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Structure of the excitation spectrum of liquid He
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Results of high-resolution measurements of the inelastic scattering of neutrons from normal and
superAuid He are presented. A complicated structure of peaks corresponding to phonon-maxon-roton
excitations is observed. At T(Tz, the scattering can be described by a narrow peak plus a wide com-
ponent. The relative intensity of the narrow and wide components in the maxon-roton region follows
the temperature dependence of density of the Bose condensate. Above Tz, for the wave vectors

O —] ~
o

q )0.65 A, only the wide component exists. In the long-wave region (q &0.65 A ), a considerable
transformation of peaks with changing temperature occurs as well, although the two-component struc-
ture persists in the normal phase.

I. INTRODUCTION

In 1941, Landau described the properties of superQuid
He in terms of quasiparticle elementary excitations. ' A

form of the dispersion law of these excitations was estab-
lished in 1947 by Bogolubov in the theory of weakly
nonideal Bose gas and by Landau on the basis of analysis
of the experimental data on thermodynamics of liquid
He. Connection of the structure factor of liquid He

with the spectrum of elementary excitations was deter-
mined by Feynman, and the same result was obtained by
Pitaevskii on the basis of quantum-liquid hydrodynam-
1cs.

In 1961, Henshaw and Woods measured the disper-
sion curve for excitations in super6uid He by the method
of neutron inelastic scattering and found that it coincides
with Landau s predictions. Since then, many experimen-
tal neutron studies of helium were aimed at correcting
the position of the dispersion curve as a function of tem-
perature and pressure and at determining the parameters
of neutron-scattering peaks for different values of the
wave vector q. " In Fig. 1, we show the dispersion
curves of elementary excitations in superfiuid He (1) and
the position of multiphonon scattering maximum (2).

At present, qualitative picture of the neutron scattering
in liquid He can be described as follows. Below the k
point, the peak of neutron scattering is sharp and well
defined. At T& it is somewhat widening, especially in the
maxon and roton ranges of the spectrum. In the normal
phase the broad peaks of scattering are observed, whose
dispersion curve is significantly shifted relative to the cor-
responding curve in the super8uid phase in the region of
maxon and roton. In the phonon region, no drastic
changes in the scattering occur when crossing the A,

point.
The issue of fundamental physical reasons for the ob-

served temperature dependence of the excitation spec-
trum in liquid He and its transformations in transition
from the superAuid to normal phase is still open for dis-
cussion. It is worth noting, that in other quantum liquids
(He, Hz) the neutron scattering is similar to the normal
phase of He and weakly depends on temperature. ' '

Despite the similarity between the dispersion )aw of the
excitation spectrum in He measured by inelastic neutron
scattering and the Landau energy spectrum, the connec-
tion of the observed dispersion curve with the energy
spectrum of quasiparticles in liquid helium is quite a
complicated problem. The problem may be formulated
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FIG. 1. The phonon-roton dispersion curve
in superfluid helium-4 (1) and multiphonon ex-
citations (2). The kinematics laws at various
angles scattering at incident neutron energy
ED =2.08 meV are shown [see Eq. {4}].
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as follows: if a certain many-body system can be de-
scribed in terms of quasiparticle excitations, the disper-
sion law of these excitations is, as shown in Ref. 14,
defined by poles of the one-particle Green function,

G '(q, s(q))=0 .

In experiments on neutron inelastic scattering, the dy-
namic structure factor that represents a double Fourier
transform of the correlation function of density fluctua-
tions' is measured

S(r, t;r', t)=(n (r, t)n (r', t') ) —(n (r, t) )((r', t') ) .

In turn, the dynamic structure factor S(q, s} can be ex-
pressed in terms of the dynamic susceptibility y(q, s).'
In general, the peaks of S(q, s) should not correspond to
the poles of the one-particle Green function (1). In other
words, elementary excitations defined by (1) are not con-
nected immediately with density fluctuations and their
spectrum cannot be directly determined from neutron ex-
periments. Nevertheless, the spectrum parameters ob-
tained in the neutron measurements in superfluid He
turned out to be in good agreement with the Landau
spectrum. It means that inelastic neutron scattering al-
lows us to restore the dispersion law of quasiparticles in
He-II.

