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We consider a charged quantum particle in a two-dimensional disordered system subject to a
spatially and temporally Huctuating magnetic field. The fluctuations are assumed to be Gaussian,
with correlations typical for a metal in the anomalous-skin-eHect regime. We derive a scaling form
for the quantum correction to the conductivity in terms of a scaled temperature, elastic mean free
path, and magnetic field. The weak localization correction to the conductivity is calculated for
the case of rapid magnetic-field Quctuations. We express the result in terms of a phenomenological
phase relaxation rate 1/r&, which is found to scale with temperature as T ~, provided the potential
disorder is suKciently strong and the temperature is above a critical value. In all other cases,
including the normal-skin-effect regime and the case of quasistatic field fiuctuations, 1/r~ is found
to be proportional to T, albeit with unusual prefactors.

I. INTRODUCTIQN

It has been known for some time that the transport
of quantum particles in two-dimensional disordered sys-
tems is governed by quantum interference effects. The
constructive interference of time-reversed paths leads to
a dramatic enhancement of the resistivity at low temper-
atures, and to the localization of particles of all energies
at T = 0 in the infinite system. At finite T inelastic
processes induced by the electron-electron interaction de-
stroy the coherence beyond a characteristic length scale
L~. The dominant scattering processes with small trans-
ferred energy have been shown to be equivalent to a Buc-
tuating electric field acting on the charged particles. The
effect of this field is to give rise to a phase relaxation rate
1/ry, but it does not change the relation between difFu-

sion length and difFusion time, 74, I&, characteristic of
the motion of the particles in a random potential.

In this paper we discuss the efFect of a Quctuating mag-
netic field on the quantum transport in a disordered sys-
tem. One might expect that magnetic-Geld fluctuations
will have a substantially different efFect as compared to
electric-field fluctuations. After all, a magnetic field cou-
ples to the velocity of a charged particle and in that way
can lead to an efFective change of the mass of the par-
ticle. This translates into a change of the difFusion con-
stant, more precisely a slowing down of difFusion. It is
clear that this efFect can have a major influence on the
form of the quantum correction to the transport coeffi-
cients. The well-known expression, e.g. , for the conduc-
tivity quantum correction, bu ln(r/ry), where r is the
elastic scattering time, will no longer be valid in this case.

We solve this problem within controlled approximation
schemes in the limit of rapid fluctuations in time and in
the quasistatic limit. In the former case the interaction
may be shown to be local in time, and the problem can
be reduced to that of a quantum particIe with a difFu-

sion coefFicient depending on position and moving in an
efFective potential. As we will show, this requires a self-
consistent treatment of the momentum cutoff necessary
to guarantee the validity of the "instantaneous approxi-
mation. " The small parameter of this approximation is
the ratio g = e'2D/gd where D is the diffusion coef-
ficient in the static random potential, e' is the charge
of the particle in the gauge field, and yg is the diamag-
netic susceptibility characterizing the dispersion of the
gauge-field mode u oc (yd/It~) qs. We show that even for

g 1, the "instantaneous approximation" is valid in a
wide temperature regime. Nonetheless, the approxima-
tion is only valid for suKciently strong potential disorder.
In the opposite, "quasistatic" case, we can show that the
usual interpretation of phase breaking is correct. The
phase-breaking rate 1/ry turns out to be linear in T and
proportional to the inverse resistance per square.

Our model calculation is applicable to high-T, com-
pounds doped close to the metal-insulator transition,
such as Bi 2:2:0:1compounds with superconducting tran-
sition temperatures well below 1 K. In this case one can
hope to measure weak localization effects probing the in-

elastic scattering processes in the system. These efFects

have indeed been observed, so far, in a single study of
the magnetoresistance of these compounds. The results,
when analyzed in terms of usual weak localization theory,
lead to an apparent phase-breaking rate 1/r~ inconsistent
with the conventional interpretation. The observed rate
varies with temperature as 7& T ~, and at the low-

est measuring temperature is about two orders of magni-
tude larger than the inelastic scattering rate 1/v;-„T,
extrapolated down &om higher temperatures. It is clear
that the phase-breaking rate cannot exceed the inelastic
scattering rate: 1/r~ ( 1/r;„. This serious confiict with
existing theory requires a major revision of the conven-

tional interpretation.
As indicated above, a fluctuating magnetic Geld, as
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opposed to an electric field, not only causes phase relax-
ation, but can lead to a nonlocal change of the diffusion
coefficient, which causes a rapid decay of phase coher-
ence. We will show within the instantaneous approxima-
tion that even though the relevant time scale for phase-
breaking processes is still given by the inelastic relax-
ation time, the relevant length scale is no longer given by
L~ (Dv; )i)2, but rather by L~ ($LO)i~, where ( is
a temperature-independent characteristic length and Lo
is proportional to the thermal wavelength of the gauge-
field Huctuations, Lo T i~s. As a result, the quantum
correction to the conductivity is found to vary with tem-
perature in the same way as if the phase-breaking rate
1/7y in the conventional theory obeyed the power law

T ~ . The agreement of our result with experimental
observation suggests the presence of a fluctuating gauge
field of some kind, coupling to the charge carriers in these
compounds. A brief report of this work has appeared. 7

In the clean limit, or in the dirty limit at low temper-
atures, the "instantaneous approximation" is not valid.
Rather, one expects the static approximation to be ap-
plicable. Thus the apparent phase-breaking rate is pre-
dicted to cross over from a Ti~ law at intermediate T to
a linear law at low T

It may be shown that the limit of a static, or kozen,
statistical distribution of magnetic fields leads to a log-
arithmically varying, highly retarded interaction. This
case has been studied recently by several authors. s is In
Ref. 9 a particular gauge-invariant single-particle Green's
function was considered in the limit of large particle en-

ergy, such that a quasiclassical approximation could be
applied. The numerical studies of localization in a ran-
dom magnetic field have been interpreted controversially.
While the authors of Ref. 12 conclude that all states are
localized in two dimensions, the authors of Refs. 11 and
13 argue in favor of the existence of extended states. We
have recently been able to show that the problem can
be mapped on to a nonlinear 0. model of matrices with
unitary symmetry, for which all states are known to be
localized. The single-particle properties have been shown
to depend on the geometry considered and a single-
particle relaxation time describing the broadening of Lan-
dau levels in an external uniform magnetic 6eld has been
calculated in quasiclassical approximation.

II. GENERAL FORMULATION

A. Model

We consider a quantum particle of energy E in a static
random potential V(r) in two-dimensional (2D) space.
The particle is subjected to a magnetic 6eld Buctuat-
ing in space and time, described by the vector poten-
tial a(r, t). We will also consider a uniform static mag-
netic 6eld B normal to the plane, with vector potential
A(r) =

2 (y, —x). The Hamiltonian of this system is
given by

where gt(r) [g(r)] are field operators creating [annihi-
lating] a quantum particle, m is the particle mass, and
e is the electric charge, and we take the velocity of light
e = 1. The coupling constant e' is the effective charge
of the quantum particle with respect to the fluctuating
part of the magnetic field, which we allow to be different
&om e.

The random potential V(r) will be assumed to be char-
acterized by a b-correlated Gaussian distribution with
(V(r)V(r ')) = (V2)6(r —r '), although the precise form
of the distribution is not essential for the following.
The elastic relaxation rate of particles of energy E is
i = 2mN(E) (V2), where N(E) is the density of states for
one spin, given by N(E) =

2 for noninteracting parti-

cles with quadratic dispersion ez ——~2 and N(E) = 2,,
for a weakly interacting system of Bose particles with
linear spectrum e„=cp.

