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Thermally activated magnetization reversal in elongated particles is studied within a model that
allows for spatially nonuniform magnetization conGgurations along the particle. An external Geld

antiparallel to the existing magnetization is shown to give rise to an energy barrier which represents
a spatially localized deviation from the initial uniform magnetization conGguration. For sufficiently
elongated particles, thermal Buctuations thus substantially lower the coercivity compared to the
previous theories by Neel and Brown which assume a spatially uniform magnetization. The mag-
netization reversal rate is calculated using a functional Fokker-Planck description of the stochastic
magnetization dynamics. Analytical results are obtained in the limits of small Gelds and Gelds close
to the anisotropy field. In the former case the hard-axis anisotropy becomes effectively strong and
the magnetization reversal rate is shown to reduce to the nucleation rate of kink-antikink pairs in
the overdamped sine-Gordon model. The present theory therefore includes the nucleation theory of
the double sine-Gordon chain as a special case.

I. INTRODUCTION

The magnetization in a uniformly magnetized sample
is usually stabilized by an easy-axis anisotropy of crys-
talline or demagnetizing origin. To reach a state of zero
net magnetization one has to apply an external field in
the reversed direction, the so-called coercive field. In
macroscopic samples of high purity such as yttrium iron
garnet (YIG), this field can be less than 10 Oe. This
low coercivity is commonly attributed to the existence of
residual domains of reverse magnetization in the original
uniformly magnetized state. The measured coercivity is
then associated with the depinning and motion of the
corresponding domain walls.

This situation is strikingly different for microscopic
single-domain particles where no such residual domains
exist. The coercivity can reach values of more than 1000
Oe since the state of reversed magnetization has first to
be nucleated. Consequently such particles exhibit an ex-
tremely high long-term stability of the magnetization.
This fact renders them suitable for information storage
in recording media and as constituents of rocks they pre-
serve the value of the local magnetic field as the temper-
ature has dropped below the blocking temperature of the
particle. With decreasing sample size, however, the effect
of thermal Quctuations becomes increasingly important.
For particle sizes of a few nanometers and at room tern-
perature the magnetization Huctuates randomly over the
anisotropy barrier and a superpararnagnetic state results
with vanishing average magnetic moment.

This paper concentrates on particles whose size is
above the superparamagnetic limit but which are still
small enough that the coercivity is affected by thermal
Buctuations. The only ab initio theory has been devel-
oped by Neel and Brown and it is based on the as-
s»mption that the magnetization distribution is uniform

throughout the sample. Consequently the energy bar-
rier is proportional to the volume and the Arrhenius fac-
tor lead. s to an exponential suppression of thermal ef-
fects with the particle volume. This picture is indeed
adequate for small particles of approximately spherical
shape. However, for sufficiently elongated particles a
magnetization reversal via a rigid rotation of the mag-
netization becomes energetically unfavorable. It will be
more advantageous to form a spatially localized excur-
sion from the metastable state since the additional cost
of exchange energy due to the spatial nonuniformity is
by far outweighed by the gain of anisotropy energy by
keeping the deviation localized.

It is the purpose of this paper to formulate an O,b ini-
tio theory of this effect and to show that for sufficiently
elongated particles a spatially nommiform barrier yields
a much lower coercivity than previous theories. A short
account of the results of the present paper has already
been given elsewhere. We shall start from a classical
one-dimensional (1D) model energy density which takes
into account the exchange interaction between the mag-
netic moments along the particle. In addition, the energy
density contains hard- and easy-axis anisotropies as well
as the coupling to an external 6eld. The anisotropies
may contain contributions of both shape and crystalline
anisotropies. The barrier energy is then shown to be in-
dependent of the hard-axis anisotropy, and it is propor-
tional to the domain-wall energy and the sample cross
sectional area. Consequently, the barrier energy is inde-
pendent of the particle length for sufBciently elongated
particles.

In order to induce magnetization reversal, thermal Buc-
tuations have to form a "nucleus" of critical size with
the property that smaller deformations fall back to the
rnetastable state whereas larger deformations grow with
energy gain until the magnetization is reversed. There-
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fore the nucleus represents an unstable structure with
exactly one unstable mode. An analytical expression for
this structure has been obtained ' and the spin-wave
excitations of the nucleus have been investigated in a
previous papers (henceforth referred to as I). For exter-
nal fields close to the anisotropy Geld which renders an
individual magnetic moment unstable, the nucleus rep-
resents only a small deviation &om the metastable state.
For small fields, the nucleus consists of two well-separated
domain walls enclosing an already reversed domain.

The present approach relies on methods that have been
used in the description of the dynamics of Grst-order
phase transitions. This method has been applied for
the description of the decay of a supercurrent in a thin
wire or the propagation of dislocations. In contrast to
these applications we consider here the regime of moder-
ate damping since damping in magnetic systems is very
small. The rate is shown to be the product of a pref-
actor depending on the external Geld and temperature
T, and the Arrhenius factor exp( —AS, /k~T} which in-

volves the barrier energy AS, with A the sample cross
sectional area (k~ is the Boltzmann constant).

For the evaluation of the prefactor we shall employ two
di8'erent approaches. One is the Jacobi method which
relies on the explicit knowledge of a zero energy (Gold-
stone) mode. Therefore it can only be applied for easy-
plane Quctuations but it cannot be used for out of easy-
plane excitations due to the existence of a mass gap. The
second method makes use of the scattering phase shifts
of spin waves around the nucleus. This latter approach
reveals some considerable subtleties which do not seem to
have been noted previously. First, for even-parity wave
functions the 1D versionaa, a2 of Levjnson's theorem alters
the usual expression for the density of states. Second,
the number of bound states of the Huctuation operators
is not conserved under small and large nucleus approx-
imations. This fact raises doubts about the commonly
employed approach of performing functional integrals of
the Bee energy after already having performed the limits
of small or large nuclei. By a careful investigation it is
shown that these two subtleties conspire in. such a way
that this interchange of limits is indeed legitimate.

There are only sparse treatments of magnetization re-
versal in the literature. However, this field is closely re-
lated to macroscopic quantum tunneling of the (sublat-
tice) magnetization in small (anti)ferromagnetic grains, a
subject that has attracted much interest recently. It thus
appears to be useful to relate some important papers that
contributed to the development of these fields.

Early work on nucleation theory culminated in the
celebrated paper by Kramers who calculated the es-

cape rate due to thermal activation out of a metastable
state in the limits of low as well as moderate to large
friction. He showed that the rate is given by a prefac-
tor times the Arrhenius term. Despite the fact that his

work was restricted to systems with one degree of &ee-

dom, his method of the evaluation of the prefactor turned
out to be so powerful that its spirit still underlies much
more complex applications. An extension to an arbi-

trary number of degrees of freedoms in the large friction
limit was due to Brinkman, and Landauer-Swanson and

Langer. The case of moderate friction has been consid-
ered by Langer who also pointed out that the nucleation
rate may be interpreted as the analytic continuation of
the partition function. This idea is closely related to the
subsequently developed instanton concept in Euclidean
quantum field theories. Kramers's theory and its exten-
sions have recently been reviewed by Hanggi, Talkner,
and Borkovec.

The first application of Kramers' theory to magnetic
systems has been made by Brown3 who investigated ther-
mally activated uniform magnetization reversal in small
ferromagnetic particles to explain superparamagnetism.
He set up the Fokker-Planck equation for the stochastic
dynamics of the magnetization and thus related Neel's
earlier considerations2 on reversal rates with the general
&amework of statistical mechanics. For axial symmetry
of the anisotropy he obtained nucleation rates &om the
lowest nonzero eigenvalue of the Fokker-Planck equation
in the limit of low barriers. For a high barrier he used
Kramers' procedure to evaluate the rate constant. Later
the lowest positive eigenvalue was investigated numeri-
cally for all intermediate values between low and large
barriers by Aharoni. Eisenstein and Aharoni inves-
tigated the competition of the uniform mode and the
nonuniform curling mode as possible candidates of crit-
ical nuclei for different particle radii. However, the nu-
cleation rates via the nonuniform mode were calculated
using Brown's theory for spatially uniform nucleation.

Subsequently the issue of magnetization reversal rates
was not addressed for many years. A renewal of in-
terest then arose &om a quantum mechanical point of
view. Based on path integral~s and WKB (Ref. 20) tech-
niques, first investigations showed that a single spin in an
anisotropic Geld behaves similar to a particle with inertia
and tunnels between di6'erent anisotropy minima. It has
then been suggested that in small ferromagnetic par-
ticles macroscopic quantum tunneling might occur. The
effect of dissipation due to magnetoelastic coupling has
been discussed by Garg and Kim. In the context of re-
cent experiments 3 these approaches have been reexam-
ined and it has been predicted24 that quantum tunneling
is suppressed for half-integer spins as a consequence of a
previously neglected Wess-Zumino term in the quantum
spin action and the destructive interference of instanton
and anti-instanton paths.

While all these approaches dealt with tunneling via
spatially uniform structures, tunneling via spatially
nonuniform (bubble) structures in two dimensions was
investigated in the limit of external magnetic fields close
to the anisotropy field and for very small fields in the
thin wall approximation. In the latter case the nucle-
ating structure is a large cylindrical domain of reversed
magnetization delimited by a Bloch wall. Various as-
pects of quantum tunneling with emphasis on tunneling
of Bloch walls have recently been reviewed by Stamp,
Chudnovsky, and Barbara. "

Surprisingly, the conceptually much simpler classical
problem of thermal nucleation remained untouched un-
til recently. Klik and Gunther calculated the nucle-
ation rate for nucleation via uniform structures for cubic
symmetry. In contrast to earlier investigations they also
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calculated nucleation rates for a weakly damped system.
Nuclei of curling syxnmetry in an infinite cylinder and
a nucleation center of spherical syxnmetry have been in-

vestigated recently.
From this review, there exnerges clearly the need of

an ab initio theory for magnetization reversal rates via
spatially nonuniform structures. The present work is or-
ganized as follows.

