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Magnetic and transport phenomena in high-temperature superconductors due to magnetic flux relaxation and

transport over the surface barrier are investigated. Vortex dynamics controlled by the penetration both of
pancake vortices and vortex lines is discussed. The penetration Seld H~ for pancakes decays exponentially with

temperature. The size of the magnetization loop is determined by the decay of H~ during the process of
relaxation, but its shape remains unchanged. The irreversibility line associated with the pancake penetration is

given by H;„~ exp( —2T/Tp) and may lie both above and below the melting line.

It has been recognized' that the Bean-Livingston sur-

face barriers play an important role in vortex dynamics in
high-temperature superconductors (HTSC) and control the

penetration field H~&H, &,
' where H„ is the first critical

field. For an absolutely perfect surface H~-=H,
= KH i /inta, where H, is the thermodynamic field,
tt=k/(, )i. is the penetration depth, and ( is the coherence
length. Because of large «=100 one gets H, /H„=20 in
HTSC's, but due to surface imperfections H~ never reaches

H, and lies somewhere in between: H, &&H~&H, . For the
case of weak bulk pinning the surface barriers determine the
magnetization and the position of the irreversibility line. In
clean YBazCu307 (YBCO) crystals such a domination of sur-

face irreversibility over the bulk one was proved at T+85 K
(with T,=92 K), where bulk pinning becomes exponen-
tially small with respect to surface barrier due to thermal
fluctuations of vortices.

The field distribution and magnetization curves at
H)H due to the surface barrier were calculated in Refs. 7,
8 and 3 for the whole field range where the London approxi-
mation holds, i.e., up to fields of order H, 2. However in
HTSC the field H~ appeared to show a strong (exponential)
temperature dependence and the irreversibility line H;„(T)
was found to lie much below H,2.' ' ' These phenomena
can be attributed to the important role of thermally activated
processes in these materials. Suppression of the penetration

field due to creep of pancakes through the barrier in strongly
layered materials was considered in Ref. 1, and the barriers
for flux entry and exit determined by the motion of vortex
lines mere calculated in Ref. 3. In this paper we find the
temperature dependence of the whole magnetization loop in-

cluding that of the irreversibility field for both two-
dimensional (2D) and 3D cases. We also calculate the field,
temperature, and current dependence of the thermally acti-
vated resistivity of superconductor due to the Aux motion
over the surface barrier.

Consider a strongly layered superconductor in external
magnetic field H~~c and calculate the energy profile for a
pancake surmounting the surface barrier following. ' The en-

ergy of interaction of the pancake at the distance r&&X. with
its mirror image and the Meissner current is given by

2.94r 4p
U(r) = epdln — dj r,

C

where ep=(Cip/4~)i) Cp is the unit flux, and d is the
period of the layered structure. The maximum of this energy
corresPonds to the distance rp=cep/4pj =(3+3/4)gj p/j
= (H, /+2H, where jp=cH, /3+6mk is the dePairing cur-
rent and we used j = cH/4m' to relate the Meissner current
with H. For the sake of simplicity we consider a geometry
where the superconductor occupies half space X~O. The
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modification of the results due to demagnetization effects is
discussed at the end of the paper. The activation energy re-
quired to surmount the barrier (1) is

Uz = ezdln(1. 1rz /g) = e'zdln(0. 76H, /H).

The pancakes, which penetrate after the first one in adjacent
layers, require less energy than Uo. Therefore, the process of
the vortex line (stack of pancakes) formation is of
avalanche-type, and Uo is the activation energy for penetra-
tion of the whole stack.

Since the probability of surmounting is proportional to
exp( —Uz/T), the penetration field H~ should be determined'
from the equation U(H )= TIn(t/rz), where t is the time scale
of the experiment and to is the microscopic time scale which
is determined by the preexponential factor in the penetration

o 10 io 10 i2 s r Then one obtains'

H&&Hz one gets 4—mM=H /2H, the width of the magne-

tization loop at high fields drops with the temperature as

exp( —2T/Tz), i.e., much faster than H itself.
The above consideration holds as long as the hopping

distance ro~x&. As temperature increases, the hopping
distance increases accordingly and when ro becomes
of order of x&, the barrier for pancake saturates and
the pancake penetration becomes reversible. This occurs at

rz-gH, /Hz-x&, which corresponds to 47rM—=H /2H
= —4mM, q=(4&z/8m' )In(r/H, z/H), where r/ is the con-
stant of order of unity. The irreversibility line is then given
by

lnK H~2

H, i »(r/H, z/H~) In(r/H, z/H~„)
(4)

(2)H~ =H, exp( —T/Tz),

with Tz = Ezd/In(r/tz). The penetration field decays according
to the power law as

Hp=H, (t/tz)

This result holds as long as the cost of the Josephson energy
EJ to create a single pancake at distance rz at the surface,
e~=(e ezra/2d)ln(d/az) is small as compared to Uz or,

equivalently, rz(Az= d/e, where e= Pm/M(1 is the pa-
rameter of anisotropy. This condition corresponds to the field
range H)H, ge/d=eH, in HTSC materials. Therefore in

layered (Bi- and Tl-based) compounds with a=10 z the re-

gion, where the flux penetration is controlled by the single
pancake creep over the surface barrier, is very wide. For
realistic values of the superconducting parameters for
Bi2SrzCaCuzOs (BSCCO) (k=2000 A,"2= 15 A) one ob-
tains ezd =700 K. Taking the typical value of In(r/rz) 30 one
obtains To= 23 K in reasonable agreement with the
experiment. ' Note that surface imperfections reduce the
prefactor in Eq. (2), but cannot change the exponent.

