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It was shown recently that a sizable areal density of midgap states exists on a (110} surface of a

d, 2 2-wave superconductor [C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994)].Here we study how these midgap
a b

states are affected if (i) the surface is not exactly (110};(ii) the crystalline structure is slightly orthorhombic;

(iii) and (iv): the order parameter is not a pure d wave, but is s+ id„2,2 and d„2,2+id, &, respectively. We
a b

X Xb X+b&

find that for cases (i) and (ii), the midgap surface states still exist but with reduced areal density. For case (iii),
all surface-state energies are found to shift away from midgap to lh, l. For case (iv), the surface states exist

on both (110}and (100}surfaces (and on surfaces of all other orientations) but with a k-dependent energy shift

from midgap.

The nature of the pairing order parameter in cuprate high-

T, superconductors has attracted considerable attention

recently. ' Many theoretical model studies and

experiments have suggested that it has d, 2 2-wave sym-
a b

metry defined relative to the a and b axes of the Cu02
planes. Although the d-wave pairing seems to be consistent
with a number of independent experimental measurements,
such as the penetration depth, the microwave conductivity,
the electronic Raman scattering, and the NMR, etc.,
other possibilities have not been excluded. In fact, the aniso-
tropic s-wave pairing can also account for almost all of these
experimental measurements' (or at least makes the interpre-
tations controversial). Therefore, it is highly desirable to
come up with ways to determine directly the sign of the
order parameter. Among several proposals, one of the au-
thors (C.R.H.) has recently shown" that a sizable areal den-

sity of midgap surface states (i.e., surface states with essen-
tially zero energy relative to the Fermi surface) exists on a
(110j surface of a d„2 „2-wave superconductor. Such mid-

a b

gap states would not occur in similar conditions if the super-
conductor is s wave, whether isotropic or anisotropic, and
therefore can be taken as a clear signature of d-wave super-
conductivity. These midgap states have many observable
consequences, including in particular the novel consequence
of a giant surface magnetic moment as discussed in Ref. 15.
They therefore can provide a particularly promising way to
experimentally distinguish d„2 2-wave superconductivity

a b

from other types of order-parameter symmetry. %hereas the
midgap surface states have been predicted to exist under the
ideal condition of a pure d 2 2-wave superconductor with a

a b

(110}surface, it is natural to ask how robust are these mid-

gap states with respect to various types of deviations from
this ideal condition. In this paper we study the following four
types of deviations: (i) The surface is not exactly a (110}
plane, but has a surface normal which makes an arbitrary

angle 8 with the [100]direction (or its equivalent) in the ab
plane; (ii) the compound structure is slightly orthorhombic
rather than being exactly tetragonal, thus the order parameter
cannot be naturally a pure d„2,2 wave. Then we consider

a b

two often proposed deviations of the order-parameter sym-
metry from a pure d wave, ' namely, (iii) s+id, 2 „2 (or

a b

s+id for short), and (iv) d, 2 „2+id, , (or d+id' for
a b a b

short).
As in Ref. 15, we consider a semi-infinite superconductor

located at x&0, with a planar free boundary at x=0, which,
for some cases considered below, is no longer a (110j sur-
face of the crystal. But we assume that the z direction is
always along the c axis of the crystal. For simplicity, we
adopt the assumption used in Ref. 15 that the gap-function or
pair-potential order parameter has the form

b, (k, r) = b, (k) 8(x)
where 0" (x) is a Heaviside step function, which means that
we neglect the effect of any possible distortion of the order
parameter near the surface.

The beginning part of our analysis leading to an
eigenequation for the elementary excitations is essentially
the same as that in Ref. 15, except that here we wish to take
into account that h(k) is in general complex. Thus the b, in
Eqs. (2b) and (4b) of Ref. 15 should be replaced by 5*, the
complex conjugate of A. Then we obtain the following
eigenequation for the bound-state elementary excitations, for
which

~ e„(k~)~
(

~

6(k„)~, where e„(k~) denotes the energy
of the nth elementary excitation characterized by a momen-
tum k~=—(k„p,kY,k,) on the Fermi surface, and a weak-
coupling %KBJ approximation has been employed:
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Aocos28(k„—k ) —hosin28(2k, ky) (2)

in our chosen coordinate system. This means that an intrinsic
d 2 2-wave superconductor generally has a dz2 y2+dzy

a b

order-parameter structure relative to a general coordinate
system. (Conversely a d, 2 y2+d y order parameter in some
coordinate system with a real ratio of its two components can
be transformed to a pure d, 2 y2 wave in a suitable coordinate
system. ) Before we study the possible surface states for the
order parameter given by Eq. (2), we first prove a general
theorem for a real superconducting order parameter (up to
any unimportant constant overall phase factor):

