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Measurements of the dielectric permittivity are reported for a solid solution of antiferroelectric (betaine

phosphate)ot5 and ferroelectric (betaine phosphite)oss at frequencies 20 Hz (v &1 MHz. The freezing phe-

nomena in BPotsBPJss5 reveal the characteristics of a transition into a dipolar glass state. The activation

energy was found to be EI,=518 K and the external bias field lowers this value up to 488 K.

Betaine phosphate [BP: (CH&)NCHzCOOHsPo4] and be-
taine phosphite [BPI: (CHs)NCHzCOOHsPOs] are molecular
crystals of the amino acid betaine and phosphoric and phos-
phorous acids, respectively. In both compounds the inorganic
components (PO4 or POs groups) are linked by hydrogen
bonds to quasi-one-dimensional chains. BP exhibits a fer-
roelastic phase transition at about 365 K followed by two

phase transitions at 86 and 81 K. Antiferroelectric order is
established at T,=86 K. At this temperature the O-H" 0
bonds order along the one-dimensional chains and the chains
are linked antiferroelectrically. At 355 K BPI transforms
into an elastically ordered state and exhibits ferroelectric or-

der below T,=216 K.' The two almost isostructural com-
pounds form solid solutions at any concentrations. It has
been shown recently that at intermediate concentrations the

long-range electric order is suppressed and no spontaneous
polarization occurs. ' The mixed crystal BP04BPI06 exhibits
relaxational behavior typical for an orientational glass state,
with a hindering barrier Eh=252 K.

BPO y5BPI085 crystals were grown by controlled evapora-
tion from an aqueous solution. For the dielectric spectros-

copy gold-plated single crystals were oriented along the
monoclinic b axis. The complex dielectric constant
e~ = e' —i e" was measured by a capacitance bridge
HP4284A in the frequency range 20 Hz —1 MHz. For the
temperature-dependent measurements a Leybold VSK-4-320
cryostat was used. All measurements were performed in
heating with a rate of about 0.1 K/min in the phase transition
region.

For BP&t&BPtuss no anomaly in e' indicating the polar
phase transition can be detected down to the lowest
temperatures. ' A Curie-Weiss law is valid for e' in the tem-
perature range 300—170 K. At lower temperatures the de-
viation from the Curie-Weiss law is very significant. A simi-
lar behavior observed in Rb, (NH4)„HzAs04 has been
explained by random field freezing. ' This means that in
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FIG. 1.Temperature dependence of e' and 4' of BPO &5BPI085 at
the following frequencies (kHz): (0) 0.2; (0) 2; (V) 20; (R) 200;
(V) 1000.

0163-1829/94/50(22)/16751(3)/$06. 00 50 16 751 1994 The American Physical Society



BANYS, KLIMM, VOLKEL, BAUCH, AND KLOPPERPIEPER SO16 752

wf10~IIIIIII
= (a)

10 'r
00

10 r

10

10 r

10

10 'r
10 r

1 P
~ I I I I I I

10.00

I I I I I i I I I I I I I I Ie
I I I i I I I I I I I I I i I I I I I I I I I i I I I I

500 I I I IIIIIt I I ~ I ~ ~Ig I I lllllg I I Ill ~ I ~

~ I I IIIIIt I I I IIIIII I I I IIII' I I ~ ~ IIIIt

(a)

400

300

200

100

0 I I I ~ I III! I I ~ ~ II~II I I I II IIII I I I I I III

10 ' 10 ' 10 ' 10 ' 10 ' 10 10 ' 10 '

v (Hz)

I I I I I I I I I I I I I I I I I I I I I I I I I I I I10
60.0020.00 30.00 40.00 50.00

T (K)

100 I I ill ~ II~ ~ I I I ~ III/ I I I I ~ ~ II/ ~ I I II ~ ~I/ I I I IIIII'I I I II I ~I/ I I ~ I II ~ It I ~ I ~ I ~ ~ I/

l ~ I
/

I I l I I I I I I
/

I I l I I I I ~ I
/

l I 1 I I I 1 I I [ l ~

(b)
80—

0.80-
~0

~0

~0
~0000

60-

0.4040

20

0 QQ
I I I I I I

10.00
0

1
60.0020.00 30.00 40.00 50.0010 10 ' 10 ' 10 ' 10 ' 10 ' 10 ' 10 ' 10 '

T (K)v (Hz)

(c)