In Sec. II soxne results of paper I are reviewed which
are relevant to the present work. In Sec. III a functional
Fokker-Planck equation is constructed which describes
the stochastic magnetization dynamics near the nucleus
and the corresponding nucleation rate is derived. It is
shown that the result has the same general structure as
that of Ref. 7(b). The prefactor separates into a term
describing the dynamical decay of the nucleus and in a
term arising from the Gaussian fiuctuations around the
nucleus. The unstable mode enters in such a way as if it
represented a stable mode. The details of the calculations
are presented in the Appendix. The explicit evaluation
of the prefactors in various limits is then the subject of
the remaining sections. In Sec. IV we evaluate the sta-
tistical part of the prefactor analytically in the limit of
small and large nuclei as well as for large and small val-

ues of the hard-axis anisotropy. For small nuclei and if
the hard-axis anisotropy is much larger than the easy-
axis anisotropy, the out-of-easy-plane fiuctuations do not
contribute at all. In Sec. V the nucleation rate is evalu-
ated in the overdamped limit. The rate in the moderately
damped regime and the decay &equency of the nucleus
are investigated in Sec. VI. In Sec. VII the results of the
previous sections are used to calculate the creation rate
of kink-antikink pairs in the double sine-Gordon system.
It is shown that this rate reproduces the magnetization
reversal rate in the limit of large hard-axis anisotropy or
external fields close to the (easy-axis) anisotropy field. In
Sec. VIII experixnental implications are discussed. For a
particle of 100 A diameter and an aspect ratio 15:1, the
present theory is shown to yield a coercivity reduction
from the anisotropy field that is twice as large as that of
the Neel-Brown theory. Finally the applicability range of
the present theory is discussed since it is known that in
the underdamped limit the rate is governed by a diffusion
in energy rather than in configuration space.

Hexi

easy-axis z/ x

a d-axis

where 8:—8/Bx and L is the finite sample length in
the x direction. Ultimately, we shall be interested in
the limit L ~ oo. The first term in (2.1) is the classical
counterpart of the exchange energy and A is an exchange
constant. The second term defines an easy axis along the
2; direction. The third terxn is a hard-axis anisotropy
which favors the magnetization to lie in the xy plane.
K, & 0 and KI, ) 0 are easy- and hard-axis anisotropy
constants, respectively. The degeneracy between the two
anisotropy minima along the x axis is lifted by an ex-
ternal magnetic field II,„& along the positive x axis. The
energy (2.1) describes magnetization configurations in an
elongated particle of diameter smallers2 or comparable to
the minimal length scale in the system gA/K, where
K is the larger of the anisotropy constants X„Kp.

Note that the energy (2.1) can be used to describe three
distinct anisotropy configurations in elongated particles.
The first, most common case is an easy axis along the
particle axis which may be caused by both demagnetiz-
ing (shape) and crystalline anisotropy [cf. Fig. 1(a)].
E.g. , for an infinite cylinder with an easy axis along the
sample one has K, = mMoz + K, „r,t where the first
term is due to the shape anisotropy and the second term
due to crystalline anisotropy. The hard-axis anisotropy
may arise either from an additional crystalline easy axis
that is misaligned with the particle axis or from an el-

liptic sample cross section. The second case is an elon-
gated particle of a material of high crystalline anisotropy
(K, „„,t ) 2zMe) with both easy and hard axes per-
pendicular to the long axis of the sample [cf. Fig. 1(b)].
The third case refers to a thin slab with an easy-axis
anisotropy in the film plane [cf. Fig. 1(c)].

In the following we focus on a situation as in Fig. 1(a).
The results for configurations shown in Figs. 1(b) and
1(c) are simply obtained by substituting y and z for the
z dependence of the magnetization. The components in
internal (spin) space remain unchanged and the spheri-
cal coordinates are always defined in the same way with

II. MODEL, NUCLEUS, AND FLUCTUATIONS

In this section we present the xnodel and review some
important results of paper I. The ferromagnet is de-
scribed within a classical continuum model, the magneti-
zation being represented by a vector M of constant mag-
nitude Mo. We focus on an effectively one-dimensional
situation where the magnetization only depends on one
coordinate, i.e. , M = M(2;, t). The energy per unit area
is given by

'[ easy-axis

it
hard-axis

hard-axis

easy-axis

y~~ Hex'

,
X

d2: 2 [(OM) +(BM„) +(8 M, ) j~], M,'

(2.1)

ext

FIG. 1. Various anisotropy con6gurations axes that can
be described by the energy density (2.5). The sample cross
sectional areas are assumed to be sufficiently small such that
transversal variations in the magnetization are suppressed.
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respect to the coordinate axes.
The dissipative dynamics of the magnetization is as-

sumed to obey the Landau-Lifshitz-Gilbert equations
(see, e.g. , Ref. 33):

and the reduced external 6eld

H.„,M0
2K,

(2.7)

O,M= —~Mx H.~+ M x g, M,
Mp

(2.2)

where p ) 0 denotes the gyromagnetic ratio, o. ) 0 is the
dimensionless damping constant, and Bt, ——B/Bt. The
first term on the (right-hand side) of (2.2) describes the
precession of the magnetization in the efFective magnetic
field H,p = —bY/bM (b/bM denotes a functional deriva-
tive). The second term in (2.2) is a viscous damping term
and accounts for the relaxation of the magnetization into
the direction of the efFective magnetic field. This term is
phenomenological in nature. It describes damping pro-
cesses which conserve the magnitude of the magnetiza-
tion at every space point. It is convenient to rewrite {2.2}
as follows:

(1+n )B&M = —pM x H,a — M x [M x H,p].
0

(2.3)

A

K '

This equation is obtained by evaluating the cross product
of M with (2.2). Equation (2.3) is similar to the damping
term originally proposed by Landau and Lifshitz. How-
ever, Eq. (2.3) contains the damping parameter a such
that the motion is slowed down for large n while the orig-
inal equation of Landau-Lifshitz exhibits an unphysical
acceleration of the motion for large damping parameters.

Since (2.3) conserves the magnitude of the magnetiza-
tion, it is appropriate to introduce spherical coordinates
according to M/Mo ——(sin8cosg, sin8sing, cos8) . We
use dimensionless units defined by

have been introduced. Using (2.4) and spherical coordi-
nates, the equations of motion (2.3) take the form (see
also the Appendix of Ref. 33)

1 bf
sin8B, y = ——cx .

b8 sin8 bP
'

bE bZ
B~e= —. ——o.—. (2.8)

sin 8 bP b8

The first terms on the rhs describe the precession in the
effective magnetic 6eld, whereas the terms proportional
to 0, are damping terms.

Spatially uniform static solutions of (2.3) lie in the
easy plane and are given by (Po, 8o) = (O, m/2) and

($,8 ) = (x, m'/2), the latter being stable only for
h ( 1. The state (Po, 8o) is completely aligned with
the external field and thus represents the state of lowest
energy. The configuration (8,P ) is oriented antipar-
allel to the external 6eld and its energy per volume ex-
ceeds that of the ground state (Po, 80) by 2h. Therefore
(8,P ) is a metastable state for h ( 1.

At finite temperatures, the magnetization exhibits Huc-

tuations around the metastable state until it eventually
overcomes a barrier for magnetization reversal. For large
sample lengths L, a magnetization reversal via a uniform
rotation of the magnetization is highly unlikely since it
would require an energy proportional to L. Instead, the
system will establish magnetization reversal by forming
a spatially localized deviation &om the metastable state.
There is a well-defined "nucleus" of critical size with the
property that deformations of smaller size fall back to
the metastable state, whereas larger deformations grow
with energy gain until the whole system is in the ground
state parallel to the external 6eld. In paper I it has been
shown that the magnetization configuration [cf. (3.9 of
I)] defined by

[E] = 2/AK, . (2.4) cosll
tan

2 sinh R 8, = n./2, (2.9)

L/2
t = dx —[(B 8) + sin 8(B P) I—L/2 2

——[sin 8cos 4i —1] + cos 8
1 Q

'
2 2

—h]sic&cosii+ 1]I.

In (2.5), the dimensionless anisotropy ratio

(2.5)

(2.6)

gA/K, is the Bloch-wall width, 2pK /Mo is the preces-
sion &equency in the anisotropy 6eld. To simplify nota-
tion, an additional factor 1+0,2 has been absorbed in the
time scale. 2i/'AK, is half the energy of a static 7r-Bloch
wall. In dimensionless units and spherical coordinates
the energy per area (2.1) takes the form

with

sech R= h, b = cothR, (2.10)

exhibits exactly one unstable mode and thus represents
such a nucleus of critical size. Equation (2.9) is in prin-
ciple only valid for a sample of infinite length L but it is
an excellent approximation for a sample of 6nite length
if L & 2vr/A/K, . For simplicity the subscript s of b

and R has been dropped in contrast to paper I. xp de-
notes the arbitrary position of the nucleus along the par-
ticle. This degeneracy with respect to translations gives
rise to a zero energy (Goldstone) mode. In the following
we shall put xo ——0. The structure (2.9) can also be
viewed as a superposition of two m'-Bloch walls centered
at x = +R/b + xs with opposite relative sense of twist.
For R small, (2.9) represents only a small deviation from
the metastable state, whereas for large R it represents a
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(z f'z
yo" oc h & sech —+ R + sech( ——R

ext E&P q —1
(2.19)

and the 6rst excited state of Q'~,

( I (*
yz~ oc h sech —+ R —sech ——R, Ez ——0.

FIG. 2. The spatial variation of the nucleus is shown for

(i) fields close to the anisotropy field and (ii) small fields. In
these pictures, the magnetic chain is taken along the easy axis.
However, the model (2.5) equivalently applies to all situations
shown in Fig. 1.

large domain of size 2Rb delimited by an untwisted pair
of domain walls (cf. Fig. 2). In the following we shall
restrict ourselves to P+ only and we shall drop the su-

perscript. The existence of two equivalent saddle points
will result in a factor of 2 in the final expression of the
nucleation rate.