Progress in understanding this possibility was achieved
due to the development of the microscopic theory of Bose
liquids. The corresponding quantum-field methods have
been developed by Belyaev, ' Hogenholtz and Pines, '

Gavoret and Nozieres, ' Hohenberg and Martin, ' Shep-
faluzy and Kondor, ' GrifBn and Cheung. Extending
the Bogolubov result for a weakly nonideal Bose gas,
Govoret and Nozieres have shown that in superfluid heli-
um at T =0, the elementary excitations (quasiparticles)
defined by the Green function G(q, s) and collective
sound excitations appearing in the dynamic structure fac-
tor S(q, e) at small q obey a common dispersion law of
the form E(q)=cq where c is the velocity of the first
sound. Also, an important result of the theory was the
proof of the fact that in a superfluid liquid, in view of the
presence of Bose condensate, the poles of the one-particle
Green function G (q, e) and dynamic susceptibility g(q, s)

[and consequently, the dynamic structure factor S(q, s}]
coincide. ' This basic result supports the possibility of
studying the quasiparticle spectrum of excitations of He
by the method of inelastic neutron scattering. The proof
is based on the method of dielectric formalism extended
for a superfluid liquid. ' ' ' Owing to the phase transi-
tion that breaks the gauge symmetry and leads to a
nonzero density of the Bose condensate no, the spectrum
of quasiparticles appears as density fluctuations and be-
comes accessible to observe in neutron experiments.

Griffin, Glyde, and Stirling have proposed a phe-
nomenological model qualitatively describing the excita-
tion spectrum in liquid He. According to the model, the
poles of the function y(q, s) in the normal phase do not
coincide with the poles of the Green function, i.e., they
are not connected directly with the spectrum of quasipar-
ticles. The physical nature of energy excitations can be
connected with collective modes of the type of first and
zero sounds, scattering on thermally excited quasiparti-
cles. In the superfluid phase and at a nonzero density of
the Bose condensate no there occurs hybridization of the
collective oscillations of the density and elementary pho-
non excitations by means of interaction through the con-
densate. As a result, the function y(q, s), apart from
poles typical for the normal phase, acquires new poles re-
lated to the Green function, and hence, to the spectrum
of quasiparticles. The measure of the scattering com-
ponent associated with quasiparticles is the quantity no.
The part of the scattering related to excitations inherent
to a normal liquid should also be somewhat modified in
the helium superfluid state. Analyzing some recent ex-
perimental data on neutron studies of liquid He, espe-
cially at high pressures, ' Glyde and GriSn have inter-
preted them to be compatible with that concept.

A rather complicated spectrum of excitations in liquid
helium predicted in the above papers requires a detailed
experimental check in a wide range of wave vectors
q =(0—3.5) A '. This problem is a part of our long-
term plans. %'e could start realizing this program on a
new spectrometer DIN-2PI at the IBR-2 reactor, JINR
(Dubna). A part of the results obtained is reported in this
paper. In Sec. II we describe the experimental setup and
the technical means it provides. In Sec. III, main experi-
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mental results are reported. In Sec. IV, the experimental
results are compared with the data accumulated by other
authors. In Sec. V, we discuss our results in light of re-
cently developed ideas on the nature of excitations in
liquid He and, in particular, within the Glyde-Gri%n
concept. Some part of the results of this work was pub-
lished earlier in Ref. 28.

II. EXPERIMENTAL DETAILS

The experiments on neutron inelastic scattering in
liquid He were carried out on the DIN-2PI spectrometer
(for a detailed description, see Ref. 29) at the IBR-2 reac-
tor (Joint Institute for Nuclear Research, Dubna). For
measurements we took a cryostat allowing us to operate
with a sample of liquid helium-4 with a 3.6-1 volume in
the temperature range from 4.2 to 0.4 K, the accuracy in
maintaining the temperature being 0.01 K.

We will consider some methodical peculiarities of the
measuring system. An important parameter of a spec-
trometer is the width of the energy resolution. In a
time-of-flight method, it depends on the incident neutron
energy Eo and final energy E

b.E =QaEQ+bE (3)

where a and b are constants. According to (3), to achieve
better resolution, the energy of incident neutrons should
be taken as low as possible. Preliminary experiments
have shown that the level of intensity from the neutrons
scattered from liquid He allows us to operate with the
initial neutron energy Eo-2 meV. As follows from the
results of rneasurernents at the lowest temperature
T-0.4 K and the initial energy of about 2 meV, the full
width at a half maximum of the resolution function did
not exceed 50 peV in the maxon region and 100 peV in
the roton-phonon region. It should be noted that the
resolution estimated for the measuring system by the
Monte Carlo method turned out to be close to the experi-
mental widths of peaks at T-0.4 K.

