = 271.
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FIG. 4. The photonic band structure of a square lattice of
metal cylinders in vacuum. H polarization: f=0.001. NG =
697.

dispersion curves for electromagnetic waves in vacuum.
The existence of the flat bands confirms the results of the
calculation of the photonic band structure for the case of
H polarization for the identical system reported recent-
ly,! although a different method was used to obtain those
results. We have found that the vacuumlike part of the

2.2 T T T T T T

2.0

1.8

1.0

0.8

0.6

0.4 N

0.2

0.0 T=— - i
kj
FIG. 5. The photonic band structure of a triangular lattice of

metal cylinders in vacuum. H polarization: f=0.001. NG =
709.
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band structure converges rapidly, but that the flat bands,
in contrast, converge very slowly with an increasing num-
ber of plane waves. In fact, even the use of up to =~4500
plane waves, together with a extrapolation procedure,
failed to yield results for flat bands that we felt had con-
verged. Thus, the flat bands depicted in Figs. 4 and 5 are
not reliably calculated, and should be regarded only as in-
dicative of the true flat-band structure that exists in the
frequency range 0 <w <w,.

This disappointing result for the flat-band portion of
the photonic band structure in H polarization obtained
by the use of Egs. (3.6) prompted us to seek another ap-
proach for the determination of the band structure in this
case. The method that was eventually used is based on
eliminating E, and E, from Egs. (3.2) to obtain the equa-
tion satisfied by H;, which we write in the form

a‘18H3 d 1 OH,

axl axZ e(x”) ax2

(l)zH
+2 H,=0.
e(x)) 9x, 23

(4.3)

To solve this equation, we expand e"l(x") and H;(x,) ac-
cording to

= S R(G, P

(4.4)
e(x) G,

ity +Gyxy

Hy(xlo)=3 A(k/|G)e (4.5)
Gy

In the general case of metal cylinders of arbitrary cross
section, the Fourier coefficients {K(G)} are given by

2

Dp
RG)=1+f—2— , G,=0,

5 (4.6a)
o’ —w,

2

w —iG,-
RIG)=—2— 1 [ S(xpe "I, G#0.
w° ), a.

(4.6b)

In the case of metallic cylinders whose cross section is a
circle of radius R, we obtain for fc‘(G“)

2

(0]
RG)=1+f—"=, G=0, (4.7a)
w '—(l)p
fG=—22ZGR (4.7b)
I wz_w; G”R ’ It :

When we substitute the expansions (4.4) and (4.5) into
Eq. (4.3), we obtain as the equation satisfied by the
coefficients { 4(k|G,)}

3 (k,+G))-(k,+G)RG,—G)) 4(k,|G})
S

Ak)|G)) .

2
»
- (4.8)
2

The use of the results given by Egs. (4.7) in Eq. (4.8)
transforms the latter into
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@) | 1y 6| aia= —f S(k+G))(k,+G! WG =GR G 4.9)
(0‘27 I I I I It Il Il (IGN_G\"'R) = .

Gj

At this point we define
2

==, (4.10)
Dp

and rewrite Eq. (4.9) in the form
(WT—puM+N)A=0, 4.11)

where the elements of the matrices M and N are given by

=8 ’lk+Gy?
M(GHIG“) 5 GI 1+—a)2— , (4.12a)
p
N(G/|G!)=5 ey TGy
G=0g &
G|.G) o}
S ? kitGo -k + G 21 UGi = GilR)
p Il Il II Il (IG"_GlllIR )
(4.12b)

Equation (4.11) can be written in the factored form
(uI—B)ul—C)=0 4.13)

where the matrices B and C satisfy the pair of equations

B+C=M, BC=N. (4.14)
If we write
C=M-F, 4.15)
the equation satisfied by B becomes
B=NM~'+B’M~'. 4.16)
We solve Eq. (4.16) by iteration by writing it as
=eNM ™ '+B*M ™!, 4.17)
expressing Basan expansion in powers of €,
B=S¢€B,, (4.18)
r=1
and setting €=1 at the end of the calculation. The ma-
trices { B, } can be calculated recursively;
E’1=ﬁﬁ" (4.19a)
2 B_BM™', r>2. 4.19b)

Once B has been calculated, C is obtained from Eq.
(4.15). In this way the problem of calculating the photon-
ic band structure in H polarization is reduced to the diag-
onalization of the two matrices B and C. -

It is found that the eigenvalues of the matrix B yield
the flat bands, while the eigenvalues of C produce the
dispersive bands which, for small filling fractions, are not
significantly different from the dispersion curves for elec-

-

tromagnetic waves in vacuum. The complete band struc-
ture is then the superposition of the band structures asso-
ciated with each of the eigenvalue problems.

The convergence of the calculation of the band struc-
ture was monitored by increasing the number of the plane
waves used in the expansion (4.5), and by increasing the
number of terms retained in the expansion (4.18) for B
(with e=1).