Out-of-easy-plane Buctuations p and azimuthal fiuctu-
ations y around P, are introduced as follows:

(2.20)

P(x, t) = z + y(z, t),
8(x, t) = ~/2 —p(x, t), (2.21)

into (2.5) we have

Since y~~ is antisymmetric, there is exactly one unstable
mode of negative energy in p while all fiuctuations in the
p-direction have positive energy since Q ) 0. There-
fore the untwisted domain-wall pair represents a saddle
point of the energy with exactly one unstable direction.

The operators characterizing the modes around the
metastable state ($,8 ) are obtained in an analogous
way. Inserting

4'(* t) =~ (*)+ ( t)
8(z, t) = ~/2 —J (z, t). (2.ii)

L/2 g
L/2

d~~X-~ ~+ — d*pX-& p,
2 L/2 2

Inserting (2.11) into the energy (2.5) we obtain up to
second order in p and p

(2.22)

L/2 i L/2
Zi'& =Z. + — d~~X'~ ~+—

—L/2 —L/2

where

(2.12)

where the operators

+tlVp + b
—2

dX2

tg1ILp +$ 2+@ 1
d$2

(2.23)

+b V+ —,R~+Q
d —2

dx2 b'

(2.13)

(2.i4)

refiect the spatial uniformity of the metastable state. In
order to calculate nucleation rates by thermal activation,
we have to examine the stochastic dynamics around the
nucleus.

The energy per unit area of the nucleus (2.9) is given by

E', = 4tanhR —4Rsech R. (2.15)
III. STOCHASTIC MOTION
AND NUCLEATION RATE

The characteristic width b is given by (2.10), and the
potentials V~ can be inferred from (4.13) of paper I:

V~((, R) = 1 —2sech (f+ R) —2sech (( —R)
k2 sech((+ R) sech(f —R). (2.16)

The dissipative dynamics of the magnetization is gov-
erned by the equations of motion (2.8). To investigate the
dynamics near the nucleus, we insert (2.11) and (2.12)
into (2.8) and obtain the linearized equations of motion

The eigenvalue problems of (2.13) and (2.14) are written
as follows:

Bqy = '8'~p —ot'R'~y, —
B~p = A'~y —n'R'"p. (3.i)

'8'~y„'~(x, R) = E„'~(R)y'„~(x,R),
'R'~y'„"(x, R) = EP (R)y'„~(x, R),

(2.17)

(2.is)

where v denotes both bound states and scattering states.
From I, two solutions of the eigenvalue problems (2.17)
are known: the ground state of 'R'",

Notice the unusual occurrence of damping terms propor-
tional to n in the equations of motion for both y and
p. The reversible part of (3.1) is of Hamiltonian struc-
ture. This is due to the fact that the z component of
the angular moment»~ cos 8 and the azimuthal angle P
are canonically conjugate variables. However, the signs
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in Eq. (3.1) are reversed compared to a usual canoni-
cal theory since we are dealing with the magnetization
rather than the angular momentum.

The statically unstable mode has a dynamical coun-
terpart (y+(z, t), p+(z, t)) Ix e"+ (y+(z), p +( z)) with

A+ ) 0 which inserted into (3.1) obeys the coupled eigen-
value problem

(3.2)

with the boundary conditions p+(6 2) = p+(6 z)
y+(k2) = p+(k2) = 0. The linearized equations of
motion (3.1) can also be cast in a compact form

8,$;(z, t) = —) M;, 'R, g, (z, t). (3.3)

In (3.3) we have introduced

~( t) =—(P(* t) &(* t)) (3.4)

and the dynamic matrix

q
—1 a)' (3.5)

8,@,(z, t) = —) M;, 8;g, (z, t)+(;(z, t), (3.6)

which is the sum of a symplectic matrix describing the
reversible part of the dynamics and a diagonal positive
definite dissipative matrix. For the operators in (3.3) we

have used the notation ('Ri, 'R2) = ('R'~, R'").
Equation (3.3), and equivalently (3.1), describes the

deterministic motion of the system in the vicinity of the
saddle point. However, it is not consistent with the fiuc-

tuation dissipation theorem since it lacks the stochas-
tic forces resulting from the coupling to the heat bath.
Without these stochastic forces, the magnetization would

never be driven away &om the initial metastable state.
Stochastic forces can be added to the rhs of (3.1) or (3.3)
to yield the Langevin equation

In (3.9) we have exploited the antisymmetry of the off-

diagonal part of M. Note that the current is only defined

up to a divergenceless term. If we demand in addition
that the equilibrium density have vanishing current, the
representation (3.9) is unique. Equations (3.8) and (3.9)
have the following properties:

(i) The equations of motion for the thermal expec-
tation values (y), (p) are identical to the expectation
value of (3.3). (Expectation values are defined by (&p) =
I 17y17p p g, where I 17y denotes functional integration. )

(ii) The equilibrium density near the saddle point,

g., = Z-'exp(-pm~'l), (3.10)

with 8, as in (2.12), is a stationary solution of (3.8)
with vanishing current. Z is a normalization constant
arising from the condition that f 17&p1)p g,~ = 1 in the
vicinity of the metastable state. Since g,q is sharply
peaked around the metastable state, a Gaussian approx-
imation may be used for the evaluation of Z. Note that
the properties (i), (ii) also allow for a direct construction
of the Fokker-Planck equation without making use of the
Langevin equation.

To calculate the nucleation rate, we have to construct a
stationary nonequilibrium probability density. To main-
tain a constant probability Qux over the saddle point
we impose the boundary conditions g g,q near the
metastable state and I0 0 beyond the saddle point.
Note that the realization of equilibrium at the metastable
state requires a barrier energy which should be large com-
pared to thermal energies. As a criterion we may use
PAE, /5. Since the prefactor is roughly of the order of
the precession frequency 2pX, /Mo 10io s i, this in-

equality is satisfied even for very large switching rates and
thus does not represent a restriction. The total rate is
then obtained as the probability fiux integrated across a
surface transversal to the unstable mode. The derivation
is similar to that of Langer and is presented in detail in
the Appendix. The switching probability per unit time of
a particle with magnetization prepared in the metastable
state into the stable state is then given by

where (, is Gaussian white noise with ((;) = 0 and I'=Be ~ (3.11)

(('( &)4(z' t')) = b*'~( — ')~('-'» (3.7)
where A is the cross sectional area of the sample and E, is
the energy (2.15) per area of the nucleus. The prefactor
is given as follows:

bJ;
dec% (e)I = —J de ) '

d
(3 8)

The probability current is given by

J, =-):M., ~,~;(*)+, . ~W(*)1 (39)1 b

where ( . .) denotes the average with respect to the Gaus-
sian noise distribution exp( —PA/(4a) f dt dz P,. (, ) and

P = 1/k&T The dynamic. s of the probability distribu-
tion functional g[g(z)] = (g,. 6(vP;(z, t) —@,(z))) with

@;(z,t) a solution of (3.6) is governedss by the Fokker-
Planck equation

PA det R e /det VL0= A+l:
2m det' ~'R'&

~

det '8'i' (3.12)

In (3.12) an explicit factor of 2 has been included, since
the metastable state P = m, 8 = vr/2 may decay via ei-
ther one of the two equivalent saddle points P~. The
first factor on the rhs of (3.12) is the escape frequency of
the unstable mode as defined by (3.2). This is the only
term in (3.12) in which dynamical details of the system
enter. The second factor arises from the integration over
the zero frequency (Goldstone) mode and is defined by
8 = ~E,L, where L is the system length and 8, is the
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IEo"IE"II
(3.i3)

where k denotes scattering states. The prime on det de-
notes omission of the zero energy E~". However, note
that the unstable mode EP ( 0 enters (3.13) as if it
were a stable one. The determinant of out of easy-plane
Huctuations is de6ned as

d t'R g„E„'
det 'R'i' E'"E'"g„,E'", (3.i4)

The bound state energies EP and EP are given by (2.19)
and (2.20). In paper I we obtained EP b 2 [(6.13) of
paper I] and EP and Ei" have been evaluated numeri-
cally for arbitrary R.

Therefore we are left with the task of evaluating the
products of the continuum eigenvalues. The continuum
eigenvalues of R'v'' and R'i'' coincide with those of R'
and 'R ", respectively, and are given by

E ~ = E'~ = b '+ k'
k k 7

Eq" ——EP=Q +b +k . (3.i5)

Note that these equalities do not imply a cancellation of
numerators and denominators in (3.13) and (3.14), since
the allowed k values are difFerent and fixed by the bound-
ary conditions which we choose as periodic.

The next sections are devoted to the explicit evaluation
of the infinite products (3.13), (3.14) and the calculation
of the escape &equency A+.

energy per nuit area (2.15). The third factor is also due
to the Goldstone mode and determines the temperature
dependence of the prefactor. The remaining factors ba-
sically arise from the functional integration of the parti-
tion function within Gaussian approximation (2.12) and
(2.22). The determinants are defined as the products of
eigenvalues,

prefactor has indeed been used only in the case of re-
Sectionless potentials where the scattering phase shifts
of even and odd wave functions coincide. Here, however,
the potentials in 'R'~ and 'R'" only become refiectionless
in the limits R -+ 0 and R -+ oo. For intermediate values
of R, the corresponding potentials are not refiectionless
and scattering phase shifts of even- and odd-parity wave
functions have to be distinguished.

There is another surprising feature of these operators.
The number of bound states of the operators which arise
in the limits R -+ 0 and R -+ oo difFers from those for
finite values of R. This casts some doubts on the useful-
ness of such operators for an approximation of the prod-
ucts (3.13), (3.14). However, by a careful analysis using
the explicit form of Levinson's theorem in 1D, we show
that the exact Suctuation determinants converge to those
evaluated by means of the limiting operators.