The Huctuating gauge field a(r, t) will be assumed to
be Gaussian distributed as well, the variance being given
by the correlation function in Fourier space,

(a ap)g = Pp(k) coth Im(
( ) ), (2)

where b+&(k) = b p —k kp and k = k / ~
k ~. This

form of the vector potential field propagator is reminis-
cent of the electromagnetic field in a metal. In applica-
tions to be discussed later the Huctuating field will be
a fictitious internal gauge field, for example, associated
with the separation in spin and charge degrees of free-
dom hypothesized in models of strongly correlated lat-
tice electrons. i 2i However, it is conceivable that Huc-
tuations of the internal current distributions in these sys-
tems would give rise to the same type of magnetic-6eld
Huctuations. The parameter yg in (2) may be interpreted
as a diamagnetic susceptibility, whereas 0 (k) plays the
role of the nonlocal conductivity. For small k, kE~ && 1,
0(k) = (e')2k~I~ is k independent, whereas in the op-
posite limit kl~ && 1, 0'(k) = (e')2k~/n'k. In the case of
the usual transport theory of metals k~ and E~ are the
Fermi wave number and the elastic mean &ee path of the
electrons. Here we want to consider k~ and 8g as pa-
rameters without an immediate physical interpretation.
In particular, the elastic mean free path induced by the
random potential V(r), E = v@7, where v@ is the velocity
of the particles, will be assumed to be unrelated to E~.

In the following we will only consider the thermal Quc-
tuations of a(r, t) for which the condition

~
~ ~( T must

be satis6ed. Then,

2T/o (k)
(0, ap)i, = b~p(k)

K= d r r —iV —eA r —e'ar, t.2m

+V(r) @(r)

where

I'(k) = yak /o(k)
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characterizes the excitation spectrum of the gauge field.
We will concentrate on the anomalous-skin-e6ect regime,
kE~ )& 1, where the most interesting behavior is ex-
pected. Then, I'(k) = [vry&/kz(e')2]ks; i.e. , the typical
frequencies of the gauge field vary as the cube of the wave
vector, leading to a very singular behavior of the gauge
propagator at small ur, k.

B. Vfeak localization correction to conductivity

In this paper we calculate the quantum correction to
the conductivity, bo, for the system described above. It
is well known that this can be expressed in terms of the
so-called Cooperon amplitude,

i ( to) ( tot t( tot t(
C~. (r, t r ' t ') = &I r t + —14'

I » t ——10'
I

r ' t '+ —
I
O'

I
r ' t ' ——

IxN(E)T (' 2) (' 2y ( ' 2) ( ' 2)

OO

b~ = ——e'D~ dto(C, , (O; O))
7r —OO

(6)

where the angular brackets denote averaging over the
static random potential. One may interpret Cq, (rt, r 't ')
as the probability amplitude for two particles with energy
E to move &om point r ' to point r within time intervals

tp. The conductivity correction for a quantum
particle with given energy E is found as

where D = 2v&7. is the diH'usion constant, the angu-
lar brackets denote the average over the gauge field,
Cq, (0, 0) = Cq, (r = O, t = 0;r ' = O, t ' = 0), and vE
is the velocity of the particle.

For a given space- and time-dependent gauge field the
equation of motion for the Cooperon is obtained from the
diffusion equation for Ct, valid in the absence of magnetic
fields by the gauge-invariant replacement of the momen-
tum operator —

2 V by (—2 V —e*a —eA), for both par-
ticles,

- 2

+ D —iV —2eA(r) —e'a(r, t + to/2) —e*a(r, t —te/2) C = —h(r —r ')b(2to) .
Bto 7

Both equations, (5) and (6), can be obtained from phe-
nomenological considerations, without any microscopic
model assumption.

The averaging over the gauge field is most conveniently
done by representing the solution to (6) in the form of a
path integral, and integrating over all gauge-field config-
urations with Gaussian weight,

r(tp) =p

(Cq, (0, 0)) = — 17[r(t)]exp —(So + AS), (8)
r( —tp)=p

where

F p(rgtg, r2t2) = (e*) e*
2m s

(d
x cos —(ty + t2)

2

+ cos —(tg —t2) (a ap)g

The integration on
I

k
I

should be cut off at the in-
verse elastic mean kee path, as the diH'usion equation
only holds for length scales larger than E. Performing
the ~ integration yields

1T ' 'd'k l
AS = ——(e')' dt, dt,

2x g(g 2x k2

tp

Sp = dt's
r' (tq) + 2er(tq) A(r(tq))4D xe*" " " b p(k)r' (tg)r'p(t2) hg(tg —t2)

+&I (tv+ t2)

tp tp

AS = dt's dt2i (tq)r'p(t2)E p(r(tq), tq, r(t2), t2),
—tp —tp

where

(
&„(t)= exp I

——l'(k)
I t11

2 )

with

Since b,g(tq + t2) only depends on
I

k I, the integration
over angles of k may also be done, leading to the final
result
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1 T ' 'dk-
hS = ——(e') dtidt2 —(vi . v2)F1(kr) —(vi r)(v2 r)F2(kr) Ai, (ti —t2) + Al, (ti + t2), (14)

2+ X& —tp 0 k

where

F„(*)= J,(*) nj—,(~)/*, n = 1, 2, (15)

[

A uniform (k ~ 0), time-independent gauge field should
drop out of (14). We may rewrite (14) by performing a
partial integration and using the property

and the J„(2:)are Bessel functions. Here we have defined
v; = r(t ), r = r(ti) —r(t2), r =[ r ~t and r" = r/r

The k integration in (14) appears to diverge logarith-
mically at the lower limit, since lim ~0F1(z) = 2. This
divergence would be unphysical and one may expect it
to be removed by taking gauge invariance into account:

I

~ ~

Cp

dtidt2r(ti) r(t2) = 0,
—Cp

which holds for any closed loop path r(t). The term in
question may be transformed as follows:

dk
lim dtidt2(vi v2) Fi(—kr) 6~(ti —t2) + Ai, (ti + t2)

kg -+0 k

= lim dtidt2(vi v2) ln(klan)F1(kr)[hq, (ti —t2) + hq, (ti + t2)]1.,kgmO

g
—1

d
dkltt(kl, )

—(Ft(kr)[tk, (tt —t, ) + tk„(t, + t, )]) j,dk
(16)

where l0 is an integration constant. Note that (16) does not depend on t0, and therefore lp may be chosen in the most
convenient way. The first term in the latter expression vanishes for the choice lp ——I, since

lim dtidt2(vi v2)ln(kiE)F1(kir) [Al, (ti —t2) + Ai, (ti + t2)] = lim dtidt2(vi v2) ln(kit') = 0
kgmO kg m0

for any finite value of t0 and any path satisfying [ ri(t) [( oo. Here we used limi„~0 Ai„(t) = 1.
The fiuctuation part of the action may therefore be written in the regularized form

dk[(vt vt)ltt(kl) —(F,(kt)[tkt(tt —tt) + t4(h t. tt)))
dk

1 T g
—1

d
b,S = ———(e')' dt, dt,

2x gQ f 0

1
+(vi ' r)(v2 ' r) F2(kr)[+it(tl t2) + +it(tl + t2)]k

We will now show that AS may be written in a scaled
form, exhibiting the dependence on two external vari-
ables, the temperature T, and the elastic mean free path
e.