The advantages of utilizing these low initial energies of
neutrons are following. Just above the dispersion curve

there exists the multiphonon continuum. The q depen-
dence of a maximum of this part of the scattering is la-
beled with (2) in Fig. 1. This scattering is rather compli-
cated in structure and is an interesting object of studies it-
self. ' This problem is beyond the scope of the present
paper. Low-energy tails of multiphonon scattering can
influence the shape of the one-phonon or one-particle
component scattering. This can significantly influence
the excitations in the rnaxon region. As is seen from Fig.
1, the initial energy -2 meV lies below the band of mul-
tiparticle excitations in He, and thus, processes of their
production are weakened and their low-energy parts con-
tribute little to the intensity of one-particle scattering of
neutrons. This is clearly seen in Fig. 2 where two experi-
mental spectra at 3.5 and 2.08 meV are shown. There is a
significant decrease in the width of a one-particle peak
and in the contribution of multiphonon scattering. The
curves are normalized to the area of the one-particle
peak.

Thus, the use of initial low-energy neutrons allowed us
to increase the accuracy of measurements, to suppress
multiparticle scattering, and to observe and analyze the
details of neutron spectra (1—5}X10 times smaller than
the intensity of the one-particle peak. In these experi-
ments, peaks were observed associated with scattering of
neutrons in superfluid helium corresponding to positive
energy transfer.

As compared to the experimental equipment of other
authors, we worked with rather large volume of liquid
He with the cross section of neutron beam being ade-

quate. In principle, this could increase the influence of
the multiple scattering and distort the genuine shape of a
peak. To verify these effects, we have performed particu-
lar experiments with a cadmium inserted into the con-
tainer splitting the whole volume into a set of thin layers
(2 cm wide}. Comparison of the results of experiments
with and without that insert has not revealed noticeable
discrepancies in the shape of scattering peaks. In experi-
ments with very low initial energies, apart from the de-
crease in the total scattering cross section (at ED=2.08
meV, o.„,-0.2 b and the transmission of the sample is of
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FIG. 2. Comparison of the experimental
neutron-scattering spectra of liquid He at

o

q —1.6 A for different initial energies. (1)
T=1.5 K and ED=3.S meV; (2) T=1.45 K
and Eo =2.08 meV. Instrumental resolution in

the range of peaks are shown by the horizontal
lines. Spectra are normalized to the single-

particle peak areas.
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III. MEASUREMENT RESULTS

A. Descriytion of the shaye of neutron inelastic yeaks

The shape of experimental peaks of neutron scattering
was analyzed on the energy scale; to this end, the intensi-
ty measured as a function of the scattering angle and time
of Sight of neutrons was transformed to the dynamic
structure factor S (q, s ):

S(q, e) ~( EoE/)d J(8,t)/dQdr, (5)

where t is the width of a time channel and J is a count in
the channel.

In analyzing the shape of peaks, we consider both tem-
perature and wave vector dependencies in the superjfuid
and normal phases of liquid helium separately. Besides,
we could distinguish three characteristic regions of the
wave vector q for which peaks are also difFerent in shape.
These are the initial phonon part of the dispersion curve,
when q &0.4 A ', the rnaxon-roton region of excitations,
where q &0.65 A ', and the so-called transition region,

the order of 0.94), the probability of the double scattering
in He diminishes owing to further decrease in the total
cross section and to the possibility of scattering only at
certain angles. So, it might be assumed that the effects of
multiple scattering in these experiments are insigni6cant.

The detector system of the spectrometer enabled mea-
surements of the intensity of scattered neutrons in a wide
range of scattering angles 8 from 5 to 133.7. For some
angles 8, a bunch of kinetics laws is plotted in Fig. 1 for
the initial energy of 2.08 meV. The experimental spectra
were measured at 8=const, therefore, the kinematics re-
lation between the wave-vector transfer q and energy e
was de6ned by

q =ko —k,
g
—E

q =0.695[2EO —s —2 cos8+Eo(EO —e }]'

where ko and k are, respectively, wave vectors of incident
and scattered neutrons. Uncertainty in the q value, con-
nected with finite sizes of the detector and sample,
hq -0.06 A ' for small q and for large q it is somewhat
smaller. A few measurements were carried out with

hq -0.02 A
Et is seen from Fig. 1, that simultaneous study of quite

a large part of the dispersion curve is possible in this ex-
periment. Measurements at larger q require higher initial
energies of neutrons. The spectra were normalized by the
intensity of elastic scattering on vanadium. The back-
ground owing to a low energy of neutrons or to a large
time of their flight in measurements performed far from
the reactor pulse, produced a negligible influence on the
results.

In this experiment, measurements were carried out at
the initial neutron energies E0=1.6, 2.08, 2.45, 3.5 meV
and temperatures T =0.42, 0.45, 1.4, 1.45, 1.5, 1.72, 2.0,
2.05, 2.21, 2.25 K in the range of the wave vector
transfers from 0.08 to 2.5 A

where 0.4(q (0.65 A ' (the region "7").
As we concentrated on the description of the vicinity

of peaks, our data can be fitted equally well by Gaussians
or Lorentzians convolved with the Gaussian resolution
function. &e did not try to describe high-energy tails
and therefore omitted a discussion of the sum rules or a
finiteness of the first moment of S(q, e). The problem of
sum rules and detailed balance will be considered in a
subsequent paper.