The second methodss uses the explicit knowledge of
the zero mode for the evaluation of the Suctuation de-
terminants. This allows an exact determination of the
statistical prefactor for the y Suctuations. For p Suctua-
tions an analytical treatment is only possible in the limit

Q
—1 ~0
These results can then be combined to obtain analyt-

ical expressions for the total statistical prefactor in the
limit of small and large nuclei as well as in the limits

Q ~0andQ i ~ oo. InthelimitQ i6z m oo
corresponding to either small nuclei or large hard-axis
anisotropy, the out-of-easy-plane Suctuations are sup-
pressed and do not contribute at all. While the latter
result is to be expected from the fact that out-of-easy-
plane Suctuations are suppressed due to their mass Q
the former result is somewhat surprising. It is related
to the divergence of the characteristic length scale for
R ~ 0 which renders even a small hard-axis anisotropy
efFectively large. In both limits the system may be de-
scribed by an efFective model discarding the out-of-easy-
plane degree of freedom. As we will later address, this
model is equivalent to a double sine-Gordon model in the
azimuthal variable P.

IV. EVALUATION
OF THE STATISTICAL PREFACTOR

In the following we describe two methods for the eval-
uation of the statistical prefactors (3.13), (3.14).

The first method (see, e.g. , Ref. 35) is based on the
knowledge of scattering phase shifts of the continui~m
eigenfunctions as mell as the bound state energies of the
operators W'~, R'". In strictly one-dimensional prob-
lems one has to distinguish between the scattering phase
shifts of odd- and even-parity wave functions. This is in
sharp contrast to the familiar situation of a 3D s-wave
scattering problem where the scaled wave function indeed
obeys a 1D Schrodinger equation but is required to van-
ish at the origin. Surprisingly, this issue has been ignored
until recently, ' possibly also due to the fact that the
most widely used 1D potentials belong to the rather spe-
cial class of reBectionless potentials for which scattering
phase shifts of even and odd wave functions coincide.

So far, the present method for the evaluation of the

A. Scattering phase shiS method

2~n
)L (4.i)

where n = 0, 1, . . . for even-parity and n = 1,2, . . . for
odd-parity continu~~m eigenstates. The corresponding
density of states is

In this section we evaluate the products (3.13), (3.14)
using the knowledge of bound state energies and scatter-
ing phase shifts of the operators 'R'&, 'g'& which have
been evaluated in paper I.

In order to evaluate the density of states we con-
sider eigenfunctions obeying periodic boundary condi-
tions. The modes around the metastable state (P, 8 ) =
(m, vr/2) are then the plane wave eigenfunctions of the op-
erators (2.23) which can also be written as sin kz, cos kx
with wave numbers
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dn L
P(2)

=
dk

=
2~

i=/, p, j =e, o. (4.2)
We are now in a position to express the ratio of the

products in (3.13) in terms of the density of states:

kL+ AI, )(k) = 2mn, n = 1, 2, . . . , (4.5)

where i = p, p and j = e, o. Following the arguments
of Ref. 11, the lowest allowedss k values in (4.5) are k =
2m/L for odd-parity eigenfunctions and k = vr/L for even-

parity eigenfunctions. Note the surprising fact that the
latter value does not coincide with the lowest k value (4.1)
of even-parity solutions in the absence of a potential.

The density of states for odd-parity continuum eigen-
functions follows &om (4.5),

L, 1 dAI )(k)
p(,*)(k) = —= —+— &=5')p (4.6)

Since the spectrum of even-parity continuum eigenfunc-
tions starts at k = vr/L while free solutions start at k = 0,
the density of states exhibits an additional b-function
contribution at k ~ 0,

1 db, I,)(k)p" (k) = —+ — ' ——b(k —0+), i = (p, p.
2m 2' dk 2

(4 7)

This b function also ensures that the number of states
of the free problem equals that of the scattering problem
including bound states,

~ ~

OO

dk p(, )
—p('.)(k) = N(, ), i = p, p, j = e, o,

0

At the saddle point (P, (x), x/2), however, we en-
counter a difFerent situation. The nonuniformity of the
nucleus, i.e., the nonconstant potentials in '8'~, R'", lead
to phase shifts of the continuum eigenfunctions. In con-
trast to 3D problems, where the wave function always
vanishes at the origin, we have to distinguish between
the phase shifts of even- (e) and odd- (o) parity wave
functions. We define phase shifts as in paper I,

y&'(, )(x ~ koo) oc cos[kx 6 b,I,)(k)/2], (4.3)

y f,*(
) (x m boo) oc sin[kx 6 EI,) (k)/2], i = p, p. (4.4)

Since only the eigenfunctions of W' ~'p exhibit a phase
shift, we have omitted the superscript 8 on A. Note that
all phase shifts also depend on the parameter B. Periodic
boundary conditions together with (4.3), (4.4) imply

grni" . = exp dk p(.) + p( )
—p(.*)(k) —p(*) (k)

A,
" k' 0

x lnE~' (4.11)

(4.i2)

where we used the fact that the phase shifts vanish as
1/kb for k ~ oo according to Born's approximation [(6.29
of paper I)]. In a completely analogous way we obtain for
the p fluctuations

ETTLP
PL@ je (q

—1 + b
—2)2

"dk-„
x exp —6" + 6"

{e) (o)

kb2
X

1 + Q
—lb2 + k2b2

]
(4.i3)

Note that in contrast to (4.11), the integrands in (4.12)
and (4.13) are independent of the k ~ 0 limit which due
to Levinson's theorem is sensitive to the number of bound
states. This fact renders (4.12) and (4.13) suitable for
phase shift approximations that converge nonuniformly
to the exact phase shifts for k ~ 0.

In the next two subsections we explicitly evaluate the
prefactor in the limit of small and large nuclei. We show
that taking the limit B ~ 0, oo of (4.12), (4.13) is equiv-
alent to a direct evaluation of the determinants of the
operators that arise in these limits.

1. Proctor for h ~ 1

where i = Ip, p. After inserting (3.14), (4.6), (4.7) into
(4.11), using (4.10), and performing a partial integration
we obtain for the p fluctuations

where, according to (6.25) of paper I,

N" =N" =N~ =1 N =2
(e) (o) (o) ' (e)

(4.8)

(4.9)

In the limit B~ 0, when the external field is very close
to the anisotropy field, the nucleus represents a slight but
spatially extended deviation from the metastable state.
The operators |)i'~ and 'R'~ given by (2.13) and (2.14)
then reduce to

are the number of even- and odd-parity bound states of
'R'~ and 'R'". Equation (4.8) with (4.9) is verified using
(4.6), (4.7), and 1D Levinson's theorem [(6.23) and 6.24)
of paper I] which states that

, x')
+ b 1 —6sech

dx' ( b)
(4.i4)

b,~(,)(k = 0) = vr, LP( )(k = 0) = 2n. ,

A~() (k = 0) = 3~, b, ~(.) (k = 0) = 2~. (4.10)
+ b 1 —2sech — Q (4.i5)



50 STATISTICAL MECHANICS OF NONUNIFORM. . . 16 509

8'~ = -3b-2
E&p q

—1

Z'~ =01

(4.16)

Note that the two eigenvalues Ep, E1 of 'R'~ and 'R'1'

turn into zero energy resonancess of 8,'~ and 'R'1' and
have therefore no counterparts in (4.16). The contin-
uum eigenvalues of (4.14) and (4.15) are given by (3.15),
respectively. Since the potentials are refiectionless, the
scattering phase shifts are parity independent and given
by

3kb
b,~(k) = 2arctan (4.17)

1
LV(k) = 2arctan —, (4.18)

and their long-wavelength behavior

b,"(k m 0) = 2z, b,~(k m 0) = z (4.19)

is in accordance with Levinson's theorem [(6.27) of paper
I] for mffectionless potentials. As has been discussed in
paper I, Sec. VIB, the convergence of 6~, b," towards
the exact phase shifts b, &*.

&

is in general nonuniform for

k = 0 (cf. Figs. 6,7 of paper I). However, since the
integrand in (4.12) and (4.13) vanishes for k = 0, we can
safely insert the approximations (4.17) and (4.18) into
(4.12), (4.13), respectively, and obtain

E~gP»» 36b-s
R op„, E„'~ (4.20)

and

EfllP

R~o Q», Ep (4.21)

The potentials in (4.14), (4.15) are reSectionless and the
solution of the corresponding eigenvalue problems is well
known (see also the Appendix of paper I). There are
bound states with the energies

p-direction do not play a role at all for small nuclei, inde-
pendent of the size of the hard-axis anisotropy constant.
This suggests that in the limit R ~ 0 the system may ef-
fectively be described by a double sine-Gordon equation
in the azimuthal angle P. We shall return to this issue in
Sec. VII.

Alternatively, although less carefully, we can inter-
change the limit B ~ 0 with the functional integration,
and directly calculate

detX- g E-
IE"III E"'

det'8 ~ gE"
det'g'& E~ g, E„'~ (4.24)

For the evaluation of the rhs in (4.24) we proceed simi-
larly to the derivation of (4.12) and (4.13) with the follow-

ing modifications: The density of states p .' —p". (k) in(i) (&)

(4.11) has to be replaced by p~.I
—p~'.

l (k) = —
2 dA'/dk

with b, ' given by (4.17) and (4.18) (i = y, p). Using the
version (4.19) of Levinson's theorem together with (4.17)
and (4.18), we recover the results (4.22) and (4.23) after
integration.

To summarize, we thus have shown that the small nu-
cleus approximation may be used for the evaluation of
the fluctuation determinants, or explicitly

det '8 ~ det 'R

Rmo det' ('g +( det' ('g &~
'

det 'R~1' det 'Rm"
lim
R-+o det'8'& det'8'& ' (4.25)

where the rhs has been evaluated in leading order in R.
The relation (4.25) has not been clear on the onset, since
the operators 'R'~, 'R'& exhibit a different n11mber of
bound states and different long-wavelength behavior of
the scattering phase shifts than the operators 'R'~, 'R'".
As we have shown now, these two differences conspire in
such a way that an interchange of the limits in (4.25) is
indeed correct.