Theorem: For a "real" order parameter b, (k,o) (as defined
above): (a) Eq. (1) has no nonzero energy solutions inside
the gap; (b) Eq. (1) has a zero energy solution for a given
kF (and spin) if and only if

where h(~ k,o)=b—(~k o,k~, k,). It is easy to see from this

equation that for a d 2,2-wave superconductor with a
a b

(110) surface, there is one zero-energy surface state for each
allowed kF (and spin), because in this case b, (+ k„o)
~ ~ k ok~. Therefore, a sizable areal density of the midgap
surface states is obtained, which is kF/2m for a spherical
Fermi surface and 2kF /mc for a cylindrical Fermi surface,
where c is the average distance between neighboring con-
ducting planes. We now proceed to study the four deviations
from this ideal condition as listed in the introduction:

(i) Consider first a pure d„2 ~-wave superconductor in

the region x&0, with a planar free surface at x =0, where the
x axis is in the direction which makes an arbitrary value 8
with the a axis in the ab plane of the crystal. [For 8= m/4

the free surface is the (110) surface considered in Ref. 15.]
In this case, the pure d-wave order parameter

lk(kF) =ho(k, —kb), with Ao a constant, and k—=kz/kz, be-
comes
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FIG. 1.The 8 dependence of the normalized areal density of the

midgap surface states given by Eqs. (6) and (7).

leads to Eq. (3) as a necessary condition. On the other hand,
it follows trivially from Eq. (1) that Eq. (3) is also a suffi-
cient condition for the existence of a zero energy solution.
The Theorem is therefore proved.

As is pointed out in Ref. 15, for a d„2 2-wave supercon-
a b

ductor with a (110) surface, practically all wave vectors on
the Fermi surface contribute to the midgap states. (One
might have to exclude those k,o's which are very close to
zero or kF, since then the gap is so small that one cannot
comfortably talk about bound states in the presence of any
slight bit of smearing of the levels due to impurity or other
types of scattering. ) When the surface is not exactly a
(110) surface, as can be seen from the above Theorem, only
those kF's which satisfy the condition (3) contribute to the

midgap states, therefore one can expect that the areal density
of the midgap states will be reduced in this case. By enforc-
ing Eq. (3) we obtain the following inequality:

A(k, o)6 ( —k„o)(0. (3) 4[1+(tan28) ]k —4[1+ (tan28)z]k + 1(0.
Note that the ratio of Ih(k, o) I

and Ib (—k,o) I
is arbitrary in

this theorem.
This Theorem can be proved as follows: Since the order

parameter is "real, " the (complex) eigenequation (1) can be
shown to be equivalent to the following two real equations:

This inequality holds only when

where

ga (kz( pa+ and —pa+ (kz( —ga

[a(k.o) —a( —k.o)]e„=0,

~(k.o) v'~'( —kxo) —e.'+ ~( —kxo) l~'(kxo) —&'.=o.

a.=qz1 Ism 281).

Therefore the areal density of the midgap states normalized
to that of the (110) surface is

Suppose there exist a nonzero energy solution, then we must
have

a(k.o) =a( —k.o)

Qd, (—k,o) —e„=—gA (k o) —e„.

The only solutions of these equations are e„=~
I
b (k o) I and

b, (k„o)=LE( —k o), which must be rejected because they are
not inside the gap. [For I e„I~ I h(kxo) I Eq. (1) is not valid. ]
This proves part (a) of the Theorem. Part (b) of the Theorem
can be easily proved by simply setting e„equal to zero. Then
Eq. (4) becomes automatically satisfied, whereas Eq. (5)

(7)

In Fig. 1 we have plotted this normalized areal density of
the midgap states as a function of the angle 8. It clearly
shows that the areal density of the midgap states reaches its
maximum at 8= m/4 and minimum (=0) at 8=0. We there-
fore find that the midgap surface states do not exist only if
the surface is exactly (100).