C. Scaling form of the quantum correction
to the conductivity

L 2
condition (ii) may be expressed as

4DPp 2~yg
two scales p0 and L0 are therefore determined as

TD
P' =

2,T

The total action takes the scaled form

(20)

It is useful to define a characteristic temperature

TD ——Dk~2

and a dimensionless coupling constant

q = e'D/X, . (19) with

1 (T'[
s0(T0) + sl(«t ~/L0) + sB(TO rB/tLO)t4 (T0)

(21)

The dimensional dependences may be scaled out of the
action S by defining dimensionless variables 7 and x as
t = P0T, r = L0x. We determine P0 and L0 by requiring
(1) —2'I'(k)

[ t, +t, [= ~s
[ T~ [

where e is the scaled
momentum variable l(; = kL0 and r~ = ri + T2 and (ii)
that the prefactors of S0 and b,S be equal. Condition (i)
leads to the relation [nyq/2k~(e')2]L0 P0 ——1, whereas

(dxl»(«) =
&dr)

dx;
BB(T0trB/L0)= 2 dT EdjX~ t

and

r~ ——eB, (22)
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Tp I p/e d l
er(ee t/L ) = — deed e de (xr . tee) In(et/Le) —]Fr(xx)6„(cree)]+ (xr x)(xe x)—Pe(xx) ri (erne)),

0 GK K

where

7- ) e ~'i~+I + e (24)

and 8 is a uniform, static magnetic Geld normal to the
plane (e,~ is the antisymmetric unit tensor). It is seen
that in zero magnetic field S depends only on two param-
eters, (T/Tp) and (I/Lp), and the scaled time 7 p = tp/Pp
The characteristic temperature To is given by

2
To = —gTD

7r
(25)

In order to determine the quantum correction to the
conductivity, we have to scale out the dimensional depen-
dence of Cd, (0, 0). Apart from an explicit factor of 1/r
[see the right-hand side (rhs) of (7)], CI, (0, 0) has dimen-
sion 1/(length)2, so that one may define a dimensionless
function C, (Ot 0; T/Tp4 E/L p) by

I l-
Cd (0, 0) = ——2C (0, 0; T/Tp, E/Lp)

T 0
(26)

The conductivity correction as given by (6) may be ex-
pressed as

) I/3

«p C, (0, 0; T/T(), I/L p)

fTe'f
I
—,——

f

.
(Tp' Lp) (27)

Thus ho is found to scale as a function of temperature as
T/Tp and as a function of the elastic mean &ee path as
e/L,

In an external magnetic field B the conductivity cor-
rection bo is seen to depend on the magnetic field through
the dimensionless variable (rII/Lp)

III. "INSTANTANEOUS" APPROXIMATION

A. EfFective Hamiltonian

If the gauge fields Ructuate rapidly in time, such that
I'(k)tp )) 1 for typical times tp, the exponentially time-
dependent factor A„(t) in (14) restricts the relevant in-
tel'actloll times to ] ti + t2 ~~ I (k), k ) kp. Tllls ls
assuming that the important interaction processes take
place at not too long wavelengths, or k ) ko, where A:0 is
a cutoff, chosen such that the relevant processes are in-
cluded. Since these processes are not known a priori, we
determine ko self-consistently. As we will show below, for
given cutoff kp one can identify a characteristic time scale
7,(kp) for interaction processes. We require that for all
wave numbers k of interest, i.e., for k ) kp, I'(k)v ) 1.

& (~) =
& k

~(~) .
4

(28)

As a consequence the fluctuation part of the action, AS,
becomes local in time. The fluctuations change so rapidly
in time that the coherent interaction of the "particle pair"
described by the Cooperon can only take place instanta-
neously, i.e., if ti ——+t2 for the particles propagating
in the same direction and if ti ———t~ for the particles
propagating in opposite directions around a closed loop.
One may interpret the resulting problem as that of two
particles with coordinates r(t) and r(—t) propagating in
the time interval 0 & t & tp, i.e., one-half of the original
time interval. It is convenient to introduce relative and
center of mass coordinatess

1
p(t) = r(t) —r(—t), R(t) = —[r(t) + r( —t)] . (29)

2

The total action then takes the form

Co

S, r[R(t)p(t)]„=. d, t( R (D') pR-p. ,
0 2

l.+ p-(D. ')-/s p~-
8

+4eR A(R) + ep A(p) j, (30)

where D, and D„are effective diffusion coef%cient tensors

[D, „'(p)] p= b p(I()+4I1(p)) +4I2(p)p p/3 D

= [Dl',.(p)] p.p/ + [D.„] (~-/ —I.p/)
(31)

which depend on the relative coordinate p through the
functions Ii 2(p), defined as

e-'
d -3

Ii(p) = — dk ln(kE) —(kLp) FI(kp) A(k/kp),
0 dk

' 'dj
I2(p) = — —(kLp) F2(kp)A(k/kp),

8 0 A:

where A(x) is a cutoK function. For the numerical evalu-
ation we have used A(x) = [x /(1+ x )] . The constant

I

Hence I'(kp)r, (kp) = 1 is the equation defining kp. Later
we will estimate the contribution of processes with small
wave numbers k & ko. %e will show that their contri-
bution is small in the regime where the instantaneous
approximation is applicable. The rapid falloff of the ex-
ponential factors A~ (tl kt2) in the k regime k ) kp allows
us then to replace them by b functions,



EFFECT OF A FLUCTUATING MAGNETIC FIELD ON WEAK. . .

Io is given by

1
I(} ——I + —(kpLp) 1n(k(}l) .

4
(34)

In (37) summation over repeated indices is understood.
The gradient operators in (37) are defined as the gauge
invariant combinations

The Cooperon may be represented in the form of the path
integral

(Co. (o, o}}= —,f d**f
p(4o) =0

X
p(o)=o

D[R(t)]

'D[p(t)]e +inst (35)

where x is the position vector x at time t = 0. The inte-
gral on x in (35) is the one in time slice t = 0 of the func-
tional integral 27[r(t)] in (8). The integration in any other
time slice t g 0 may be mapped onto the integrations on
R(t) and p(t). Since the action S~„,t is local in time,
the path integral may be converted into a Schrodinger
equation for the Green's function (C&0 (p, R; p ', R ')) in
imaginary time,

(Co. (0, 0}}= f d x(Co. (0, x; 0, 0}}. (39)

In the absence of an external magnetic field B, the eigen-
functions of H defined by

V = + i4eA (R),
a

0V~= +ieA (p) .
pa

The unusual values of the charge, 4e and e, are due to
our choice of coordinates.

The difFusion constants D„, in (37) depend on the rel-
ative variable p, but not on the center of mass variable R.
This allows elimination of R from the Green's function
in zero magnetic field,

+H(p, R) (C„(p,R; p', R'))
Bto

Hg„i,(p, R) = E„i,g„i,(p, R)

take the form

(40)

= —b(p —p ')b(R —R ') 6(t(}) . (36)
'T

( R) iid Ry (p) (4i)

The Hamiltonian H, as derived in Appendix A, is given
by

H = D, , pV —V—p
—2V~D„pV~p — (V~V~pD„—p) .

Assuming the P„ to be normalized,

~'p4:~(p)4-~(p) = ~- (42)

(37) we may express the Green's function in the form

(C.=o(P, R;O', R'}}=f dto(Co. (P, R;O', R'}}

1 d~k ).vP„'„(p, R)((('d„i,(p', R')
(2z)2 E„i, (43)

It follows that only the eigenvalue k = 0 enters the x-
integrated Green's function, as

(C' =o(0 0}}=f dox(C =o(0 x 0 0}}

~ )-4". (o)&- (o)
E„g

(44)

In other words, the kinetic energy operator involving V
may be replaced by its zero eigenvalue. This is related to
the fact that in zero external magnetic field the Cooperon
amplitude is equal to the classical diHusion probability,
which is conserved. The integral over the center of mass
position x is therefore normalized to»~sty.

In the presence of an external magnetic field the equa-
tion of motion for the Cooperon is no longer the dHFusion

equation, but acquires nonconserving parts. Therefore
the Cooperon amplitude is no longer conserved by itself.
However, the absolute square of the Cooperon amplitude
is of course conserved as it represents the quantum me-
chanical probability density. This property is unfortu-
nately not sufficient to allow elimination of the center of
mass variable R. One is therefore dealing with a genuine
two-particle problem in this case. In the following we will
concentrate on the zero-magnetic-field case.

B. Cooperon in sero external magnetic Beld

As shown in the last section, the center of mass variable
R drops out in zero magnetic Geld, leaving a one-body
problem to be solved. The e6'ective Hamiltonian for this
is given by (37), omitting the first term oc V Vg. Fur-
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thermore, it will be convenient to commute a factor of
(Dll)i~2 symmetrically to both sides of H. The ensuing
equation is given by

1'(ko) =I E~ I
. (52)

This provides the self-consistency equation from which
the momentum cutoff kp may be determined:

Here

D1/2
(~) ( .)"(~)( =0(~ o)) =-

2
(~).