R~o det'[R'+~
(4.22)

and

respectively. For the evaluation of the determinants, we
substitute the bound states (4.16) for those in (3.13) and
(3.14). However, we have to complete (4.16) by the zero
energy resonances Ep = 8 2, Ep = q 1+ 6 . To-
gether with (4.20) and (4.21), we then obtain

S. Prefactor for h ~ 0

For R )) 1 the nucleus separates into two independent
vr-Bloch walls. Correspondingly 'R'" and 'R'& merge into
the same operator 'R' which consists of two independent
potential wells of the form —2b 2 sech (2:/h 6 R). The
bound states of 'R' are then given by the symmetric and
antisymmetric linear combinations of the ground states
of the single wells and have energies [cf. (6.4) and (6.6)
of paper I)]

det R
lim = 1,~~0 detW~&

(4.23) E+P q
—1 E+P q

—1 + 8e
—2R

Eo" = —Se, E,'~ = 0. (4.26)

where in (4.20), (4.22), b 2 = R2. The result (4.23)
is remarkable since it shows that the Buctuations in the

Note that in this approximation E2~ has merged into a
zero energy resonance of 'R'. The continuum eigenvalues
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16'(k) = 4arctan —.
kb

(4.27)

The coincidence of the phase shifts of even and odd eigen-
functions originates from the fact that the two —2 sech x
potential wells are reflectionless. The phase shifts (4.27)
obey the reQectionless version of Levinson's theorem, i.e. ,
b.'(k -+ 0) = mN with N the number of bound states.
But as in the previous subsection, the phase shifts b, (~)

and 6'" only converge on the open interval 0 & k & oo(e)
towards b, '. Inserting (4.27) into (4.12), (4.13), and us-

ing {4.26) together with EP = b in (3.13), (3.14), we
obtain

are identical to (3.15) while the scattering phase shifts
are twice those of a single potential well [cf. (6.18)],

B. Jaeobi method

detI. 'R ~ Dp (L/2)
detL, R ~ D, (L,/2)

' (4.32)

There is also an alternative way for evaluating the
products of eigenvalues which has its origin in the space
slice representation of the path integrals. This method
allows for the exact evaluation of the statistical prefactor
in the y variable for all values of R. In the limit Q i = 0
we are also able to evaluate the prefactor for out-of-easy-
plane Quctuations. We 6rst show how this method can
be applied to the evaluation of (3.13). According to Ref.
34 we have

det 'R

R~~ det ['R'+~

det '8
lim = [gl+ Q+ ~Q]'.

(4.2S)

(4.29)

The notation detL, on the lhs of (4.32) indicates that the
evaluation of the determinants relies on eigenvalue prob-
lems defined on the finite interval [ L,/2, L—/2] with re-
spect to functions that vanish at the end of the interval.

The functions D~ and D~ on the rhs of (4.32) are solu-(o)

tions of the differential equations
The latter result approaches 1 for large hard-axis
anisotropies as expected. However, in the opposite limit
of high Q, the p fiuctuations lead to a prefactor (3.12)
proportional to Q.

'R'~D~(z) = 0,

( dz
+ h

'
~

D(0 (z) = 0,
dz2 ) v'

(4.ss)

(4.34)

3. Oat of eaey-pl-ase f-tactsatiotae for Q 'be -+ oo

f
~ dk

khz b, ~( ) + b~(
)0& 1+Q-'P + k'b' (4.30)

where d = (c +c( ))/2. Since d is independent of Q, the

upper limit tends to zero for Q h m oo and therefore

we have with Eo = Q, Ei" = Q + cb with 0 (
e ( 1 and (4.13), (3.14),

A large hard-axis anisotropy leads to the suppression of
out-of-easy-plane fluctuations by the existence of a large
mass gap. Therefore we expect the fluctuation determi-

nant to become one in this limit.
To prove this conjecture, we remark that 6(,"), 4(")

are continuous functions which are proportional to I/kh
for k ~ oo according to Born's approximation [(6.29 of
paper I)] and remain finite for k ~ 0 due to Levinson's
theorem. Therefore both phase shifts obey the inequality
6(k) ( c/kh with a suitably chosen constant c. For the
integral in (4.13) we thus obtain the inequality

with the "initial" conditions (the prime denotes d/dz)

D ( L/2) =0, —D'( L/2) =1,—
D( )(—I/2) = 0, D( ) (—L/2) = l.

(4.s5)

(4.s6)

Note that on the finite interval the first excited eigen-
function of 'R'" has no longer zero energy and therefore
the lhs of (4.32) is well defined. The eigenvalue problem
of this quasi-zero-energy mode is written as

&"f= vf (4.37)

d.t~- . D("{L/2)
det ~g &~ I +oo D&(L-/2)

llXIl p (4.38)

We now turn to the evaluation of the rhs of (4.38).
D~ (L/2) is easily obtained by integration of (4.34) with

(4.s6),

where for large system lengths L, p & 0 is small, and f
obeys the boundary conditions f(+L/2) =f'(6 /L2) = 0.
Note that for L m oo we have f ~ pi~ and p, ~ 0. The
fiuctuation determinant is then obtained as follows:

det R
lim

g-&g&~~ det'R'&
(4.31)

D( )(I/2) = h sinh(L/h) = —e ~ .
2

(4.39)

In fact we have now shed some new light on the result
(4.23). The hard-axis anisotropy does not enter (4.30)
in isolated form but rather in the combination Q h

Q i coth R which shows that due to the diverging length
scale, the hard-axis anisotropy becomes e8'ectively strong
for small R, no matter how small Q is. D.(*) = x',"(*)+.("(*) (4.40)

The function D~(z) obeys the same differential equa-
tion {4.33) as the zero mode pi~(z) (2.20), but subject to
different boundary conditions (4.35). Therefore D~(z) is
a linear combination of pi~(z) and the unknown linear

independent solution (i~(z) of the differential equation
(4.33),
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with real constants u, v. pi~ is taken to be unnormalized,

' ——b [sech(x/b —R) —sech(x/h + R)] .
dx

(4.41)

Since the normalization of pi+ is independent of L, the
first term in the denominator is of the order exp(L/2b)
whereas the second vanishes as exp( —L/2h) and thus may
be neglected. In leading order in exp( L—/b) we thus
obtain

The normalization of (i~(z) is chosen such that the
Wronskian

2Xi (L/2)

& (L/2) I 'g, ~l(W)

64 6 ssinh R
E.(R)

B(i,~ By',

Bx " Bx
(4.42)

In order to satisfy the initial conditions (4.35), we must
have

where we have made use of (4.41) of this paper and (3.12)
of paper I. Inserting (4.39), (4.48), and (4.54) into (4.38)
and performing the limit L -+ oo, we finally obtain the
result

u = —4'(-L/2) u = y', ~(—L/2). (4.43)
det 'R

det' ~'R ~~

8tanh Rsinh R
tanhR —Rsech R

(4.55)

From (4.41) we infer the asymptotic behavior

pi~ ~ Nsgn(z)e ~ ~~ for z -+ koo,

with

(4.44)

N = 4b' sinhR. (4.45)

for ~ ~+~. (4.46)

The symmetry of the potential in R'~ and the antisym-
metry of pi~ allow us to choose pi~ as a symmetric func-
tion which has the asymptotic behavior,

which is exact for all values of the external field. Note
that in the limits R + 0 and R ~ oo, Eq. (4.55) reduces
to the results (4.22), (4.28), respectively.

The above method cannot be used for the evaluation of
the p determinants (4.58) for arbitrary values of the hard-
axis anisotropy since the zero energy eigenfunction of 'R'"
is not explicitly known. In the limit of small Q ih2,

however, the Huctuation determinant may be calculated
exactly.

The Q i-independent operator 'R'" —Q
i exhibits the

zero energy mode yo" and we can proceed along the same
lines40 as in the derivation of (4.55) to obtain

From (4.42) it follows that

(4.47)

det('R "—Q ) 8tanh Rcosh R
det'(&'~ —Q ) tanhR+ Rsech R

(4.56)

and therefore with (4.43)—(4.47) we have

D%(L/2) = —b. (4.48)

where the prime denotes omission of the zero en-

ergy mode. From (4.11) with (3.15) it follows that

n, E;"/ri', E,""= n, (E;"-q-')/n'. (E,""-q-')+
O(q ib2). With (3.14) we then obtain in leading order
in the sinall parameter Q ib2

LI2
f(*) = 9(*)+ I &(* v)n(w)~v

—L/2

with the Green's function.

(4.49)

Finally we are left with the evaluation of p. The eigen-
function f may to first order in p, be expressed as

det 'R

det 'R'i'

E'r q-i det(g~i' q-')
E~P E~P dett ( esp Q

—1)

EP —Q
i 8 tanh R cosh R

Ei" tanh R + R sech R
(4.57)

with
n(*) = xi"(~) + +i"(&) (4.51)

G'(* ~) = ~(*-~)hi'(*)4'(~) —~i'(~)4"(*)1 (4 5o)

The quasi-zero-energy eigenvalue p is now determined
such that f(+L/2) = 0. The function rl is a solution
of the homogeneous problem (4.33) which satisfies the
boundary condition g( L/2) = 0, —

The second factor on the rhs has been retained since the
coefficients of its power expansion in Q ih2 diverge for
R ~ oo. However, in the limit Q i (( EP (R not too
large), it reduces to 1. Note that the result (4.57) is only
valid for Q ih2 small and it can therefore not be used
for R small. In this latter case (4.31) applies.

With the exact result (4.55), the prefactor (3.12) now
takes the form

c = —~i (—L/2)/6 (—L/2).
The requirement f(L/2) = 0 then leads to

(4.52)

(L/2) + Q' (L/2)

f,'g, d~(I~i" (~)j'4 (L/2) —cXi (L/2) X& (u)l')

(4.53)

0 = A+L/PA tanh ~ R sinhR, (4.58)
7r det'8'~ '

which is further evaluated in the following section.



16 512 HANS-BENJAMIN BRAUN 50

V. NUCLEATION RATES
IN THE OVERDAMPED LIMIT

&+V'+ = —a& V'+

A+@+
———o.'R'J'p+, (5.1)

with A+ ) 0. The unstable mode is thus given by the
ground state of 'R'~, i.e. , (y+, p+) oc (go~, 0), and for
large o. the corresponding escape &equency is given by

&+ =alEo (R)l.