To analyze experimental curves, the Upeak program
has been used, which is intended for decomposition of the
experimental distributions into their components on the
basis of the few-parameter approximation with the use of
the real form of the models of lines.

The Lorentzian curve has been taken in the form

Z, (q) W„(q, T)
1.„(q,e, T)=

2n [e e—„(q,T)]2+ [ W„(q, T)/2]2
'

where x denotes (os), {n), and {w) components.

1. Superjfuid phase

In the maxon-roton region, a one-particle sharp peak of
neutron scattering is ill described by a single Gaussian
(GG) or a single Lorentzian (LG). The notation (GG) or
(LG) means that the corresponding function is convolved
with the Gaussian resolution function of the spectrome-
ter. A two-Gaussian model (GG+GG) and a two-
Lorentzian model (LG+LG) provide a better description
of the sharp peak (in terms of yi, the correlation
coefBcients of the model parameters, and other statistical
criteria of the approximation). Two components of the
scattering peak differ significantly in width (typical exam-
ples of the decomposition are drawn in Fig 3), th.erefore,
we will call one of them the narrow component (n); and
the other, the wide component (w}. To demonstrate
uniqueness of the fit, we have added the result of the sin-
gle Lorentzian fit in Fig. 3(b) to compare it with results
coming from the two-Lorentzian description.

In the phonon region of the spectrum, the narrow and
wide components are observed for neutron scattering,
too For th.e reasons to be understood from a subsequent
consideration, the narrow component here may be
different in nature from the component (n) and we will
denote it by (os). The broad component (w) is well seen in
this region only at about T& and at lower temperatures its
intensity decreases, thus making its separation diScult.

In the transition region "F," the picture of neutron
scattering is the most complicated. Interpolating the
description of peaks in terms of components (n}, (os), and
{w}into the F region, one can expect that all three com-
ponents exist simultaneously. However, low incident en-
ergy chosen for good resolution does not permit measure-
ments of the intensity at the energy transfer greater than
—1.5 meV. Therefore, neither the peak position nor the
width of the component (w) can be determined accurate-
ly. %e can conclude only that, most likely, the com-
ponent (w) gets strongly damped in this region. The com-
ponent (os), which is well defined on the left side of the 1'
region, becomes hardly separable near the right boundary
at q-0. 65 A '. On the contrary, the component (n),
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with decreasing q approaches the component (os), and
they become hardly distinguishable when q & 0.48 A

2. ¹rmal phase

Above Ti in the maxon roton -part of the spectrum,
only broad peaks of scattering (w) are observed, and they
are well described by one GG or one LG. In the phonon
region, besides the broad component (w) a narrow com-
ponent (os) is seen. In the transition region "Y," the
latter component becomes rapidly attenuating and above
q-0. 65 A ' it is not observed at all. The broad com-
ponent in the transition region is ill defined. The narrow
component (n) typical of He-II is not observed above Ti.

B. Dispersion curves

Describing the dispersion curves, we start with the
0

maxon-roton part of the spectrum where q &0.65 A
In the superfluid phase, the dispersion curves of the nar-
row and broad components are close to each other. Dis-
tinction between e„(q) and e (q) is less than -10%.
However, at all temperatures T & Ti, the whole depen-
dence e (q) tends to shift towards smaller values of q as
compared with e„(q). As a result, maxima and minima
of the corresponding dispersion curves do not coincide
and the curves are intersected near a maximum and,
probably, near a minimum [see Figs. 4(a) and 4(b)]. The
temperature dependences for both curves are rather weak
(see Fig. 5). When crossing Ti, the narrow component
disappears, and the dispersion curve for e„(q) does not
change substantially [see Figs. 4(c}and 5].

In the phonon part of the spectrum and in transition re-
gion and the dispersion laws for the components (n) and
(os) do not difFer [Figs. 4(a) and 4(b)]. The dispersion
curve for the broad component e (q) is defined here less
accurately but, apparently, lies above e (q). The temper-
ature dependences of e„(q) and e (q) in this part of the
spectrum are also weak and do not feel the transition to
the normal phase (see Fig. 5). Further details about the
shape of the dispersion curve for components (os) can be
found in Sec. IV C.