(45)

Substituting Ei, from (50) one finds

ko ——( exp( —1/A),

where

(53)

U(p) DV lnDII(p) (Dll D ) (46)
1 21D|9
4 "

4P Dll t9P

1 1
(C, 0(p, 0)) = — Inkpp+— (47)

where we have identified the range of the potential rp
with the inverse momentum cutoff, rp ——kp . The cou-
pling constant A is given by

1 -2
dpp 1nDII(p)

32 g .8p

dp —(Dll —D„) .1 1 0
4 e DII(p) gP

(48)

Note that A is of second order in the perturbation q" D„.dp
The first and dominant term is a positive definite quan-
tity. The second term on the rhs of (48) is also a second-
order contribution originating from the anisotropic part
of the potential U, oc (DII —D+). We estimate it to be
positive and at least one order of magnitude smaller than
the main term.

A numerical evaluation of A yields

plays the role of an effective potential for the relative

motion of the Cooperon. Since D„' are functions of
p =~ p ~

only, the angular dependence may be separated
out. In the limit p ~ 0 only the 8-wave component will
survive.

The additional term proportional to (Dll D+) in—(46)
is small compared to the first term, because D„—D+ Iq
and the integral I2 defined in (33) is smaller than Ii due
to the logarithmic factor in (32). We will neglect this
term later.

The solution of (45) can be found with the aid of Ap-
pendixes B and C as

( = (s./2g)k~'

is a temperature-independent characteristic length. In-
serting ko from (53) into (49) yields the following equa-
tion determining A:

3 (T t 1 1 1 (—= ln
~

—
~

—-ln — —+ ln — + ci,qT) 2

where To is defined in (24) and ci ——in(16/~cq) 3.

C. Correction to conductivity

We may now substitute the result (47) for the
Cooperon into (6). The limit p -+ 0 must be interpreted
as p = 8, the elastic mean free path. It is important
to observe that the self-consistently determined cutoff kp

depends on the coupling constant A in an essential way.
The quantum correction to the conductivity thus is

obtained using (6) as

, (2Si1) -1
b'o = —e —+ 2ln— (56)

where A is a solution of (55) and the factor (2S + 1)
accounts for the spin multiplicity of the carriers. It is
interesting to note that in the limit

& )) in(~&), when the

terms in(~&) may be neglected in both (55) and (56), ho is
only a function of (T/To). The dependence on the mean
free path E drops out in this limit, implying that the
renormalization of the diffusion constant is so effective
that the memory of the initial scale 8 is completely lost.
In other words, the relevant k modes in (19) satisfy the
inequality k && E

More explicitly, the quantum correction to the conduc-
tivity is given by

A = cp(16) (kpI p) ln (kog),

where ep 0.4.
As shown in Appendix B, the effective potential U(p)

defined in (46) has a bound state of energy

where

, (2S+ 1) T* ils
bo = —e ln

4' 2

6 - 1 1 ( - —1
T* = Tp — —+ln—

(57)

Es = —2Dko exp( —1/A) . (50)

We may identify the energy scale defined by
~

Ei,
~

as
characteristic of this problem. Therefore the characteris-
tic time scale v, introduced in the beginning of Sec. III A
wilI be determined as

r. = 1!I E~ I
.

is a weakly temperature-dependent quantity.
A comparison with the usual expression for weak lo-' 2S+xcalization, ba = —',+ ln(ry/r), shows that the effec-

tive phase-breaking time vy varies as r~ oc T ~ . It is
unavoidable that at low temperatures the so-determined
phase relaxation rate —will be much larger than T. This

T+
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comparison, however, does not have any physical signif-
icance, as the energy scale 1/7y does not appear in our
derivation. Thus, one should in particular not conclude
kom this that the quasiparticle relaxation rate exceeds
the temperature and that therefore quasiparticle States
are rto longer welL de/ried F. or later comparison we de-
fine the apparent phase-breaking rate 1/v& by

{58)

TD

0.3.

0.2.

0.1-

-~cg 1 (1 () . i(s~-+in-~
16 p E)

I

—+lci, 1 (1 (l
+A ~& &)

(59)

It is worthwhile to return to the question how the self-
consistently determined scales ko and

~
Es

~
relate to

the scales Lo and Po derived in Sec. II C on the basis of
dimensional analysis. Using the definitions of Lo and Po
in (20), (50), and (53) we find

0. .
0 Qs1 0.3 Qs4

FIG. 1. Schematic overview of the regions of applicability
of the instantaneous approximation in the anomalous- (region
marked A) and normal- (N) skin-effect cases, and of the qua-
sistatic approximation (8), in the temperature-disorder pa-
rameter plane [To = Dk~, g = D(e') /Xqj. The curves
shown are T = To (1), T = T;„,t (2), Lp(T) = Ey (3),
T = T;„,t,„(4), for typical values of the parameters.

g
~

—+ln —
~

&&1.
cg 1 (1 ()

4x ~P (A
(60)

On the other hand, the condition A « 1 should be sat-
isfied, which requires T « To. The instantaneous ap-
proximation is thus seen to be valid in the temperature
interval

Tinst « T « To
&

where

( 4z 1) z(s
Tinst = To exp

cw g)

In Fig. 1 the regime of validity of the instantaneous ap-
proxiination in the anomalous-skin-efFect case is shown
(area marked A). In addition to the boundaries 1
(T = To) and 2 (T = Ti„,t), the boundary to the regime
dominated by normal-skin-e8ect behavior, de6ned by
Lo(T) = E~, is shown. The crossover at the boundary
T = T;,& may be obtained by imposing the restriction to
the classical Suctuation regime by an upper cuto8' kT in
the k integration, where kT is defined through I'(kT ) = T.
When k~ approaches the lower cutoK ko &om above, the
contribution to 1/7~ &om large k values, k & ko, tends
to zero as kT —ko oc T —T;„,t. The phase relaxation for

In other words, the length scale ko and the time scale

) Es
~

are identical to the formally defined scales Lo
and Po up to logarithmic corrections. This lends support
to the expectation that the self-consistency argument em-
ployed in conjunction with the instantaneous approxima-
tion captures the principal contribution to bo.

Equation (59) also serves to determine the regime of
validity of the instantaneous approximation. The rele-
vant condition follows &om the requirement that the fiuc-
tuations may be treated classically, or I'(ko)

~
Es ~&& T,

which can be cast in the form

T & T;„,t is entirely due to small k processes, which will
be considered in the quasistatic approximation below.

Finally, we note that using (55), the quantum correc-
tion to the conductivity may be expressed as

bo = —ez ln
z2S+1

22S+ 1 Lp
2mz

(63)

D. Normal-skin-efFect regime

In this subsection we briefiy consider the instantaneous
approximation for the case koE~ && 1, when the gauge-
field propagator has the normal-skin-efFect form and

I'(k) = „~k', k &f. ',
8 20'p)

where 0p = k~8~. We will assume here that the relevant
processes take place in the regime of wave vectors k &—1
p o

The normal-skin-efFect regime for a usual metal, i.e.,
for one species of particles, such that our parameters E~
and l are equal, has been considered before, 22 s in par-
ticular in the so-called strong-skin-effect regime, where
kb(cu) » 1. Here k is the typical wavelength of electro-
magnetic fiuctuations, and h(oi) = c2/2mow is the skin
depth for a 2d metal. Using k L& and ~ r&
the condition for a strong skin effect can be written
(c/v~)(itE) i )) 1, where ~ = [4me2N(0)]i(2 is the
screening wave number. In this regime the longitudinal
part of the electromagnetic Quctuations, i.e., the Buctua-
tions of the electric field, dominates. As shown in Ref. 22,

where the phase-breaking length L~ has been defined as

Ly = ((ko ) (2 ((Lo) ( . This result follows &om
the usual relation L~ = (D7~) (2 if r~ is identified with

Po ~Los and D is replaced by D((/Lo) .
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the interaction is rigorously instantaneous in that case.
The corresponding Hamiltonian is that of a particle (with
constant mass) in a potential. The phase relaxation rate
is found as

from
~
E, (&& T that

] c i/2 - (L„) (Al
-«r i-~ (72)

1 c T
ln(xa /e') .