Now we turn to the calculation of the magnetization loop.
The structure of the vortex lattice near the surface of the
sample was calculated by Ternovskii and Shekhata, but in
what follows we use a simplified consideration given by
Clem (see also Ref. 3). The Clem model predicts the exist-
ence of a vortex-free region of the width x~ near the surface
of the sample and the constant vortex density for x)x/ The.
distribution of the field in the vortex-free region (x(x/) is
given by h(x) =Bcosh[(x—

x&)/li. ] with the current density at
the surface j = (c/4n)Bsinh(x&/k), whereas at x)x/ one gets
h(x) =B=const. The current relaxation due to vortex creep
over the barrier is determined by the condition

U(j) = ezdln(3+6j z/4j )= Tin(t/tz). Therefore, Bsinh(x&/X)
= Hz(T) with Hz(T) from Eq. (2). Making use of the
boundary conditions H=Bcosh(x//X) one obtains straight-

forwardly B= QH H for H)H~, and the m—agnetization
1S

4mM=H QH2 H—= H /2H, —for H)H~—. (3)

The magnetization loops preserve their shape during the re-
laxation process, and creep results only in the thermal renor-
malization of the penetration field H„(T,t). Since for

At high-enough temperatures T)Tz the expression (4) re-
duces to H;„=H,z(Tz/2T)exp( —2T/Tz). This dependence
agrees favorably with numerous experimental data and pro-
vides a reasonable explanation for the observed behavior of
the irreversibility line' in highly anisotropic HTSC's.
Note that the irreversibility temperature T;„=ezdln(H, z/H)/
21n(t/rz) may lie both above and below the 2D melting tern-

perature T =ezd/8+3m depending on the magnetic field

range involved.
Above the irreversibility line the barrier for the pancake

motion is smaller than Tin(r/rz) and flux penetration is re-
versible. However, this barrier can give rise to a linear resis-
tivity. The height of this barrier can be estimated from Eq.
(1) replacing j by the equilibrium surface current

j~q= c /HMeq/( /2m')

sod I 0.6H, 2

2 (Hln(H, 2/H)/
'

A more elaborate calculation of U at equilibrium which ac-
counts for the lattice deformations was performed in Ref. 15.
The resulting expression for resistivity acquires the form
p=pzex —U/T), in good agreement with experimental
results. ' ' If the transport current density near the surface
becomes larger than jz((B/4z) ~~z, the barriers decrease and
the current-voltage characteristic becomes nonlinear being
characterized by the activation barrier

(6)U(j) = ~zd»(jz/J)

Note that the logarithmic dependence (6) of the activation
energy on current gives rise to a power-law behavior of the
current-voltage characteristic V ~ j'o" . This behavior has
been observed in several experiments. ' ' Another point one
has to be aware of when analyzing the experimental data is
that the surface current flows through a thin layer (-x&)
near the surface, therefore, the current density should be
determined as I/x/X (relevant length) rather than
I/(relevant area).

The activation barriers depending logarithmically on the
applied field were observed in experiments on multilayered
compounds and interpreted as the result of the disorder
stimulated dissociation of dislocation pairs in 2D vortex
lattice. Here we propose a simpler explanation of this de-
pendence. However, our estimations for the activation energy
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from Eq. (5) give U=350 K In(100T/H), with k=2000 A
for BSCCO, and U=550 K ln(200T/H), with X. = 1400 A for
YBCO superlattice. The prelogarithmic factor is approxi-
mately 2—3 times larger than that observed experimentally.
Since our theory expresses the barrier through d and k which
are well measured quantities with no other fitting parameters,
this discrepancy is the relevant one. The possible explanation
of this discrepancy is that X near the surface can be smaller
than in the bulk because of the suppression of superconduc-
tivity due to the variation of oxygen contents near the sur-

face.
For less anisotropic HTSC materials (such as YBCO) or

for Bi- and Tl-based compound at high temperatures where

H~(T) drops below eH, , the Josephson interaction of the
pancakes becomes important and the continuous 3D aniso-
tropic model is more appropriate. Then the thermal activa-
tion over the surface barrier occurs via a creation and further
expansion of the half-loop excitation. ' ' The energy as a
function of the size of the loop along layers r is then given
by

m@0
U(r) = meeprln(r/g2g) —— ej r,

which leads to the radius of the critical loop
rp c Spin(jp/j)/rlipj and the activation energy