C. Integral intensities

In the superjfuid phase, the dependences of integral in-
tensities on the wave vector for narrow and broad com-
ponents Z„(q) and Z (q) in the maxon-roton region are
similar in nature. These dependences are illustrated in
Figs. 6(a) and 6(b) at T=1.45 and 2.05 K. The analysis
shows that the ratio of intensities ri(q) =Z„(q)/
[Z„(q)+Z„(q)]at any temperature has no q dependence
(see Fig. 7). However, this ratio strongly depends on the
temperature. Figure 8 shows the dependences Z„(T) and
Z (T) for q —1.6 A '. It is seen that the narrow com-
ponent of scattering dominates at low temperatures and
disappears when approaching Ti„. On the contrary, the
intensity of the broad component sharply decreases with
decreasing T. In the normal phase of liquid He, only
broad scattering peaks (w) remain for which the Z (q)
dependences [Fig. 6(c}]are similar in nature to the depen-
dence of the broad component in the superfluid phase.

Now let us consider the phonon part of the dispersion
curve for q &0.65 A '. In contrast to Z„(T) (Fig. 8}, the
temperature dependences Z (T) for different q (see Fig.
9}at T)Ti do not vanish. Therefore, it may be assumed
that in the superfluid phase the narrow component (os) in
the phonon part consists of two components close in posi-
tion and width: a narrow scattering peak (os), whose in-
tensity weakly depends on the temperature and a narrow
peak (n), whose intensity changes with teinperature in the
phonon region in the same way as in the maxon-roton re-
gion.

Within this assumption, we could attempt to estimate
the intensities of these two components in the superfluid
phase using the following procedure: for every q at tem-
peratures below the A, point, the corresponding values of
Z„(q) at T=2.21 K were subtracted from the total in-
tensity Z„(T). The obtained values can be considered as
true values of Z„(q). Figures 6(a) and 6(b} (inset} show
the dependences Z„(q, T =2.21 K) and Z„(q) in the pho-
non part of the spectrum. If we use these values of Z„(q)
for evaluating g at small q {see Fig. 7), we obtain a natu-
ral continuation of the horizontal straight line.

It is useful to compare our results for Z{q}with the
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data obtained by Cowley and Woods (CW). Due to the
difference of temperatures and momentum transfers,
direct comparison of Z(q) with CW measurements is
difficult. Their data for temperature T=l. l K are
shown in Fig. 6(d). The summation of intensities of all
components for temperature T=1.45 K leads to the
similar q dependence.

D. Widths

Widths of peaks W,„(q,T) were determined by sub-
tracting the peak width at the lowest temperature
T =0.42 K from the experimental widths 8'(q, T),
without the Wailer-Froman correction and the correction
for the uncertainty hq.

In the maxon-roton region of the spectrum, the depen-
dencies W„;„(q) and W,„(q) are relatively weak for the
superfluid phase at all temperatures; they are drawn in
Figs. 10(a) and 10(b) for temperatures 1.45 and 2.05 K.
In the normal phase, the widths of broad peaks are also
weakly dependent on q [Fig. 10(c)]. The width of the nar-
row component (os) steeply increases in the transition re-

gion "Y."This displays a rapid decay in a relatively nar-
row interval of wave vectors. The width of the broad
component (w) strongly depends on q in the phonon re-
gion of the spectrum. In the transition region, as said
above, this component may have large widths and is
hardly separated (see Fig. 10). All the components of
neutron scattering in He possess rather a strong temper-
ature dependence of the width [see Figs. 11(a) and 11(b)].
Summarizing we emphasize that there exist, probably,
three different types of excitation in liquid He: (n), (os),
and (w), which appear in different ways depending on the
temperature and wave vector. Two typical regions of
essential transformations of the energy spectra can be dis-
tinguished for excitations in liquid helium. At first,
strong qualitative and quantitative changes in the nature
of neutron scattering in helium occur in a very narrow in-
terval of temperatures or at the point of the superfluid
transition T&.

Second, explicit changes in the character of excitations
in superfluid and normal helium take place in a narrow
range of wave vectors (0.5-0.65) A ' when passing from
phonons to maxons. Possible origins of both of these
transformations will be discussed below.
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IV. COMPARISON OF THE OBTAINED RESULTS
WITH DATA BY OTHER AUTHORS

A. Two-component structure of neutron-scattering spectra
in liquid helium

The two-component character of the intensity of
inelastically scattered neutrons in superAuid helium in
the maxon-roton region was revealed in 1978. %oods
and Svensson have found that their results for the dy-
namic structure factor S(q, e) are well described by the
formula

1 —exp( e/kT—, )
S(q, e) =n, S,(q, s)+n„S„(q,s)

1 —exp e—lk T

where n, =p, /p and n„=l n„—whereas S„(q,e) con-
tains only the intensity of a peak of normal He-I at
T, )T&. This assumption was supported by the fact that
the experimentally determined $(q, e}—p„S„(q,e) for
wave vectors q=(1.5 —2) A behaved as Ap„where

A =const, with changing temperature. Expression (6)
means that neutrons are scattered from the normal and
super8uid components independently and in difFerent

ways. Attempts were undertaken to Snd a theoretical in-
terpretation for that picture of scattering, ' which
made the basis for formulating the Griffin-Glyde concept
mentioned in the Introduction. Also, the validity of the
Woods-Svensson decomposition (6) has been open to
question by recent experimental works. ' It turns out
that a more accurate consideration of multiphonon con-
tributions to the one-particle intensity of neutron scatter-
ing destroys the empirical rule of decomposition (which
can be clearly observed in analyzing experiments under
pressure}.