'T~ 2Ão
(65)

It is worth noting that e2/0 = R~e2 &( 1 in a weakly
disordered system (Rz is the resistance per square). We
will compare the result (65) in the following with the
apparent 1/r4, induced by transverse magnetic-field fluc-
tuations in the weak-skin-efFect case.

We now return to the case of transverse magnetic-field
fluctuations. The dimensional analysis analogous to the
discussion in Sec. II C yields the same time scale Pp, given
in (19), but a difFerent length scale L„defined by

(66)
2g 0'y T

The instantaneous approximation can be applied to this
case as well. The steps leading to (45)—(48) can be
taken over unchanged. Only the explicit expression for A

changes:

(68)
2go'y

The condition A (& 1 is seen to carry over into 2goF &) 1.
The cutoff momentum kp is now determined &om (67) as

c i&4-1 t' A ) t'L„) - 'I2
kp= —" —ln( —/+in( "

/

L„'=c„L„',&')-
(69)

where ci, is a constant, apart &om logarithmic correc-
tions.

Inserting kp and A into the expression (47) for the
Cooperon, one finds the conductivity correction as

(70)

By equating the argument of the logarithm in (70) to
(r4, /r) i~2, we find the apparent phase relaxation rate as

~232—„=—~a9 ozT-
7 7r

Thus r& is seen to be a linear function of T. For large
o&, as required by the weak coupling condition, the pref-
actor of T is likely to be larger than unity.

Finally we have to consider the regime of validity of
the instantaneous approximation in this case. It follows

A = c„(kpL„) ln (kpg),

where c„ is a constant. As in the case considered before,
there is a single bound state in the weak coupling limit

(A &( 1), with energy given by (50). The relation (52)
now no longer determines kp, as the factors of kp2 on both
sides of the equation drop out. Rather, (52) serves to
determine A, which is now a parameter independent of
T,

The small parameter of the instantaneous approximation,
[(e*) D/yqj, guarantees a regime of temperatures, where
(72) is satisfied. However, in the limit of low tempera-
tures, the increase of Io oc T / will eventually lead to
the violation of (72). Thus the validity of the instanta-
neous approximation in the normal-skin-efFect regime is
restricted to T & T;„,i „,where

t X)"1-
Tinst, n = Tp, ~ exp

(C~p g
(73)

and Tp „——(mA/c„)(D/g2l2) is a characteristic tempera-
ture.

On the other hand, the temperature regime is bounded
from above by the requirement that kgb « 1, which
translates into L„))l~, or

T (Q Tpf+ ) (74)

where T~g = &TD/&I;g
In order for T;„,t, „to be sufEciently low, the diffusion

constant should be small, such that g &( 1. This together
with the condition A &( 1 confines g to

1 &(g && op {75)

Comparing the result (71), with the phase relaxation
rate 1/r&+ K induced by electric-field fluctuations gen-
eralized to the two-component system considered in the
present work, i.e., replacing 0' by crz, we observe that the
magnetic-field-fluctuation-induced rate (71) is dominant
in the parameter range where

4c&(go'F) in~pe )) 1 .

For values of o~ )) 1/g, condition (76) is seen to be satis-
fied. The regime of validity of the instantaneous approx-
imation in the normal-skin-effect case is shown in Fig. 1
(marked N). The boundary T = T;„,i „is represented by
the curve labeled 4.

It is instructive to rewrite the apparent phase-breaking
rates —'„and —„obtained within the instantaneous ap-

Tp T4

proximation in a form using the crossover temperature
Tiv~ defined in (74),

1/3
g ( T

&F (TNA

1
and

Tn
g TTD, (76)

NA

up to logarithmic corrections. The Ti/ behavior is seen
to crossover smoothly into a linear T law.

IV. qUASISTATIC APPROXIMATION
In the limit where the magnetic-field Huctuations are

very slow in time, the typical &equencies of the Huctu-
ations are small compared to the inverse characteristic
time of the problem, i.e., I'(k)tp (( l. In the expression
(19) for the action AS we may then replace Ai, (t) by 1,
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1 T(e')2 -16S = —— dhdb dk (vx va) ln(k/) F—x(kr) + (vq r)(vq r) —E2(kr)) .
Xd —g p dk k (77)

The dependence on rq, r2 may be scaled out, to give

]. T(e')AS= —— dtqdfq (v~ .vq) Q(r//) ln —+ P (r//) + (vs r)(vm r)Pg(r'//)),
Xd —to e (78)

where
(b(r)b(r )) = ~(r

Xd
(83)

q(./~)= S;(0) Z,—(./~)

dz, (z)P, (r/g) = dz lnz
0 dx

v/E

P2(r/E) = dz —Ez(*) .
p X

(79)

The ffuctuation contribution to the action (9) may be
reformulated as

Cp Cp

AS= 2e' dt's dt2r' (tq)r'p(t2)(a (rq)ap(r2))—&p —&p

In the difFusion approximation for the dynamics of the
particle, which we have been using throughout, spatial
distances less than the elastic mean free path / are mean-
ingless. On the contrary, we are assuming that typical
distances are much larger than t', and therefore we should
consider (79) in the limit r » /. In this limit, the func-
tions Q, Pq, and P2 approach constant values, in partic-
ular Q -+ ~~. The logarithmic term is seen to dominate,
and we may write

T( )2 0 e

AS dtqdtz r(tq) r(t2)2' Xd

„, Ir(t~) —r(tl) I (80)

ES= — dr, ]dr ln
2KXd

= 2 dAq dA2b rq —r2
T(e') 2

Xd
(81)

where dAq 2 denotes integration over the area enclosed
by the path.

The result (81) may be derived in a diff'erent way. In
the quasistatic limit one can replace the arguments in the
cosine function, 2 (tq +t2), in (10) by zero. The remaining
integral en (a ap)~ ever ~ yields

This expression for the action is highly nonlocal in time.
A similar problem was discussed in Ref. 8, in the context
of single-particle properties without an additional scalar
random potential. The authors of Ref. 8 approximated
ln

I r(tq) —r(t2) I f (tq —t2) and proposed to determine
the function f(t) self-consistently. However, it is not clear
how to relate f(t) self-consistently to the properties being
calculated in this case.

The expression (80) for the action b,S may be rewrit-
ten as

=2e' q~ 2p a rq ap r2

'T= 2 dAg dA2 rg —r2
Xd

(84)

~S=2'(') )-.;A, ,
Xd

(85)

where n, is the number of loops enclosing the area A;.
In the limit of weak disorder where E7 » 1 (E is the

typical energy of the carriers), the probability of multiple
loops is small, since the probability of return is propor-
tional to (Er) ~. One may obtain an estimate of

I
b,S

I

by replacing the factor n2 in (85) by 1,

where (RE 2 denotes integration along the closed loop
path r(t) and we have used Stokes' theorem to transform
the line integral into integrals over the area enclosed by
the path.