In Figs. 6 and 7 we present the photonic band struc-
ture for the case of H polarization for the square and tri-
angular lattices, respectively, when the filling fraction of
the rods is £ =0.001. A total of 529 plane waves for the
square lattice and 535 plane waves for the triangular lat-
tice was used to obtain these results, and the first 12
terms in the expansion (4.18) for B were kept. The
dispersive part of the band structure is essentially identi-
cal with the dispersive part of the band structure depicted
in Figs. 4 and 5. We have found that the nearly disper-
sionless part of the photonic band structure converges
slowly, and we have used up to 1373 and 1417 plane
waves for the square and triangular lattices, respectively,
together with an extrapolation procedure to obtain con-
verged results. In Figs. 8 and 9, we present results
displaying the convergence of the average of the frequen-
cies of the flat bands calculated at the M, T, and X points
as the number of plane waves used in the calculation is

2.2 T T T T T T

2.0 r

1

[
-
T

—

FIG. 6. The photonic band structure of a square lattice of
meta] cylinders in vacuum calculated by diagonalizing the B
and C matrices. H polarization: f=0.001. NG = 529.
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0.0 : e

FIG. 7. The photonic band structure of a triangular lattice of
metaL cylinders in vacuum calculated by diagonalizing the B
and C matrices. H polarization: f=0.001. NG = 535.

increased for the square and triangular lattices, respec-
tively. One sees that at this filling fraction there is no ab-
solute band gap in the frequency range investigated. In
fact, the flat bands fill the frequency range from
(wa /2mc)==0.7 to (wa /2wc)=1. By the use of the ap-
proach just described, it is possible to calculate the pho-
tonic band structures for electromagnetic waves of H po-
larization for larger filling fractions than can be treated
by the use of Egs. (3.6).

0.65

0.60 - L P
0.10 0.08 0.06 0.04 0.02 0.00
1/VN

FIG. 8. Convergence of the frequencies of the flat bands
present in the results displayed in Fig. 6 as the number of plane
waves used in the calculation is increased.
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0.60 . L . N
0.10 0.08 0.06 0.04 0.02 0.00
1/VN

FIG. 9. Convergence of the frequencies of the flat bands
present in the results displayed in Fig. 7 as the number of plane
waves used in the calculation is increased.

V. CONCLUSIONS

The results presented in this paper show that the
plane-wave method can be used successfully for obtaining
the photonic band structure for electromagnetic waves of
E polarization in two-dimensional, periodic structures
consisting of an infinite array of identical, infinitely long,
parallel, metal cylinders embedded in vacuum, whose in-
tersections with a perpendicular plane form a two-
dimensional crystal structure, even for large values of the
volume filling fraction. The use of a modest number of
plane waves (~200) appears to be sufficient to yield con-
verged bands. The calculated photonic band structures
resemble qualitatively those that are obtained when the
metal cylinders are replaced by dielectric cylinders. For
large values of the filling fraction, a band gap for waves of
E polarization is obtained for the square lattice, but none
is observed in the results for the triangular lattice, in the
frequency range investigated. However, the photonic
band structures for both lattices display an absolute band
gap below the lowest frequency band, whose dispersion
curve does not tend to zero frequency at the T point.
The width of this gap grows with increasing filling frac-
tion, and is a consequence of the metallic nature of the
cylinders from which the periodic structures are con-
structed.

The situation is quite different in calculations of the
photonic band structure for electromagnetic waves of H
polarization in the two-dimensional periodic structures
considered here. In this case, the use of a comparatively
small number of planes waves (~200) is sufficient to
yield converged results for the majority of the bands cal-
culated, which are dispersive. However, unlike the case
for E-polarized electromagnetic waves, the photonic band
structures for waves of H polarization also possess a
number of rather flat, nearly dispersionless, bands in the
frequency range w <w,, effectively superimposed on the
dispersive band structure. These flat bands were also ob-
tained in our earlier calculations of the photonic band
structure of H-polarized electromagnetic waves in a two-
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dimensional, square lattice array of metallic cylinders.’!
The convergence of the frequencies of these bands with
increasing number of plane waves is very slow when the
eigenvalue problem defined by Eqgs. (3.6) is solved. A
somewhat more rapid rate of convergence of these bands
is obtained by the diagonalization of the matrix B, al-
though even in this approach a large number of plane
waves and an extrapolation procedure is required to ob-
tain accurate results.

In view of the fact that these flat bands occur in the
case of H polarization but not in the case of E polariza-
tion it is tempting to identify their origin as the (weak)
overlap of H-polarized excitations associated with each
metal cylinder in isolation and characterized by discrete
frequencies, when an infinite number of cylinders is
brought together to form the kind of periodic structure
considered in this paper. The overlap of these excitations
broadens the discrete frequencies into narrow bands.