The eigenvalue EP(R) has been investigated in paper I.
It is known analytically in the limits R + 0, oo [cf. (4.16),
(4.26), respectively] which allows an explicit evaluation
of the prefactor in these limits.

(i) For large nuclei (R -+ oo) we may use (4.26), (4.29),
and together with 8, -+ 4 and the prefactor (4.58) takes
the form

0 = aL/PA ~Q+ Ql+ Q e (5 3)

(ii) For Q b )) 1, (4.31) and (5.2) may be inserted
into (4.58) to yield

0 = aL/PA ] ]Eo~(R)]tanh ~ R sinhR. (5.4)

For small R, this reduces to

In this section we shall derive analytical results for the
prefactor (4.58) in the limit of large and small values of
Q b'2 as well as large R. In the intermediate parameter
range the prefactor is evaluated numerically. The discus-
sion in this section is restricted. to the regime of large
damping. The case of moderate damping which is more
relevant for real systems shall be discussed in the next
section.

We start with the evaluation of the decay &equency A+
of the nucleus. For large values of the damping constant
a, the Eqs. (3.2) characterizing the unstable mode of the
nucleus decouple and take the form

for hard-axis anisotropies which are not too small such
that the amplitude of out-of-easy-plane Huctuations is
much smaller than 1. Requiring the thermal expecta-
tion value (pz) with respect to the Boltzmann weight

exp( —PAE, ) with f, as in (2.12) to be smaller than
1 and noting that the lowest eigenvalue in the p direction
is EP = Q ~, we obtain for the validity of the present
theory the condition PAQAK, Ka jK, ) l.

For all other parameter values the prefactor has been
evaluated numerically. The corresponding results are
shown in Fig. 3 with the dashed and dot-dashed lines
representing the asymptotic formulas (5.3) and (5.5), re-
spectively. Reinstating the units (2.4) we recognize that
the prefactor (3.12) is inversely proportional to a, a fact
which is in accordance with the general behavior 6 of nu-

cleation rates in the overdamped limit.

VI. NUCLEATION RATE
FOR MODERATE DAMPING

In the last section we have presented results for nu-

cleation rates of thermally activated magnetization re-
versal in the overdamped limit. In that case, the decay
of the nucleus is governed by purely dissipative mecha-
nisms. However, in ferromagnetic materials the damping
constant is usually of the order a = 10 ~ or sometimes
as small as 10 4 in some high purity materials such as
YIG.

According to (3.12), the dynamic properties of the sys-
tem enter the nucleation rate only in the form of the
decay &equency of the nucleus. In order to evaluate
the nucleation rate in the moderately damped regime we

therefore have to include the conservative, precessional
part of the dynamics for the evaluation of the decay fre-

quency A+. In the limits of small and large nuclei this
decay frequency can again be expressed in closed analyt-
ical form, thus enabling us to give exact results of the
total prefactor and hence of the total rate. To the best
of my knowledge, this provides the 6rst application of

O=aL/PA (
R~. (5 5)

10

Note that the results (5.4) and (5.5) are both independent
of the value of the hard-axis anisotropy.

(iii) In the limit Q ~bz -+ 0 we can use (4.58) and
(4.57) to obtain

103

0 = aL/PA ~Eo~~~Q
1

tanh Rsinh R
X

gtanh R + R sech R
(5.6) 0.01 0.1 R 1 10

For values of R such that Q « Er' (R), the square
root containing Ez" reduces to 1. In the limit R —+ oo,
Eq. (5.6) reduces to (5.3) with Q

' m 0.
Note, however, that the present theory is only valid

FIG. 3. The reduced prefactor in the overdamped limit is
shown as a function of the parameter R for diferent values
of the hard-axis anisotropy. The dot-dashed and dashed lines
are the asymptotic formulas (5.5) and (5.3), respectively.
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Langer's general theory of moderate friction to a sys-
tem with infinitely many degree of freedoms.

In a first part we discuss the escape &equency A+.
We obtain exact expressions in the limits R ~ oo and

Q b2'~ oo as well as an approximate formula which
expresses A+ by Eo . These results allow an exact eval-
uation of the nucleation rate in the limits R ~ 0 and
Rm oo.

A. Escape frequency

The dynamically unstable mode (y+, p+) of the nu-

cleus is the solution of the (non-Hermitian) coupled
eigenvalue problem (3.2). Before turning to a quantita-
tive analysis we give a qualitative discussion of the parity
and relative sign of the functions y+, p+. Both functions
are nodeless and symmetric in x with opposite relative
sign as may be seen from the following plausibility ar-
guments: For a —+ oo we know from (5.1) that the dy-
namical unstable mode coincides with the ground state
of '8'", i.e., (p+, p+) oc (y0~, 0), and therefore rp+ is a
symmetric nodeless function in x. For finite values of a
there will be a nonzero p+ component. Since the nucleus
represents an untwisted n-Bloch wall pair [cf. (3.11 of
paper I)], the instability represents a confiuence or a sep-
aration of the two domain walls which is associated with
a monotonical increase or decrease of the angle P. Hence

&p+ is a symmetric nodeless function in x. To comment
on p+, we have to recall that a motion of the domain
wall is only possible if the structure exhibits an out-of-
easy-plane component. 45 In order for the domain walls to
move in opposite directions, the out-of-easy-plane com-
ponent must have the same sign at the center of the two
oppositely twisted kinks and due to the gyroscopic na-
ture of the equations of motion, p+ and y+ must have
opposite signs.

Therefore we are looking for even-parity nodeless so-
lutions of (3.2) with opposite signs. The ambiguity in
the overall sign of (p+, p+) describes the freedom of the
nucleus either to collapse or to expand. Inspecting (3.2)
we recognize that the eigenvalue problem can be easily
solved if y+ and p+ are the ground states of 'R'~ and 'R'",
respectively, and proportional to each other. This is ful-
filled in two limiting cases, (i) R large and (ii) Q ~b2 )& l.

(i) For large R we have according to (2.19) of this paper
and (6.2) of paper I

go~ oc yo" oc sech(x/b + R) + sech(x/b —R). (6.1)

Inserting &p+ oc p+ oc go~ into (3.2) and using that the
ground state energy of 'R'" is given by EP—:Q we
obtain

been specified yet. The corresponding unstable mode is
given by

(x
(y+, p+) oc sech —+ R + sech ——R

) I )
x (1, —Q[A+ + nEO~]) . (6.3)

The plus sign of the square rooot is chosen in order to
reproduce the correct asymptotic behavior (5.2) for large
a. Note that Eq. (6.3) agrees with the statements made
above: The functions p+, y+ are symmetric and nodeless
while the ratio p+/p+ is always negative and vanishes for
n -+ oo. For o. ~ 0 we have p+/y+ Q——Q~—EP (R) ~.

(ii) For Q ~h2 && 1 we have '8'~p+ ——Q p++G(b ).
Thus the first equation of (3.2) can be solved for p+ and
after insertion into the second equation of (3.2), the fol-
lowing eigenvalue problem is obtained:

ApQ+ a
'1+ ~ + A, Q

~' (6.4)

The solution of this equation is known, i.e., p+ |x yo
and hence the coefficient of y+ on the rhs equals EP.
Solving for A+ we recover the expressions (6.2) for A+
and (6.3) for p+/p+ but with EP (R) now evaluated for
arbitrary values of R. This is a remarkable result as it
demonstrates the validity of (6.2), (6.3) in the opposite
limits Q h &) 1, R )& 1. Note that for large Q
(6.2) and (6.3) hold for all values of R. In the particu-
lar case of small R (h2 )& 1) we can insert the small R
approximation E'v' = —3R2+0(R4) into (6.2) to obtain

A+ = --[Q ' —3R ]2

—2 + 6 —1R2 + 3 —1R2 (6.5)

The unstable mode is then given by

, (xi
l

(y+, p+) oc sech — (1,—Q(A+ —3aR )). (6 6)

The validity of the expression (6.2) in the opposite limits
R + O, oo might hint to a more extended validity. In
order to investigate A+ for intermediate values of R at
arbitrary Q ~ we have to resort to numerical methods.
It turns out that the direct integration of (3.2) yields
rather inaccurate results (errors of 10% ). Considerable
improvement has been achieved by converting (3.2) into
two decoupled fourth-order differential equations in each
of the variables rp+, p+. As is seen from Fig. 4, Eq. (6.2)
provides an excellent approximation to these numerical
results.

= ——[Q-'+ E,'~]
2

—1 E &2 —1E~+ (6.2)

where Eo+ —8e in the limit R ~ oo. The square
root in (6.2) has been retained because the relative mag-
nitude of the (small) parameters Eo~, a, and Q has not

B. Nucleation rates

We are now in a position to give the results for the
prefactor for moderate damping. Results in closed form
are obtained in the limits R —+ 0 and R -+ oo. For
Q ~h2 ~ oo the prefactor can be expressed in terms of
the negative eigenvalue Eo~ which for arbitrary values of
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14

10

with A+ given by (6.2). For small R, this result reduces
with (6.5) to

+
[

— [Q '+6Q 'R']+8Q 'R') .
E2

(6.9)

0

14

10

Also here, the square root has been retained since we did
not specify the relative magnitude of the small parame-
ters n and B. However, we have to keep in mind that
upon expansion of the square root only terms in leading
order in R have to be kept in order to be consistent with
the derivation of the determinant of p fluctuations. For
small damping constants cr « ~R, Eq. (6.9) reduces
to

2

0

(6.10)

This limit is realized in typical experimental situations.

14
C

10
10

10

2 3

FIG. 4. The decay frequency of the nucleus is shown for
difFerent values of B and o;. The dots are results of a numer-
ical solution of (3.2) and the solid line is the approximation
formula (6.2).