In the case of a self-intersecting path, it may happen
that a certain area A is encircled more than once. In this
case, the integral over the area A has to be performed a
corresponding number of times (the winding number n)
in both integrations (dAq and dA2). If we now perform
one of the integrations over the area with the aid of the
b function, we are left with a single integration over the
area enclosed by the path, which in the absence of multi-
ply winding trajectories just yields the area enclosed by
the path, irrespective of the sense of rotation of the path.
Any area A encircled n times by the path yields a con-
tribution nsA, because the h function can be satisfied in
n difFerent ways taking into account the n windings in
integration dAq and the n windings in integration dA2.
The action b,S can thus be expressed in terms of the ar-
eas A; encircled by all closed loops formed by the (closed
loop) path r(t) as

T
(a ap)I, = h p(k)2' Xd

T(e')'
Xd

(86)

The corresponding correlation function of the magnetic
field b(r) = V x a(r) is given by

where A is the total area enclosed by the path. In a qua-
siclassical approximation, A is given by the area covered
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AS to to

Po
(87)

A linear dependence of AS on time to is equivalent to
phase relaxation given by the rate

by a diffusing particle in time to. A, ~
——Dto. Substitut-

ing this into (86) and employing the definition (19) of the
characteristic time Po, we find

A different approach would be to develop a perturba-
tion theory scheme, which can deal with the severe in-
frared divergences appearing here. This has been done
successfully for the calculation of the diffusion coefEcient
in the static random magnetic-field problem. However,
the calculation of the Cooperon requires a controlled de-
scription of the infrared properties of the single-particle
Green's function first, which is a nontrivial task in itself.

1 (e')'D
Tp

(88)

It is interesting to observe that the temperature depen-
dence of ~ is linear, as is the case for —induced byT Tf
Coulomb interaction processes. However, in that case

R= mT(+', ) ln(, &) and the prefactor is seen to be

proportional to the resistance per square B, whereas ~
TQ

in (88) is seen to be inversely proportional to B Th. is
difference can be easily understood by observing that a
random magnetic field induces fluctuations of the charge
current. In the classical regime these Buctuations are
proportional to the temperature and the "conductance"

g, whereas the fiuctuations of the electric field are pro-
portional to the resistance.

A necessary, but not sufficient, condition for the valid-

ity of the quasistatic approximation is I'(k = L& )r~' &(

1 where L~& ——Dr~. Substituting I'(k) as given by (4)
for the anomalous-skin-efFect regime and r&', this con-

dition takes the form T (& To, with To defined in (24).
In the normal-skin-e8'ect regime one finds the condition
gq/oD« 1, wh'ich coincides with the weak coupling con-
dition A « 1 stated in the text following (68).

The contribution (88) to the phase-breaking rate is due
to the quasistatic, or low-wave-vector processes, i.e., in
the regime 0 & k ( ko, which we neglected in the in-

stantaneous approximation. As long as the conditions
for the validity of the instantaneous approximation (61)
hold, and 1/rg is less than the apparent phase-breaking
rate 1/r& derived from the correction to the conductivity

(57), the quasistastic processes are negligible. This holds
also in the normal-skin-effect regime, with the ratio of
(71) and (88) given by r& /rg exp(1/A) » 1. However,
in the low-temperature regime T & T;„,t, , where T;„,t, is
defined by (62), the quasistatic processes dominate. In
this case the usual interpretation of the weak localiza-
tion correction (see the discussion in the Introduction)
holds: At the time scale 7@ the coherent motion of par-
ticles is cut ofF. The regime of validity of the quasistatic
approximation is indicated in Fig. 1 (area marked 8).

It is interesting to note that the prefactor of T in (88)
can be larger than 1 (the condition for the validity of
the quasiclassical average over b,S is ~ && —). In other

Tp T

words, ~ appears to become larger than T. This mayT+
be thought to be in con8ict w'ith the inelastic transport
relaxation rate — T. However, whereas small mo-

Ttr
mentum transfer processes do not contribute to 7t„ they
are shown in the above to give the main contribution
here, so that ~ may well be larger than —.

T+ Ttr

V. APPI ICATION TO HIGH-T, COMPOUNDS

We will now discuss the possible relation of our re-
sults to the experimentally observed weak localization
corrections for the magnetoconductance in Bi 2:2:0:1
compounds. s In these experiments the longitudinal and
transverse magnetoconductance, i.e., for current oriented
in the CuO plane and magnetic field parallel to the
current or perpendicular to the CuO planes, was mea-
sured in the temperature range 0.5—20 K. The supercon-
ducting transition temperature in these samples was less
than 0.3 K. The data showed evidence for both weak lo-
calization corrections (negative magnetoresistance) and
interaction-induced quantum corrections (positive mag-
netoresistance). By subtracting the measured longitu-
dinal magnetoresistance from the transverse one, assum-
ing that the interaction-induced contribution is isotropic,
one can isolate the weak localization contribution b 0'wi, .
The data for bowL obtained in this way were fitted to
the usual expression

1 r2

(89)

where r&~ ——1/(eB). Good fits to the data were obtained,
except for temperatures T & 2 K in low magnetic fields,
where an anomaly in the longitudinal magnetoconductiv-
ity was observed. It was found that L~&

——131T i~ nm

(T in K), whereas the elastic mean Bee path E obtained
&om the fit varied from sample to sample between 5.5
and 7 nm. It follows that the apparent phase relaxation
rate, normalized to the elastic scattering rate, is given by
r/r~ ——P/(2L ) = (T/T') ~, where T' 650 or 150
K, for values oA = 5,5 or 7 mn.

In the gauge-field model of high-T, compounds pro-
posed in Refs. 17 and 18, the charge is transported
mainly by the bosons (sometimes called holons), whereas
the fermions (or spinons) govern the behavior of the
gauge field. Unfortunately, the properties of the bosons,
i.e., the energy spectrum, are not very well known yet.
Elementary models of weakly interacting bosons are not
suflicient to explain the observed behavior. For exam-

ple, a quadratic spectrum e„= ~2 leads to an average

(t ehr mla) velocity ot the hoeooe, vre = g T Por the- .
elastic relaxation rate one finds in Born approximation

= 27|N(E)V2, and taking into account the constant
density of states, —is seen to be independent of temper-
ature. The diffusion constant follows as D = 2v~bw oc T.
The conductivity is temperature independent in this case,
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g = z"D = ' ", since the compressibility &" oc

A finite residual resistivity, obtained by extrapolating
the linear T dependence observed over a wide temper-
ature range, to zero temperature, is indeed observed in
experiment. However, the corresponding weak localiza-
tion correction, obtained by averaging the result for one
particle of given energy E, over energy with weight fac-
tor zz, where n(E) is the Bose distribution function,

yields a prefactor z" of the usual ln(7~/7 ) term, which is

much more strongly temperature dependent (oc &) than
ln(7~/v) Suc. h behavior is definitely not seen in exper-
iment. Rather, the charge carriers appear to have the
characteristics of fermions.

One possible way out of this dilemma is to assume that
the bosons in low-energy states of the band are local-
ized, up to a mobility edge E, (the characteristic energy
where strong localization crosses over to weak localiza-
tion). Due to the mutual repulsion of the bosons, each
localized state is only singly occupied. The number of
bosons localized in states below E, is thus temperature
independent. These particles effectively correspond to a
Fermi sea, and E, plays the role of the Fermi energy. In
the limit of low temperatures all the mobile bosons are
within a narrow temperature interval of width T around
the energy E, The we. ak localization contribution in the
limit of low temperature, T « E„ is thus given by (56),
with the energy E given by E,.

Another possibility would be that the charge carri-
ers are actually fermions, in a different formulation of a
slave particle representation, or else through an effective
transmutation on account of the strong interaction of the
bosons with fermions and the longitudinal gauge field. In
principle, the distinction between bosonic charge carriers
or fermions carrying spin is possible by measurement of
the spin degeneracy factor (2S + 1) in (57).

In any case, a two-component description hss the ad-
vantage of allowing the gauge Beld to be in the clean
limit, while the charge carriers may be in the dirty limit.
In the original formulation in terms of holons and spinons
this is achieved by taking into account that the spinons
couple less strongly to the charge distribution around an
impurity than do the holons (see Ref. 20 for a discussion
of the screening of the efFective impurity potential seen
by the spinons).