(ii) The second situation that we consider here arises di-
rectly from the lattice structure of the cuprate compounds.
When we write the d„& 2 order parameter as ko(k kb),

a b

we have made an imphcit assumption that the compound is
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FIG. 2. The k dependence of the normalized areal density of the

midgap surface states given by Eq. (9).

in the tetragonal phase, which has a symmetry between the a
and b axes. However, in the actual situation, the material
often has a small orthorhombic distortion. The symmetry be-
tween the a and b axes is then weakly broken. As a result,
one expects that the pure d,2,2-wave order parameter

a b

hp(k, —kb) for the tetragonal structure would change in gen-
eral to

midgap states exists if k &1:The order parameter should be
more appropriately identi6ed as extended s wave rather than

extended d wave if k &1, since the order parameter does
not change sign at all on the whole Fermi surface. (The
physical values of ~X~ are expected to be much smaller than

unity if the order-parameter symmetry deviates from a pure d
wave because of the orthorhombic distortion of the crystal-
line structure only. ) When the surface is not exactly at 45'
with the a axis, although we have not exactly analyzed this
case here, we can expect that the areal density of the midgap
states for a given X. is further reduced from that of the case
studied here.

(iii) Next we consider the order-parameter symmetry'
s+i d for which the order parameter has the form

5,+ i5 z(k, kb—) with real b, , and b q. To study the effect of
this change alone, we assume that the crystalline structure is
still tetragonal and the surface is still f110}.Then the order

parameter on the Fermi surface can be written as

5(kF) =6,—ib„(2k„k») (10)

in our coordinate system. Equation (1) is then satisfied if

Ag(2k k»)e b, gA +4hqk k e

which leads to the following solution for each k:

hp(1+)i, )k, —b p(1 k)kb= hp—(k, kb)+ kb p—

for the orthorhombic structure, where X. is a real parameter.
Therefore there exists a small (in general extended) s-wave
component in the order parameter. To study the effect of this

change alone we assume the surface normal of the supercon-
ductor be still at 45' with the [100]direction in the ah plane,
and only let the order parameter be changed as given above.
The order parameter on the Fermi surface will then have the
form

khp Ap(2kxk»)

in our chosen coordinate system. Since this order parameter
is real, the Theorem proved above can also be applied here.
Therefore, the midgap states are the only bound states within
the gap (assuming that the pair-potential order parameter is
not drastically suppressed near the surface). Again the areal
density of these midgap states is determined by the range of
kF which satisfies the condition in Eq. (3), which leads to the
following equation:

4k,'—4k,'+) '(0.
Thus only those kY's in the range

(1—$1—X )/2(k ((1+$1 —X )/2

can give rise to midgap states. It follows that the areal den-
sity of the midgap states is reduced in this case from that of
a pure d 2 „2-wave superconductor by the factor

a b

g(1+ Q1 —kz)/2 —$(1—g1 —Z')/2

if X. ~ 1, whereas no midgap states exist at all if X ~1.This
result is illustrated in Fig. 2. It is easy to understand why no

e„=b, sgn(6~k„k»)

Without loss of generality, we can assume Az)0 and

k, =k,p/k~)0. Therefore, each positive k contributes a sur-

face bound state at energy b... whereas each negative k»
contributes a surface bound state at energy —5, (for either

sign of 5,). The areal densities of the surface bound states at

energy ~ 5, are both equal to half of that for b, ,=0 at zero
energy. This is an extremely interesting result, since it im-

plies that all occupied surface states at T=O (with energy
below the Fermi energy) have momenta along y having the
same sign. (But those associated with two parallel surfaces
will be opposite and cancel, as may be seen by rotating our
solution about i by m. ) Experimental consequences of this
result will be investigated in detail in future works.

(iv) Finally we study the order-parameter symmetry'
d+id' for which the order parameter has the form

hi(k, —kb)+ihz(2k, kb) with real bi and Az. As in case
(iii) we assume that the crystal structure is tetragonal. We
shall consider two special orientations of the surface only.
The first one is a (110}surface. In this case, the order pa-
rameter on the Fermi surface is equal to

b, i(2k,k») +i hz(k„k—)—
in the present coordinate system, and the eigenequation (1)
reduces to

hi(2k, k )e„= b, z(k k)——

/[A, (2k„k»)] +[hz(k„—k )] —a„

the solution of which is

e„=—Az(k„k) sgn(Ark„k»), —
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which always lies inside the gap (which is located between

~ g[b, (2k„ky)] +[5z(k„—ky)] ).

In contrast to the previous cases, these surface states are
dispersive (i.e., having k-dependent energies). Therefore the
midgap-state peak is spread into a flat distribution of a finite
width which is equal to 2~3 2~. To observe them clearly one
might need to perform k-specific measurements unless 52 is
very small.