Recently, analyzing the experimental data on neutron
scattering in helium under pressure in the maxon-roton
region, Glyde and GriSn ' have concluded that the
structure of the scattering peaks near the roton consists
of two components; however, this idea has not yet been
developed.
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As follows from our results, the sharp peak of neutron
scattering is to be represented as a superposition of two
components after extracting the multiphonon scattering.
These components appear in attempts to find the most
adequate mathematical description for experimental
peaks.

B. Parameters of excitation spectrum in helium

A comparison of our experimental results with data by
other authors is a rather serious problem. First, in earlier
works, the sharp peaks of neutron scattering in helium
were, as a rule, described as one-component structures.
Second, the most precision measurements have recent1y
been carried out by other authors only for certain values
of the wave vector; in particular, for the pressure of sa-
turated vapors at q =0.4 A ' (phonons} and q =1.92
A ' (rotons}. Our data on the parameters s(q), e.g., for
q =0.37 A ' (see Fig. 5) are in good agreement with the
data of Ref. 24. Decomposition of the sharp peak of neu-
tron scattering into several components with completely
difFerent dependencies Z(T) is a result of this work and
cannot be compared to the known behavior of the total
area of the peak as a function of the temperature.

It is also difficult to compare the data on intrinsic
widths of the scattering components. In our data we
took the width of resolution to be equal to the experimen-
tal width at T =0.42 K. The most accurate results were
obtained in experiments by Mezei and Stirling. Our re-
sults coincide for T & 1.72 K.

C. Anomalous dispersion

Here we will touch upon the problem that has been in-
tensively discussed in Refs. 38 and 39. In Refs. 40 and 41
it has been discovered that the precision measurements of
s(q) on the initial part of the dispersion curve on a cer-
tain part lies above the straight line c=cq. These mea-
surements were performed at temperatures (1.1 —2. 3) K.
The phenomenon of the phase velocity of excitations
exceeding the velocity of the first sound has been called
the anomalous dispersion. From our data plotted in Fig.

12 for various temperatures and narrow components (os)
and (n) it is seen that the anomalous dispersion is ob-
served for T&T& at all the measured wave vectors
0.08&q &0.65 A '. When T) T& and q &0.3 A, the
dispersion curve approaches the straight line correspond-
ing to the first-sound velocity, i.e., a region of transition
from the first to zero sound is observed. As it is also seen
from Fig. 12, the dispersion curve intersects the straight
line of the first-sound velocity in the region

q -(0 6 . 0—7).A ', that quantity decreases with temper-
ature; in general, these results are in agreement with the
data of the most precise earlier measurements. '

V. PHYSICAL MODELS OF FORMATION
OF THE EXCITATION SPECTRUM IN LIQUID HELIUM

Direct theoretical calculations of the spectrum of exci-
tations in liquid He on the basis of first principles are
still difficult as no consisent microscopic theory of liquid
4He exists as of yet. Studies along this line (see, e.g. , Ref.
43) cannot be considered as satisfactory, at least, quanti-
tatively. Below, we will examine the obtained results on
the basis of several physical models.

We start with the Glyde-Griffin conception, accord-
ing to which there appears an extra system of poles con-
nected with the spectrum of quasiparticles in the
superfluid phase of helium for the dynamic susceptibility
y(q, )s, in addition to the systems of poles typical of the
normal phase. This means that in He-II in experiments
on the neutron scattering, branches of energy excitations
typical of the super6uid phase are added to those specific
for the normal phase.

From analysis of the present results it can be conclud-
ed that qualitatively this picture is observed. In the nor-
mal phase of liquid He, two branches of excitation are
seen. One of them (to) is observed throughout the whole
studied region of wave vectors q and is characterized by
large width of peaks. The second branch (os} is clearly
seen at small q and decays rapidly at q

—(0.5 —0.65) A
(Fig. 10}. Both the branches are observable in superfluid
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helium as well. Their dispersion laws, behavior of inten-
sities, and widths as functions of q are similar to the cor-
responding dependencies for the normal phase. It is to be
noted that the intensity of the broad component (w)

strongly depends on the temperature (Fig. 8) and thus it
is difBcult to distinguish its contribution at low tempera-
tures, especially in the region of small q.