The frequencies of the electromagnetic modes of H po-
larization of a metal cylinder of radius R, characterized
by the dielectric function (1.1), embedded in vacuum, are
the roots of**

DﬁhM=g|de”%R Hy’%R
+ |e(w)| V21, Ie(a))ll/z%R
xHV LR | =0, n=0,12,..., (5.1a)
C

where H\"(z) is a Hankel function, I,(z) is a modified
Bessel function, and the prime denotes differentiation
with respect to argument. Our notation emphasizes the
fact that we are seeking frequencies in the range
OSwSmp, i.e., in the range in which e(w) <0. We have
also assumed that the magnetic field in the region outside
the cylinder has the nature of an outgoing wave at
infinity, as would be the case in the scattering of a plane
wave propagating perpendicularly to the axis of the
cylinder. The frequencies of the electromagnetic modes
of E polarization of the same system are the roots of >

’

Dr(lE)(w)=In Hr(x“

le(w)|' 22 R LR
C C

—mwwﬂg|dmwﬂ%x

xH#’%R =0, n=0,1,2,....  (5.1b)

The solutions of both of these dispersion relations for
each n are, in general, complex w,,=w®—io|
(n=0,1,2...,5=1,2,3,...), and we have searched for
them by plotting |D'#:E(w)|~? as functions of real w in
the range 0<w <w,. Such plots will have Lorentzian

peaks centered at w‘n’fs) whose full width at half maximum
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is 20'/). In the case of E polarization, no such peaks
n,s P p

were found in the range 0 <o <w,, for a value of R cor-
responding to a filling fraction of 0.001. This is con-
sistent with the absence of any flat bands in the photonic
band structure for electromagnetic waves of this polariza-
tion. In the case of H polarization, a multitude of such
peaks  were found in the frequency range
cop/\/2 <, <w,, for values of n=1,2,3,.... This is
consistent with the existence of flat bands in the photonic
band structure for electromagnetic waves of H polariza-
tion in this frequency range.

The preceding discussion has an admittedly heuristic
nature, but may help in understanding the origin of the
curious feature of the nearly dispersionless bands present
in the photonic band structure for electromagnetic waves
of H polarization but not in the band structure of waves
of E polarization.

Finally, we note that the reduction of the problem of
obtaining photonic band structures of periodic, two-
dimensional structures containing metallic components
to the solution of a standard eigenvalue problem used
here in the case of E polarization can also be used in cal-
culations of the photonic band structures of periodic,
three-dimensional structures containing metallic com-
ponents, if one works with the equations satisfied by the
components of the electric field. Whether this approach
will be competitive with the transfer-matrix method used
by Pendry®? in such a calculation remains to be deter-
mined. However, it should be emphasized that this
method works because of the particular form of the
dielectric function given by Eq. (1.1). Thus, in the
present work if the cylinders were fabricated from a cu-
bic, polar crystal containing two ions in a primitive unit
cell, for which the dielectric function has the form

(0%‘ _COZ
6((0)=6¢x2—7 , (5.2)
DT — W

where €, is the optical frequency dielectric constant,
while w; and w; are the frequencies of the longitudinal-
optical and transverse-optical vibration modes of infinite
wavelength, respectively, the method employed here
would not lead to a standard eigenvalue problem even in
E polarization. However, for electromagnetic waves of
both E- and H polarization a generalization of the kind
of eigenvalue problem obtained in Sec. IV B can be ob-
tained in this case.

It should be noted that Sigalas et al.**** by using a
transfer-matrix method®3¢ have calculated the transmis-
sion coefficient as a function of frequency for the propa-
gation of E-polarized electromagnetic waves through a
finite two-dimensional square lattice of cylinders fabricat-
ed from a polar semiconductor characterized by the
dielectric function (5.2). By this approach, the frequency
ranges in which band gaps occur can be determined fairly
simply. However, the photonic band structure for this
system has not yet been obtained. Sigalas et al.3’ have
also used the same method to calculate the transmission
coefficient as a function of frequency for the propagation
of E-polarized electromagnetic waves through a finite
two-dimensional square lattice of cylinders fabricated
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from a lossy polar semiconductor whose dielectric func-
tion has the form
o
elw)=¢t+(e—€)—F——F——, (5.3)

or—o —ilTw
where ¢ is the static dielectric constant and I" the damp-
ing constant, and have obtained the frequency regions in
which band gaps occur.

If dissipation is introduced into the metallic com-
ponents of periodic two- or three-dimensional structures
through the use of a dielectric function of the form

wZ

e F (5.4)

elw)=1- olwo+iy) ’

where ¥ =1/7 is an inverse electron relaxation time, the
reduction of the band-structure calculation to the solu-
tion of a standard eigenvalue problem is not possible.
However, a generalization of the type of eigenvalue prob-
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lem obtained in Sec. IV B can again be obtained to yield
complex values of w for each value of k. It is hoped that
such problems will be studied in the near future.
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