(7)

providing that creep is strong enough and H~ is smaller than

Hc ~

The magnetization loops for H&H~ are given by the
same formulas as in the 2D case (3) with H~ from Eq. (7).
Since this equation gives H~ ~ (T, T) ~ /T, the wi—dth of the
hysteresis loop decrease with temperature and field as M
~(T, T)3/TH. —

To estimate the location of the irreversibility line we
equate the irreversible magnetization to M

q
and obtain

esp@pin (H,z/H', „)
H';„=

256 T'ln'(t/t, )
(8)

The obtained result describes the irreversibility line con-
trolled by the single vortex creep. However the difference
between the 3D and 2D cases is that in the 3D case the single
vortex penetration becomes impossible near the equilibrium
state of vortex lattice. Indeed, the implantation of the newly
penetrating vortex line into the ideal vortex configuration
near the surface requires the infinite energy. This means that
near the equilibrium state vortices penetrate through the sur-
face via creation of critical nuclei consisting of several vor-
tex lines. This collective penetration starts when the magne-
tization M of the sample approaches its equilibrium

me epcln (jp / j)
U(j) =

240j
Proceeding further analogously to the 2D case, i.e., relating
current to the magnetic field near the surface and taking into
account that the characteristic barriers U(j) =Tin(t/tp) one
easily obtains the expression for the penetration field

value AM =M,
q
—M =0.3@p/(4mli. ) (this corresponds to

external field H =H, q
0—.34p/4m', where H, q

=B
—4mM, q). ' Near, but not too close to the equilibrium

[M,q
—M)@p/(4m') ln (H,z/B)] the magnitude of the

activation barrier grows as

4p/(4m')
U(H, AM) = Ui

Here

I'(g) 'I &~2/0, c2
Ug=02eep

H
ln

HtH) I, H)
is the barrier at the transition point from the single vortex to
the collective penetration (see Ref. 21 for a detailed discus-
sion). The irreversibility line is determined by the condition

U(H;„,b,M,„&)=Tin(t/tp), where AM, „z is experimentally
resolvable irreversible magnetization (usually 0.1—1 6).
This gives

~ C, /(4~~)'~ '
H;„= H;'„)H;'„(10)ltd

( QM )
1ff llf

at AM, „&4p/(4mli. ) .
The irreversibility line is determined by the relation be-

tween H';„, H';„", and B . If H';„&B, then the onset of the
irreversibility is controlled by the single vortex penetration
and the position of the irreversibility line is given by Eq. (8).
If H" &B~&H';„ the irreversibility line coincides with the

melting line, and, at last, for B &K;„ the irreversibility line
is determined by Eq. (10).H, differs from the conventional
expression for the melting line B =8@ epct4p/T by the
factor of ln (H, z/H)/241n(t/tp) instead of the Lindemann
factor cL . These factors are of the same order of magnitude
which means that all three cases are possible.

On the contrary, in much more anisotropic BSCCO mate-
rial the melting line at high temperatures may be close to
H„and the irreversibility line determined by Eq. (8) is prob-
ably located above the melting line. Therefore in BSCCO
compounds the irreversibility line at high temperatures may
arise from the surface barrier rather than from the freezing of
the vortex liquid into a vortex solid. Above the melting the
activation energy over the surface barrier remains finite and
its maximum magnitude at M =M,

q
is

Usn=0. 28Ep(@p/H)' ln (H,z/H)~, (11)
H

corresponding to the radius of the half-loop excitation
1 p xf/2 This barrier, being independent of current, gives
rise to a linear resistivity p ~ exp( —U3o/T) which can ex-
plain thermally activated resistivity in this materials.

In the presence of the bulk pinning the magnetization is
just the sum of the bulk and surface contributions. The fast
drop of the surface component in the fields H)H gives rise
to a widely observed (see, for example, Ref. 23) sharp maxi-
mum of the magnetization at small [H=H~(T)] fields, the
height of the maximum being approximately equal to
4 m.Hp(T) .

Finally, let us discuss briefly the effect of the sample
shape. Consider a rectangular sample with the thickness h,
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and the smallest transverse size w. The field near the surface

of such a sample in the Meissner state is gw/d times larger
than the applied field, accordingly the penetration field is

Pd/wH~ (Ref 2. 4) (note the distinction from the commonly
used demagnetization factor of d/w for the sample of the
ellipsoidal shape). The slope of the magnetization curve in
the Meissner state below H~ is equal to (H/4m)(w/d) In .the

field much greater than the penetration field gd/wH~ the

magnetization is equal to M=H /2H and does not depend
on the demagnetization factor.

To conclude, we have shown that the creep over the sur-

face barriers can explain the observed temperature depen-
dence of magnetization curves and the position of the irre-
versibility line in different families of HTSC materials. It is
important that the critical current due to the bulk pinning
drops very fast at high magnetic fields [exponentially or as
H (Ref. 10)], whereas the surface critical current decays

only as 1/H. As a result even in the samples with the strong
bulk pinning controlling the width of the hysteresis loop well
below the irreversibility line, the position of the irreversibil-
ity line itself can be still determined by surface barriers.
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