Besides the above two components of neutron scatter-
ing in the superfluid phase, there appears one more
branch corresponding to the narrow component (n). Its
intensity strongly depends on the temperature (see Fig. 8}
and at low T is dominating throughout the whole picture
of neutron scattering. The narrow component (n) is
clearly seen in the maxon-roton region of the spectrum
up to q-0. 5 A ' where it approaches the component
(os) and at still lower q it merges with (os).

What is the physical meaning of all the described
branches of excitation'P We can make the following as-
sumptions for answering to that question:

The narrow component (os) typical of the region of
small q in the normal and superjfuid phase of liquid He
is most likely a branch of collective excitations of the
type of zero sound. This problem has been discussed re-
cently in detail (see, e.g., Ref. 24). This branch is typical
of all liquids including helium-3 and liquid metals. The
velocity of zero sound exceeds the velocity of first sound
and thus a positive anomaly of the dispersion law is ob-
served [which is also seen for helium-3 (Ref. 44)].

As follows from our results, this collective branch of
excitations (os) at a certain value of the wave vector

q —(0.5-0.65 }A widens to a great extent and than de-

cays. Note that this attenuation of zero sound is typical
of all van der Waals liquids where it is not observed at
wave vectors above (0.8 —l.0) A

The wide component (w) is observed in both phases of
liquid helium. Its nature is sti11 unclear; several interpre-
tations for its physical meaning are put forward.

In particular, according to Ref. 26, this mode of
scattering is related to the neutron scattering on thermal-
ly excited quasiparticles. For liquid-Fermi systems the
theory of these excitations is well developed and used for
interpreting data on the neutron scattering in liquid
helium-3. An extension to the Bose systems has been
made in Refs. 35 and 36. The physical meaning of these
processes consists of the energy transfer from the scatter-
ing neutrons to the thermally excited quasiparticles al-
ready existing in the system (phonons, maxons, rotons).
A distinctive feature of the energy spectrum of these exci-
tations is that the dispersion curve is given either by a
broad strip or by a continuum where a certain range of c,

corresponds to every value of q. Therefore, peaks of the
neutron scattering on these excitations should be of a
large width. Unlike the processes of production of quasi-
particles, the above scattering mechanism is always con-
nected with density fluctuations and, according to the
Glyde-Griffin conception, should be observed in both the
phases of "He. The intensity of excitations of that type
should rapidly decrease with lowering temperature as the
number of thermally excited quasiparticles in the liquid
diminishes considerably.

The narrow component (n) observed only in the

super6uid phase of He can be identified with the Landau
dispersion curve for elementary excitations. In addition
to the above-given interpretation of the wide and narrow
components, another interpretation is possible on the
basis of comparison of the dispersion curves of excita-
tions in quantum and classical liquids.

Experiments on the neutron scattering in metals, liquid
hydrogen, and some other liquids in a certain range of
momentum transfer give dispersion curves similar to the
Landau curve in liquid helium, but with a much larger
width. These branches can be associated with the quasi-
crystal nature of liquids with respect to short-wave exci-
tations with wavelengths of an order of the interatomic
distance up to several coordination spheres.

Liquid helium being essentially a quantum liquid re-
tains some properties of a classical liquid. In the simplest
approach based on the variational principle the phonon-
roton dispersion curve e(q) is connected with the struc-
ture factor S(q) by the relation

g2 2

e(q)=
2mS(q)

As follows from the well-known Feynman ideas, due to
the identity of particles, at small q and T =0 phonon ex-
citations with the wave function

g exp(iqr, )

are the only possible excitations of a liquid. At finite
temperatures and growing q up to a value of an order of
the inverse distance between particles, the picture
changes. Small vibrational motions of atoms in a har-
monic wave and diffusion motions of individual atoms be-
come of the same order. The wave function (8} remains
to obey the variational principle but its uniqueness can-
not be inferred now from the same considerations as for
small q. Therefore, we can (and should) admit the ex-
istence of wave functions of another type corresponding
to the normal state of a liquid. These wave functions
should describe the quasicrystal nature of the motion of
helium atoms and are to be localized around slowly
diffusing centers whose motion is described by classical
variables. Collective excitations of this normal com-
ponent correspond to quasicrystal phonons in classical
liquids. A large width of these excitations is either due to
the number of coordination spheres being small or due to
the coherence length being short. Therefore, the relative
contribution of intensities of the narrow and broad peaks
is one more experimentally measured parameter of long-
range order.