10

10 0.1 10

R has to be evaluated numerically.
(i) For large R, we can combine (4.29), (4.58), and

(6.2) with EP = —8e s to obtain

Q
LgPh

10 0.1 10

+
[

— [[Q +16Q ee ]+8Q e
)

(n21
k2 )

(6.7)

Q = p+L, gp+ tanh R sinhR, (6.8)

The square root has been retained since the relative order
of the small parameters o. and e has not been speci6ed
yet. However, in an expansion of the square root only
leading terms in e should be taken into account.

(ii) For q ~b2 ~ oo, the results (4.58) and (4.31) yield

1O"

FIG. &. Numerical results for the reduced prefactor (4.58)
for moderate damping as a function of R. The dashed lines
represent the asymptotic formula (6.7).
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For ~QR && a we obtain

(6.11)

Discarding noise terms for the moment, we consider
the dynamics of a field variable (II)(z, t) which is governed
by the damped double sine-Gordon equation

For large values of a, Eq. (6.11) merges into the prefactor
for the overdamped regime (5.5).

The above results for the prefactor are summarized in
Table I. In Fig. 5, numerical results for the prefactor are
shown for arbitrary values of R. The prefactor is maximal
for R 1 and decreases as the external field approaches
the anisotropy field, i.e., h ~ 1, or as the field approaches
zero. One clearly recognizes that 0 is independent of the
hard-axis anisotropy Q

1 and the damping constant a
for small and intermediate values of R, respectively, as
predicted by (6.11), (6.10).

The total rate for magnetization reversal is then given
by (3.11) and experimental consequences of this result
shall be discussed in Sec. VIII. A detailed discussion of
experimental implications of these results may also be
found in Ref. 42.

Q(9, $+ a84$ =— (7 1)

with the energy

L/2

paso = dT —((),4) + —sin 4 —hcos4). (7.2)
Ll2 2 2

The constant Q plays the role of a mass and a is a
damping constant. In the overdamped limit, the inertia
term Q(9, 4) in (7.1) can be neglected and the dynamics
is purely determined by the damping term. Note that
(7.2) is equivalent to the energy density (2.5) restricted
to the easy plane 8 = z/2. Therefore, Eq. (7.1) ex-
hibits the same saddle point solution P, [Eq. (2.9)] as the
full magnetic system. The corresponding barrier energy
between the metastable state P = n and the absolute
minimum P = 0 is given by 8, [Eq. (2.15)]. Expanding
p(2:, t) = p, (z) + (/)(z, t) and linearizing the equation of
motion (7.1) around the saddle point yields

VII. RELATION
TO THE DOUBLE SINE-GORDON SYSTEM QB, &p+ a84p+ '8'~p = 0, (7.3)

In this section it is shown that the results of the pre-
vious sections allow us to calculate the nucleation rate
of kink-antikink pairs of the double sine-Gordon model
for moderate to large friction. Second, we shall see that
in the limit Q ib2 -+ oo (i.e., large hard-axis anisotropy
and/or fields close to the anisotropy field), magnetization
reversal rates become equivalent to the creation rates of
kink-antikink pairs in the double sine-Gordon model.

where 'R'v' is given by (2.13). A description of the
stochastic dynamics in the vicinity of the saddle is ob-
tained by adding the stochastic force ((2:,t) to the rhs
of (7.3) with the noise correlation g'(z', t')((z, t))
(2a/P)h(z —2,")b(t —t'). The corresponding Fokker-
Planck equation takes the form of (3.8) if we identify

/3 —0+i Mll —0i M12 ™21= li M22 = ai and
'R = ('8'h' Q ')

TABLE I. Summary of the results for the prefactor 0 [Eq. (4.58)] in the moderately damped limit for (i) large effective
hard-axis anisotropy Q iI )& 1, ((I = coth R), and (ii) small fields R )) 1 (h = sech R). Note that the underlying dimensionless
units are given by (2.4).

(i) q 'b'»1

q-'S'»1, R «1
~

Q i) )) 1,R « 1,
~QR/a )& 1

Q 'b »1 iR«1,
~QR/a « 1

(ii) R»1

R&&1,
~Qe /a « 1

0/LgPA

+ tanh RsinhR

(6.8)~
4v 3 /q —1R7/2
~S/2 +

(6.10)
12

( + —1) Rs/2

(6.11)

3/+~ tanh Rsinh R

x[vq+ pl+ q]'
(6.7)~

, (a+a ')e
xfv Q+ v'I+ Q]'

(6.7)

/3Q 'R

3(a+a-') R'
(6.9)

(6.0)

-=, [q-'+ &: )+

(6.2)
8(a+ a ')e

(6.2)

A+
——;[Q '+E;"]+

+ — -2 —2 -'E'" — -'E'"
( 6.2)'

E'"
0

Ed+b
0

3R2

(6.5)

—2R

(4.26)

In this limit, det'R ~/det'R'~ = 1; cf. (4.31).
Has to be evaluated numerically.

'Compared to (6.2), small terins of the order G((QEO~) ) have been dropped.
Typically realized in experiments.

'For a -+ oo, these results merge into (5.5), (5.3) obtained in the overdamped limit.
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The transition rate from the metastable state (neglect-
ing transitions that lead back &om the metastable state
over the barrier to the initial state) can then be calcu-
lated as in the Appendix with the result

10

10

310 r

I'use = A+

27r3

det 'R —pz,
det' ~'Ra~

~

(7.4)

10 r

where f, is given by (2.15). In (7.4) a factor of 2 has
been included due to the existence of two equivalent sad-
dle points kP„and the ratio of the determinants has
been calculated in (4.55). A+ ) 0 is the nucleus decay

frequency which is obtained by insertion of y = e"+~p+
into (7.3),

(7 5)

with EP the (negative) ground state energy of 'R'~.
Equations (7.4), (7.5) constitute the creation rate of kink-
ant ikink pairs in the moderately damp ed double sine-
Gordon system.

It may now be verified that the magnetization rever-
sal rate (3.11), (3.12) with (4.31) is equivalent to the
result (7.4) in the limit Q ib2 ~ oo, provided that the
time scale in (7.1)—(7.4) is chosen as [t] = Mo/(2pK, )
while energies and lengths are chosen as in (2.4). Taking
the limit Q]EP ~/n ~ 0 in (6.2) and (7.5) we obtain

A+ ——(a + o. ) ~Es ~

and A+ ——]Eo ]/a, respectively.
Reinstating units, the equivalence of I' and I'ps a is im-
mediately verified.

VIII. DISCUSSION

In the previous sections we have investigated the rate
of magnetization reversal in an efFectively 1D ferrornag-
net which describes magnetization configurations in an
ideal elongated particle of a small constant cross section
A. The experimentally most important conclusion is the
existence of a saddle point structure which is localized
along the sample. Unlike the Neel-Brown theory2 which
leads to a barrier energy VK, (l —h)2 proportional to
the particle volume V, the present theory leads to an
energy barrier AE, that is proportional to the sample
cross section and to the domain-wall energy [after rein-
stating the units (2.4)]. For sufficiently elongated par-
ticles the energy of the nonuniform barrier is thus al-

ways lower than that of the uniform one and thus the
present theory predicts much lower coercivities than the
Neel-Brown theory. To illustrate this, we consider the
following typical material parameters of particles such as
CrOz. A = 5 x 10 ~ erg/cm, K, = 7 x 10s erg/cm,
Mo ——480 Oe, p = 1.5 x 10 Oe s . For T = 300 K,
Q = 0.2, n = 0.05, the numerically evaluated switch-
ing rate (3.11), (4.58) is shown in Fig. 6 as a function
of the external field for various particle diameters but
for a fixed aspect ratio of 15:1. The dotted lines rep-
resent the predictions of the Neel-Brown theory, while
H tMo/(2K, ) = 1 is the Stoner-Wohlfarth value4s of the

10 9

0.2 0 4 0.6 0.8

Hext Mo

2Ke
FIG. 6. The total nucleation rate I' is shown as a function

of the reduced external field for various particle diameters.
The material parameters are chosen as in Sec. VIII. The
dashed curves indicate the results of the Neel-Brown theory.
The particle aspect ratio is assumed to be 15:1.

nucleation field. One clearly recognizes the significant
coercivity reduction for particles with small diameters.
Note that the switching rate at a given field predicted by
the present theory exceeds that of the Neel-Brown theory
by more than ten orders of magnitude. Conversely, the
coercivity of a particle of diameter 100 A exhibits a co-
ercivity which (depending on the measurement time) is
about one-third of the Stoner-Wohlfarth value. Since the
barrier energy AS, is independent of the particle length,
the present theory predicts the coercivity to become in-

dependent of the particle length for sufBciently long par-
ticles. This is in contrast to the theory of Neel and Brown
which predicts a suppression of thermal eKects in the par-
ticle volume.

Experiments investigating the coercivity of a single
elongated particle indeed show a significant coercivity re-
duction from the Stoner-Wohlfarth value for fields along
the particle. These experiments have also shown an
asymmetry in the angular dependence of the coercivity,
the coercivity reduction being more pronounced for ex-
ternal fields along the particle axis than for fields directed
perpendicularly to the sample. Both of these findings
are in qualitative agreement42 with the present theory.
A quantitative comparison between theory and experi-
ments is difficult for the presently available experimental
data since the particles are irregularly shaped and often
contain voids. Experiments on particles with a more per-
fect morphology such as Cr0 2 or data of particles with
various aspect ratios and diameters would clearly be de-
sirable to further clarify the mechanism of thermally ac-
tivated magnetization reversal.