Consequently, the spinon mean &ee path Ez can be
much larger than the holon mean free path E. This al-
lows one to satisfy the condition for the validity of the
instantaneous approximation, g & 1, in the anomalous-
skin-effect regime of the gauge field, where koI~ & 1
has to be satisfied. However, even if I~ )) E, and for
g « 1, the condition kol~ & 1 will be violated below a
characteristic temperature T „given by E~ ——Io(T „),
or T „=(& .&~' )g~ (+)(P-). In the temperature
regime T;,t & T & T „the normal-skin-efFect form of the
gauge-Geld propagator applies, and the phase relaxation
rate, obeys a difFerent temperature power law — T, as
given by (69).

A difFerent source of fIuctuating transverse gauge 6elds
would be the magnetic-6eld Quctuations generated by
current fIuctuations in the system. In this case the mean

&ee path E~ entering the gauge-field propagator would be
identical with the one of the charge carriers, E~ = L It
follows from the condition kof « 1 that only the normal-
skin-effect regime is accessible snd therefore — T in

this case.
The different temperature laws for 1/~~ predicted in

the various regimes defined by the characteristic temper-
atures T;,t. and T „should be looked for in experiments.
This requires experiments to cover a broader tempera-
ture range as well as a range of impurity concentrations,
in particular extending to cleaner systems.

On the theoretical side, a calculation of the magneto-
conductivity along the lines described in the present pa-
per is necessary, in order to compare more directly with
experiments. Work in this direction is in progress.

UI. CONCLUSION

We have shown that the weak localization correction to
the electrical conductivity 0 of charged quantum parti-
cles in two dimensions moving in a static random poten-
tial and subject to a fiuctuating magnetic field leads to
a variety of dependences on temperature, diffusion con-
stant, and the parameters E~, k~, y~ of the gauge-field
propagator in various regimes. As usual, we calculated
the weak localization correction as an integral over all
times of the Cooperon amplitude. The Cooperon in turn
was obtained &om its path integral representation. The
quantum correction to o is usually expressed in terms
of the phase-breaking rate 1/w&. For the case of the
electron-electron interaction, which may be modeled as
a fiuctuating electric Beld, it wss found some time ago
[3,22] that 1/ry jx (RrilnR~)T. As we are able to show,
a linear T dependence is obtained for a large portion of
parameter space also in the here considered case of a
Buctuating transverse magnetic field, albeit with difFer-
ent prefactors. However, in not too clean systems, such
that (e') zD/y~ && 1, where D is the diffusion coefficient,
e' is the charge of the particles in the (possibly fictitious)
gauge field, and yq is the diamagnetic susceptibility, and
in the special situation where the gauge field is in the
clean hmit (dispersion law u oc iks), we find the highly
unusual behavior 1/7~ ~ Ti~s. In order for the charge
carriers to be in the dirty limit and the gauge field to be
in the clean limit it is necessary that the properties of the
gauge field be governed by a different species of particles,
which scatter only weakly off impurities.

This regime is characterized by rapid Buctuations of
the magnetic field, such that the interaction processes
become instantaneous, or local in time. The Cooperon
amplitude, describing the interference of two quantum
particles traversing s closed path in opposite direction
and shifted in time by the amount to, has been shown to
be influenced dramatically by the following effect: The
difFusion of the two particles gets slowed down with in-
creasing relative distance by the magnetic-6eld fI.uctua-
tions. This in conjunction with phase relaxation leads
to a much stronger correction to the conductivity, or
expressed differently, to a xnuch larger apparent phase-
breaking rate 1/v&. A Ti~s temperature lsw hss been
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observed experimentally in a Bi-cuprate compound, for
which the existence of internal gauge Gelds has been con-
jectured, as discussed in Sec. V.

For systems still in the instantaneous regime, but in the
normal-skin-effect domain (u oc ik ), we find a linear T
law for 1/wy, with prefactor g3(T&, larger than the one

deriving &om electric-6eld Buctuations in a wide domain
of parameters.

Finally, we considered the opposite limit of a qua-
sistatic magnetic field. In this case the usual situation of
coherent quantum diffusion limited by phase relaxation
is recovered. We were able to estimate the part of the
action due to magnetic-field fiuctuations in a quasiclas-
sical approximation, leading to 1/7~ linear in T. Again,
the prefactor g may be larger than the one found from
electric-field fluctuations.

We found that the high-frequency, large-momentum
processes featuring in the instantaneous approximation
dominate the low-frequency processes taken into account
in the quasistatic approximation at least at not too low

temperatures.
Below a critical temperature T;„,& the high-frequency

processes are no longer available in the domain of classi-
cal fiuctuations, ~ (( T, and the quasistatic contribution
takes over. The rich variety of behavior found here de-
serves further experimental study. On the theoretical
side, work on various extensions including detailed stud-

ies of the quasiclassical approximation and the efFect of an
additional static uniform magnetic field are in progress.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this appendix we derive the Hamilton operator (37)
corresponding to the action S~„,( defined in (30). The
action S,„t(tp) defines the dynamics of a system of two
quantum particles. We first consider the case of zero
external magnetic field. The state of this system at time
t is determined by the wave function Q(r, R, t) specifying
the probability amplitude of the two particles at positions
r and R. The wave function at an infinitesimally later
time t+ e can be expressed in terms of an integral over all
positions the particles may have had at time t, weighted
with the phase factor exp[iS;„,&(e)]:

(Al)

@(r, Rt+ )=ef ftt(4 rt txteD,
~

r+ —
~

ttxteD
~

r+ — t(r+t(, R+ t)rt
t' 0'')

). & )i, ( P iD, t'
x exp —D '4

~

r+ —
~

rt .etc+ Doe[ r+
&

—(( ,(4) .

)
Since the effective diffusion coefficients D, p and D, p are position dependent, the question arises as to which average

position has to be used. As discussed by Feynman and Hibbs, ' the correct procedure is to use the midpoint position

rMp = r + )('/2. The normalization factors [2vrieD, „(r + ~2))
' depend on (('. They have been chosen such that

probability is conserved, which dictates the choice of the midpoint position. In order words, only for this choice will

the resulting Hamiltonian be Hermitian.
The rhs of (Al) is now expanded in e to first order, resulting in

Q(r, R, & + e) = Q(r, R, t) —ieHQ(r, R, t) (A2)

The operator H in (A2) may be identified as the Hamilton operator of the system. In the first step of this procedure,
the rhs of (Al) is expanded to sixth order in the variables ( and il, using the fact that they both scale as e't'2:

—1 Z

tt(r, R, t+e) = Z f ft (4' te p tDrett etc+ D„—'4( .(4j-
x 1+ D„D.(( VD, —)(g VD„')+ —D.(( V) D, '

+ D, (( tt)'D '+ D.(— %tD„'+D ('ttD'). ,„
8

" " 32~
2" ( ~D..'e(-(e+4( 'pD..'ee-ee ——

~ ~

)( 4tD,.'e(-(e+4( 4tD 'ee ee).. -

(g. V)'D„'zf (()+ (((' V)'D, '~q gz g(r, R, t)

+ D„g.VD„'+ D,—g VD, + — ((; VD„'p( (p+ —( VD, 'pq gp $ VQ

+—
(& V)'&+-(& V~)'&

2 2
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~ ~
~ ~

Linsey = D pRaRp + D„pr'ar—'p, (A7)

the generalized momenta are obtained as p
'D„.',',-an-d P. =,'„' =D..',R,. . —

The Hamilton function follows as

1
H, ) —— D, p(r)P P—p+2D„p(r)p pp .

2
(A8)

The corresponding Hamilton operator is derived by re-
placing p, P and r, R by their operator equivalents, after
the Hamilton function has been properly symmetrized:

1 1
Daap(r)PaPp + [pappDvap(r) + 2paDFappp

2
'

2

+D-pp-pp] (A9)

Using the identity p D„p ——D„pp + (p D„p) and
in position space representation, where p = iV and—
P = iV, one finds (A9) —to be identical to (A4). It is
remarkable that this result depends on the choice of the
full symmetrization procedure [with respect to the posi-
tion of the operator p relative to the operator D p(r)].
For example, the choice Dpl m 2(Dp2+ p2D) leads to a
result different from (A7).