We recall once again that in the narrow transition Y re-
gion of wave vectors, (0.5 —0.65) A ', all the components
of neutron scattering have a singularity. The zero-sound
(os) mode is here rapidly decaying; the wide component
(w) has singularities in the dependencies W (q) and
Z (q) (see Figs. 6 and 10); the narrow component (n)
merges with or transforms into the component (os). In
this region of q, the anomalous dispersion disappears, i.e.,
this curve intersects the line of the sound velocity.

Both of the proposed interpretations of the multicom-
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ponent structure of the spectrum do not explain the
above singularities. It can only be noted that the inter-
pretation of the wide component as the spectrum of "nor-
mal" phonons due to the quasicrystal structure of a liquid
predicts widening of the peaks with decreasing q. How-
ever, narrowing of the peaks in the phonon region of the
spectrum remains unclear. Iordanskii and Pitaevskii
showed that at the point of intersection of the dispersion
curve of phonons with the line of the first sound, there
should be observed a sharp change in the width of pho-
nons due to increase in the probability of their decay. It
is clear that the explanation of the nature of rearrange-
ment of the excitation spectrum in the range of transition
from phonons to maxons requires further experimental
and theoretical studies.

As only the narrow component represents the spec-
trum of quasiparticles, it is worthwhile to compare just
the parameters of this component with the predicted
properties of elementary excitations in superfluid He.
This first of all concerns the width of the excitation peak.
The quantitative formula for the roton widths has been
derived by Landau and Khalatnikov:

W(T)=94+T exp(b, /kT) . (9)

In view of the dependence W„(q} being relatively weak
(see Fig. 10), we can compare our results with formula
(9},for instance, for q -1 A, i.e., in the maxon region
[see Fig. 11(a}]. As it is seen, agreement may be con-
sidered satisfactory at low temperatures. Around the A.

point, formula (9}gives a larger value.
Note that the most accurate measurement of the width

of one-particle peaks by the neutron scattering have been
obtained by Mezei and Stirling on a spin-echo spec-
trometer at ILL (Grenoble} and they coincide with for-
mula (9).

The problem of the amount of Bose condensate in
superfluid He-II has been considered starting with papers
by London, Bogolubov, Belyaev' up to the present. In
particular, it follows from Refs. 2, 15, and 25 that the
sharp peak [our component (n)] in the maxon-roton re-

gion of the spectrum is connected with elementary excita-

tions in He-II and its intensity is determined by the densi-
ty of the Bose condensate (no). According to Ref. 26,

Z„(T) —no( T) . (10)

Though the problem of temperature dependence of the
Bose-condensate density is not yet solved completely,
the qualitative relation holds obviously valid for the ob-
served component (n). Like the Bose-condensate density,
that component is absent in the normal phase, appears
only below the A, point, and rapidly grows with decreas-
ing temperature. Figure 13 shows the temperature
dependence of the relative density of the Bose condensate
obtained in Refs. 4S and 49 and compared with the
dependence Z„(T) found in the present work F.or the
normalization of data, we took the temperature range
(0.4—0.S) K. The data turn out to be in reasonable agree-
ment.

VI. CONCLUSION

The modern experimental facilities of the complex
IBR-2 and DIN-2 in JINR (Dubna} permit the detailed
research of inelastic scattering in He. The elementary
excitations have been the subject of our interest while the
multiphonon processes were e8'ectively suppressed in the
experiment. The results were represented via the fit of
the initial experimental data by the Gauss-Gauss and
Gauss-Lorentz convolutions and it encouraged us to fol-
low the evolution of the peak of the scattering as a func-
tion of T and q.

As expected, the sharp change of the peak happens at
the point of the A, transition. In the normal phase, the
complex structure of peaks consisting of two components
(os) and (w) is observed in the phonon region only. The
structure becomes more complicated and the third
branch (n) appears for all the q values when T(Tz.

The origin of the spectrum, in brief, is in accordance
with the Griffin-Glyde theory. The (n) component may
be identified as the result of the quasiparticle excitations.
In the normal state the narrow (os) phonon branch may
be explained as the zero-sound mode, and as the superpo-
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Closed boxes represent results from Ref. 49;
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sition of such a mode with the phonon part of quasiparti-
cle excitation in the superlluid phase. The {w) com-
ponent may be understood as the collective excitations of
the phonon type, usual for the classical liquids. As to the
mechanism of "interaction" between these three
branches, GrifBn and Glyde's idea about the hybridiza-
tion of quasiparticles with the density 6uctuations due to
the presence of Bose condensate seems to be adequate
with the picture presented above.

Special attention must be paid to the anomalous
dispersion of the ( w) branch, to the contributions of the

various excitations to the thermodynamical properties of
4He, and to the Y region in the q variable between pho-
non and maxon parts of the spectrum.
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