I I l l I I I I I I I I I

W

400.00
W

W

W

300.00

200.00

W

100.00
I

0.00
10.00

BPp &5BPIp 85 random field freezing occurs at about T+=170
K. At temperatures lower than 60 K dispersion effects domi-

nate the dielectric response [Figs. 1(a) and (b)]. The fre-

quency dependence of e' and e" at fixed temperatures pro-
vides clear evidence that the e" frequency dependence is
much broader than 1.14 decades as it should be for the De-
bye dispersion [Figs. 2(a) and (b)]. The freezing phenomena
in BPp y5BPIp 85 reveal the characteristics of a transition into
a dipolar glass state: the slowing down of the dipolar degrees
of freedom exhibits broad distribution of the relaxation rates,
with a width of the distribution exceeding by orders of mag-
nitude the width of a monodispersive Debye process. ' '" Di-
polar glasses have been studied in detail: the most prominent

examples are K, „Li,TaOs, ' Rb, „(NH4),HzPO4,
' and

Rb, „(NY4)„HzAs04. ' In orientational glasses (OG's) the

reorienting moments freeze-in in random configurations. '
The interplay of site disorder and frustrated interactions is
responsible for the freezing transition which bears similari-
ties with the spin-glass transitions in dilute magnetic
systems' and with relaxational dynamics in canonical
glasses.

The experimental data were fitted with the Cole-Cole
function @*=e„+he/[1+(icuT)' ], where he is the relax-
ator strength, v. is the most probable relaxation time, n is
the distribution coefficient, e„ is the contribution of all
higher-frequency modes to the dielectric permittivity, and
co=2mv is the angular velocity. The calculated data using the
Cole-Cole formula are shown as solid lines in Fig. 2. The
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ce of the fit Pa'
are shown in Fig. 3. Comparing the Cole-Cole formula
with the Kohlrausch-Williams-Wats function one sees that
u=1 —P, and therefore the here obtained value for a is very
close to that observed in BPp4BPIp6. The distribution
function of the relaxation rate is given by F(T)=sin(nn)/
{cosh[(1—u)ln(2mT, /T)] —cos(nm)), where T, is the most
probable value of the relaxation rate. When n&0.5 the re-
laxation rates are distributed over three decades. Such a
wide distribution of relaxation rates can mean that nonequi-
libriurn effects or quantum fluctuations play a significant
role at these temperatures where u reaches high values. The
most probable relaxation rate follows an Arrhenius law
T= Tpexp(Eb/kr), as indicated in Fig. 3(a) by the solid line
with rp=2. 4X10 s and Eb=518 K. The activation en-

FIG. 2. Frequency dependence of e' (a) and e" (b) of
BPp,5BPlps5 at the following temperatures (K): (0) 24; (I') 32: (0)
45.
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ergy EI, is significantly higher than in BP04BPI06. Devia-
tions from purely thermally activated processes at low tem-
peratures might indicate the increasing importance of
tunneling transitions at low temperatures as in KI:NB&I.
The activation energy EI, is similar as in pure BPI as shown

by the H' electron-nuclear double resonance experiment
and dielectric measurements. In the glassy state the protons
are frozen-in at random in the double minima potentials, '
along the one-dimensional chains without any long-range or-
der. The distribution of relaxation times are symmetrically
shaped and can be explained in terms of a distribution of
energy barriers. ' ' The cusp of static dielectric permittivity
he indicates the temperature T,=30 K at which freezing of
random bonds occurs [Fig. 3(c)].

An external bias field E=0.57 kV/cm significantly lowers
the dielectric permittivity and changes the temperature be-
havior of s".This is shown in the temperature dependence of
fit parameters a and Ae (Fig. 3).The bias field causes a much

wider distribution of relaxation times, but at higher frequen-
cies the temperature behavior should be similar to that with-

out an external bias field. The relaxation times do not change
in the low-temperature region up to 33 K, but at higher tern-

peratures the deviation is quite significant. This deviation
should remain till the random-field freezing temperature. The
fit provided the parameters: F0=7.1X10 ' s and E„=488
K.

Finally, one can conclude that BPO»BPI085 exhibits an
orientational glass state at low temperatures where the pro-
tons are frozen-in along the one-dimensional chains. The loss
peaks are broad indicating a wide distribution of relaxation
rates. The value of the activation energy clearly manifests
that the orientational glass state is related with the proton
order. Therefore, BP& &5BPI085 state is a proton glass.

This work was supported by Alexander von Humboldt
Stiftung.
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