The second special orientation of the surface that we con-
sider here is a {100)surface. In this case the order parameter
has the form

(k k )+ihz(2k ky)

and the bound surface states have energies

a„=—A, (k, —k )sgn(52k„kr).

The midgap-state peak is again spread into a flat distribution
of a finite width which is now equal to 2~6, ,~. To clearly
observe these states in a non-k-specific measurement one
now needs 6& to be very small. Even though we have not
presented results for surfaces with normals in other direc-
tions in the ah plane, it should be obvious that bound surface
states also exist and are dispersive for those cases.

In conclusion, we have found that the midgap surface
states obtained for a pure d 2,2 superconductor with a

a b

{110)surface are rather robust against deviations from this

ideal condition, including the surface orientation being not

exactly {110),and the lattice having a slight orthorhombic
distortion. When the order parameter has a s+ id 2 2 sym-

a b

metry, instead of being a pure d wave, we still find a sizable
areal density of surface states on the {110)surface, but at

energies ~ 5, where 6, is the s component of the order

parameter. When the order parameter has a d 2 2+id

symmetry, surface states can exist on all surfaces, but are
dispersive which makes them more difficult to observe (F.or
example, no giant surface magnetic moment would be im-

plied by the existence of them unless the magnitude of one of
the order parameter component is very small. ) Finally, we
remark that unlike the conclusions of Ref. 15, the conclu-
sions obtained here are not all insensitive to the spatial de-

pendence of the order parameter near the surface. But it is
safe to say that if only the order parameter is not drastically

suppressed near the surface, the results obtained here are at
least semiquantitatively valid.

Note added in proof: Recently, we received an unpub-
lished paper by M. Matsumoto and H. Shiba, which mainly
studies the effects of surface roughness on the midgap states,
but its conclusions overlaped somewhat with those for the
situation (i) studied here.

We would like to thank W. P. Su and C. S. Ting for useful
discussions. This work was supported by the Texas Center
for Superconductivity at the University of Houston.

Permanent address for C.R.H.
See, for example, B. G. Levi, Phys. Today 46, No. 5, 17 (1993).
See, for example, N. E. Bickers et al., Int. J. Mod. Phys. B 1, 687

(1987); Z. Y. Weng et al. , Phys. Rev. B 3$, 6561 (1988); P.

Monthoux et al., Phys. Rev. Lett. 69, 961 (1992); Phys. Rev. B
47, 6069 (1993);C.-H. Pao and N. E. Bickers, Phys. Rev. Lett.
72, 1870 (1994); P. Monthoux and D. J. Scalapino, Phys. Rev.
Lett. 72, 1874 (1994).

sW. N. Hardy et al. , Phys. Rev. Lett. 70, 399 (1993).
D. A. Bonn er al. , Phys. Rev. B 47, 11 314 (1993).
Z.-X. Shen er al. , Phys. Rev. Lett. 70, 1553 (1993).
D. A. Wollman et al. , Phys. Rev. Lett. 71, 2134 (1993).
C. C. Tsuei et al. , Phys. Rev. Lett. 73, 593 (1994).
P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 4$, 4219 (1993).
P. J. Hirschfeld, W. O. Putikka, and D. J. Scalapino, Phys. Rev.

Lett. 71, 3705 (1993).

T. P. Devereaux et al. , Phys. Rev. Lett. 72, 396 (1994); M. C.
Krantz and M. Cardona, Phys. Rev. Lett. 72, 3290 (1994); T. P.

Devereaux et al. , Phys. Rev. Lett. 72, 3291 (1994).
"N. Bulut and D. H. Scalapino, Phys. Rev. Lett. 6$, 706 (1992);

Phys. Rev. B 45, 2371 (1992).
' J. P. Lu, Mod. Phys. Lett. B 6, 547 (1992).
' D. Thelen, D. Pines, and J. P. Lu, Phys. Re& 8 47, 9151

(1993).
A. Sudbtl et al. , Phys. Rev. B 49, 12 245 (1994).

' C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).
C. Kotlier, Phys. Rev. B 37, 3664 (1988); G. J. Chen er al. , Phys.

Rev. B 42, 2662 (1990); Q. P. Li er al. , Phys. Rev. B 4$, 437
(1993); J. H. Xu, J. L. Shen, J. H. Miller, Jr., and C. S. Ting
(unpublished).

D. S. Rokhsar, Phys. Rev. Lett. 70, 493 (1993); M. R. Beasley,
D. Lew, and R. B. Laughlin, Phys. Rev. B 49, 12 330 (1994).