In the presence of an external magnetic field, as in-
cluded in (29), the additional terms obtained from the
above procedure are exactly the ones obtained by the
minimal coupling scheme, i.e., by replacing the gradient
operators by their gauge-invariant counterparts:

where Z = [2z'ieD, (r)] [8xieD„(r)] ~ and D„D„are
defined as D, „= [det D, „] ~ . The gradient operator
V is acting on the relative variable r. After performing
the various Gauss integrals on $ and g, and rearranging
terms, the resulting Hamilton operator may be written
in the form

H = —D,—pV' Vp —2V' D„pV'p — (V—VpD„p) .

(A4)

Let us note again that this Hamiltonian is Hermitian. In
terms of the eigenvalues of the difFusion tensors D, ' andII &

DII, defined by

D, ,„p = DII „(r)r rp+D, „(8 p
—r rp), (A5)

where r" = r/r is the unit vector in the direction r", H is
given by

(D II —D+) (r" . V/) 2 ——D+ (V/) 2 —2 DII (V)2

"—+ —((V)'DII'~ + (DI———D„)Br Br 4 g "& 4rBr
(A6)

This result can also be obtained from the classical
Hamilton function by properly quantizing the position
and momentum variables. From the Lagrangian

where the charges e and 4e are taken from the action as
given in (29).

APPENDIX B:BOUND STATE OF A QUANTUM
PARTICLE WITH POSITION-DEPENDENT

MASS

The Lagrangian of a particle with mass dependent on
position is L = 2m(r)r' . The corresponding classical
Hamiltonian H, &

= p2/2m(r) can be quanitized as shown
in Appendix A to give H = s [

—p + 2p —p+ p2 —]. It
is convenient to move factors of [mo/m(r)]~~z to the left
and to the right, so that the Hamiltonian takes the form

1

27AO

x [mo/m(r)]'~',

H = [mo/m(r)]'~2 [V lnm(r)]
mo

(B1)

where mo ——m(r = 0) & 0. We also assume Vm(r) = 0
and m(r) = m for r & ro The. Hamiltonian (Bl.) is
manifestly Hermitian. If m(r) depends only on r =~ r ~,

which is the case we will discuss, H is rotation invari-
ant and its eigenfunctions may be classified according to
angular momentum.

We will show that the spectrum of H has at least one
bound state (in 2D space), which is an a-wave state. The
Schrodinger equation takes the form

@qq(r) = CrrKO(~r), (B4)

where tc = 2m
~
Es

~
and Ko(z) is a Bessel function.

Inside the potential region (region I), r & ro, one can
neglect the term ~'l EQ on the rhs of (B2) in compar-
ison with the term U(r)g(r) on the lbs. The remaining
difFerential equation for the s-wave component is

1d d - 1- 1d dr @g(r) = ————@g(r—)——r—lnm(r) .r dr dr 4 r dr dr (B5)

In the limit of weak interaction the energy of the bound
state, Eq, will be small, and the extension of the wave
function will be large, r ~ )) ro. In this case Q(r) is ap-
proximately constant. We may integrate (B5) to obtain
in 6rst order in U

d- 1- - d—@,(r) = ——@,(0) r—lnm(r)dr 4r dr 0
' (B6)

—2' V'+ U(r) &(r) = '
E@(r)

W H

where

1
U(r) = — V lnm(r) r & ro,

Smo

is a potential function, and @(r) = [mo/m(r)]~~ g(r).
In the regime outside the potential (region II), r & ro,

the s-wave solutions for negative energy Eq are given by

iVm iV+ eA(r)—, —

—iV + iV + 4e. A(R), - (Alo)

which yields the logarithmic derivative at the point r =
where the wave functions of the inner and outer

regimes have to be matched,
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1 d -(i)
I dr

r=rp

=0 (87)
APPENDIX C: GREEN'S FUNCTION

OF A QUANTUM PARTICLE
WITH POSITION-DEPENDENT MASS IN 2D

The logarithmic derivative of the wave function in regime
II is

1 d-
II rpln~rp

(88)

We conclude that in first order in U there is no bound
state, since (87) and (88) are only equal for r = 0.

Let us now consider the second-order correction. We
integrate (85) to get (H —E)G(r, r') =b(r —r'), (Cl)

In this appendix we derive the solution of the effec-
tive single-particle problem for the Cooperon, Eq. (44).
We note that this problem is equivalent to the problem
of a particle with mass m(r) dependent on position r,
where the diffusion coefficient D„(r) has to be identified
with [4m(r)] i. The single-particle Green's function for
energy E satisfies the equation

1 - d—gi(r) = —— dr/i(r) —r—lnm(r) .
dr 4T dr dr

and perform a partial integration of the rhs,

(89)
where H is given by (81). We are interested in calculat-
ing G for small distances

~

r —r '
~. The source term on

the rhs of (Cl) may be replaced by the boundary condi-
tion

1—gi(r) = ——Qi(r) —lnm(r) gdr 4 dr

+— drr ' —lnm(r)
dy, (r) d

4r p dr dr

Next we substitute the first-order result (86) for "@&("~

into the integral on the rhs to obtain

(810)

I dr

1 "' -d -2 2P
drr —lnm(r)

16rp p dT Tp

(811)

Matching this result with the one in regime II, Eq. (88),
yields the energy of a bound state,

E~ —— 1 —x/A
2C2m~ TQ

(812)

The coupling constant A is defined by

1 - 2

drr —lnm(r)
32 o dr

Thus we find a bound state even though the potential U
has repulsive components such that the integral over all

space is zero; i.e., the coupling constant is zero in first
order.

The second term in the effective potential (45), orig-
inating &om the anisotropy of the diffusion tensor D„,
may be included in the above consideration. We note
that its contribution to the coupling constant A is zero
in first order, since

Pp

&A('1 = — dp ——(Dll D )
—0 . (814)

4 DOp

This follows &om the fact that (D„—D+) ~ 0 in the
limits p M 0 and p ) rp. However, in second order AA

contributes. The sign of AA is not predetermined. We
have calculated DA numerically and find its contribution
to be positive and about 10% of A for koan = 0.01.

We now turn to the calculation of the Green's funnc-
tion.

1
lnr .lim G(r, 0) =-

r-+ p
' 4~m, p

(C2)

In region II (r ) rp), the solution for finite energy
E = k /2m ) 0 is given by the outgoing wave solution

Gn(r, o) = Cii[Jo(kr) + imo(kr)], (Ca)

where Jp(z) and Np(z) are Bessel functions.
The solution in region I can be written in the form

1
G, (., 0) = — h, (r)inr+ C,'f(r) .

4vrmp
(C4)

df
dr

rp
TQ

(C5)

with A defined by (813).
Matching the Green's function and its derivative in the

two regimes I and II gives the system of linear equations
for the coefficients Ci and Ci&,

—i —Inkrp ) ( G' ) 1 (' —inrp

(C6)

In the limit of zero energy, k ~ 0, one finds C&& ~ 0 and

1
C,' =—

4mmp

1-—lnrp +-
2A

(C7)

and the Green's function for r ( rp follows as

1 fr) 1
Gi(r, 0) = — ln

~

—
~

+-
4xmp (rp ) 2A

(C8)

Here f (r) is a regular solution and 2' h(r)lnr is a singular
solution of (Cl). The functions f and h are normalized
at r = 0: h(0) = f (0) = 1. The derivative of the singular
function is dominated by the lnr factor; so one may put
&(r) = 1 for the following, but the derivative of the reg-
ular function has to be calculated along the lines of the
discussion of the bound state in Appendix 8, Eqs. (82)—
(Bll). The result is
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