Let us now recall the various assumptions that have
been made in the present theory:

The cross sectional area has been considered constant
throughout the particle. This ass»mption leads to a con-
tinuous degeneracy of the solution P, with respect to
translations. In the case of a varying cross sectional area,
the present treatment will still be approximately correct
if the variations have a much shorter wavelength than
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the characteristic length scale 6 of the nucleus. How-

ever, if the cross sectional area varies substantially, the
saddle point energy will depend on the coordinate zo in
(2.9) and hence a whole class of energetically almost de-
generate saddle points emerge. Such an extension of the
present theory would predict that one single particle be-
haves as if there would be a distribution of saddle point
energies. Experimental results indeed show deviations
&om an Arrhenius law involving a single energy barrier.
They exhibit a decay of the magnetic moment of a single
particle that is proportional to lnt over several decades in
t, a fact that is usually attributed to a distribution of en-

ergy barriers. Such a behavior cannot be reconciled with
the simple Neel-Brown picture which predicts a unique

energy barrier for a single particle.
In addition, we have focused on nucleation in the inte-

rior of the particle but we have neglected effects occur-
ring at the particle ends. Since the nucleus P, describes a
magnetization configuration merging asymptotically into
the metastable state, the present nucleus may also be
used to describe a situation where the magnetization is
pinned at the sample ends. In order for the present the-
ory to hold, however, the pinning energy has to be suf-

ficiently small that it can be overcome by the two do-
main walls propagating from the nucleation location to
the sample ends.

In the opposite case of &ee boundary conditions, i.e.,
M'(+L/2) = 0, there exists also the possibility that only
one domain wall is nucleated at one sample end. This
case can also be related to the present theory. In the ideal
situation of a sample of constant cross section and an
effective easy-axis anisotropy that extends to the sample
end (at least within a distance smaller than the domain-
wall width), the saddle point structure P, restricted to
the interval —oo & z & 0 represents a domain wall which
is nucleated at the sample end z = 0. Consequently the
corresponding energy is half of the nucleus energy AE, .

The theory as outlined in the Appendix applies to the
regime of moderate to large friction. Since, however, the
damping constant in magnetic systems is quite small,
some estimates of the applicability range of the present
theory are presented in the following.

A. Validity of the theory

The principal existence of a lower limit of the damping
constant for the present theory may be seen as follows.
For a = 0, the linearized equations (3.1) do not describe
the decay of the nucleus towards the stable state but
rather a purely precessional motion which conserves the
energy. Therefore, the corresponding decay &equency A+
is completely irrelevant for the nucleation rate for a ~ 0.

For very small values of the damping constant o., a
completely diferent methodology would have to be ap-
plied, since the nucleation no longer corresponds to a dif-
fusion in con6guration space but rather in energy space.
Since the time evolution of the nucleus for extremely
small n is expected to exhibit a "breathing" oscillation,
a derivation of the corresponding Fokker-Planck equation
would be an extremly difFicult task. However, we shall

see that the applicability range of the present theory ex-
tends to rather small values of a even for small nuclei
and small cross sectional areas of the sample. Therefore
we do not consider the underdamped theory any further.

A criterion for the crossover between the present theory
and energy diffusion has been given by Landauer and
Swanson (see also Ref. 16 and Ref. 39).The moderately
damped theory may be applied if the energy loss during
an (approximate) period of the motion near the saddle
point exceeds k~T.

Using the equations of motion (2.2) we obtain for the
energy loss rate per area

df 2—= —a dz ((9)m)
dt

(8.1)

where m = M/Mo. Since (8.1) may also be expressed by
spatial instead of temporal derivatives, it is clear that
the energy loss will be smallest for small nuclei. In
this limit we may employ the spin-wave approximation
m„, m, « 1, m = —1+G(m ). The energy loss during
one approximate period then takes the form

AXE = —aA dt f dh ((B~mq) + (8&m )~), (8.2)
0

a,my —(1 —h+q ')m, ,

(9~m, = —(1 —h)m„. (8.3)

They describe an elliptical precession m, = m, sin~t,
m„= —mo cosset with ma/ms = v)'1 —h/gl —h+ Q
and ur = g(l —h)(1 —h+Q ~). Inserting this into
(8.2) we obtain

q-'~
AbS = —aA — dz(ms)z(1 —h) 1 —h+

(8 4)

Now, for small nuclei, we have h = sech R 1—R . The
precession is assumed to cover the nucleus structure and
therefore we have mo = 2sinhRcosh(z/6)/[sinh R +
cosh (z/6)]. Inserting this in (8.4) and performing the
integration the validity condition ALf & k~T takes the
following form in leading order R:

bS =8 Q 'i"PA R' & l. (8.5)

For typical values of the constants as given above and
Q ~ = 0.2 we obtain the condition aR2a 7 x 10 ) 1
where a is the cross section area measured in cm . The

where —"is the precession period. The rhs of (8.2) is now
evaluated approximately. First, we are only interested in
leading order in a and thus we may use the conservative
equations of motion for the evaluation of the integrand
in (8.2). Second, we discard any breathing effects and
neglect the exchange coupling of the magnetic moments
such that the precession amplitude is given by the spatial
distribution of the nucleus. Linearization of the equa-
tions of motion for a = 0, Bqm = m x (Mo/(9m), with
Zo the energy (2.1) without exchange, then leads to
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limit is reached for, e.g. , a = 0.05, R = 0.4 (h = 0.84)
at particle diameters 70 A. Note that due to the neglec-
tion of the breathing contribution to the energy loss this
represents a lower limit for o. and therefore the theory
may be applied even for smaller values of n or samples
smaller than indicated above.
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du
dE

dz) M,, -X,y;(x)U, (x)
U

1 d2I"
U;(z)U, (x), = 0. (A3)

pg ' ' du 2

In order for (A3) to become a proper difFerential equation
in u alone we must have

(A4)

APPENDIX f1 dx) M;, U;(z)U, (z) = pK,
a2

(A5)

In this appendix we present a derivation of the ex-
pression for the nucleation rate starting &om the Fokker-
Planck equation (3.8) near the saddle point. Since the
deterministic part of the dissipative linearized equations
(3.2) constitutes a non-Herrnitian eigenvalue problem,
there is no known set of eigenfunctions to expand in and
therefore traditional formulations which are based on an
expansion into mode amplitudes cannot be applied im-
mediately. In the sequel we shall show, however, that
the within a functional formulation, the derivation of the
nucleation rate can be carried out in close analogy to the
methods of Kramers~ and its extension to many degrees
of freedom by Langer. & ~ In the limit of large &iction the
result reduces to the theories~4 of Brinkman, Landauer-
Swanson, and Langer.

The basic principles of the method go back to
Kramers. ~s We calculate the stationary flux of a nonequi-
librium distribution across a surface transverse to the
unstable direction at the saddle point. A main difFer-

ence to 6nite dimensional problems is the existence of
the Goldstone mode with zero energy which reHects the
continuous degeneracy of the nucleus P, with respect to
rigid translations.

Our goal is the construction of a stationary nonequi-
librium probability density obeying the boundary condi-
tions g 1 near the metastable state and g 0 beyond
the saddle point. To this end we factorize the desired
probability distribution as follows:

where p, K are real constants. Since &om (3.5),
g, . M;~U;U~ = a P,. U, , the condition (A5) amounts
to a normalization of the U;, and we have pK ) 0. Using
(A4) and (A5), Eq. (A3) reduces to the same di8'erential
equation as in the case of one degree of freedom:

dI' d I'
=0, (A8)

p(U) = f duexp( — ).
Inserting (A7) and (A5) into (3.9) we obtain for the cur-
rent near the saddle point

1 u 2

J;(z) =
&&V'2~1~1

exp — g,~ ) M,, U~ (z).

(A8)

which is integrated with the boundary conditions
F(—oo) = 1, F(oo) = 0; i.e. , the vicinity of the
metastable state (u -+ —oo) is characterized by thermal
equilibrium while the probability distribution vanishes
beyond the sadlle point (u -+ oo). Since g has to be nor-
malizable, we must have p ( 0 and hence K ( 0. I" is
then given by

e = e.q~. (AI)
We now return to the evaluation of K Equation (A. 4) is
ful6lled if

u= dx U~ &

2

(A2)

The key assumption is now to let I' be a function of one
coordinate u only. I" is such that g is a normalizable func-
tion. In the vicinity of the saddle point, the coordinate
u is a linear functional in vP,

(A9)) M,, '8;U,. = KU;.

Note that this implies that U~(x) has no component
along the zero frequency mode since (yz~, U~)

. (&'&y~~, U&) = 0. This is physically plausible
since the dynamical instability of P, is only associated
with a shrinking or expansion of the nucleus but not with
a pure translation of the nucleus as described by y~~(x).
Because Q'" is a positive operator, there is no restriction
on the functions U"(x). Therefore (A9) can be inverted
to give

with (Uq, U2) = (U~, UJ'). After insertion of (Al) with
(A2) into (3.8) and using the stationarity of g we obtain ) M,,U, =~'R, U;,

2

(A10)



50 STATISTICAL MECHANICS OF NONUNIFORM. . . 16 519

where ('g'~) ~ acts only on the subspace (f~(f, Xz ) =
0). Equation (A10) and hence (A9) are solved by putting
U; = 'R;@,+ where @+ = (y+, p+) is the dynamical un-
stable mode obeying (3.2). Therefore we have

where the prime on the s»m indicates that the integrand
is independent of pq, since E~" = U~ = 0. To simplify
notation we now choose integration measures (dy„) and

(dp„) in (A16) and in Z such that, e.g. ,

rc= —A+ &0. (A11)

The escape rate I' is now obtained by integrating the
Bux transverse to the unstable direction, e.g. , over the
manifold u = 0:

1

(dpi') (dpi') exp( P~— a"prps) =
s (A17)

r = V~sp d*) U, (z)J,(z)
u=0

= A+ — 'Drp17p b(u) g,o,2' (A12)

where we have used (A8) and A+ is determined by the
eigenvalue equation (3.2). The constant p will cancel
in the final result as we shall see below. g,q has to
be evaluated on the hyperplane u = 0 in the vicinity
of the saddle point. According to (3.10) it is given by

p q ——exp( 13AE, —)/Z with Z determined by the nor-
malization of g,o in the vicinity of the metastable state.
Upon insertion of (3.10) and using the Fourier represen-
tation of the bfunctio'n, Eq. (A12) reads

~
e

—pAZ.
l' = p+ — — 17rpVp exp(iqu)

2m Z 2'

x exp —PA — dz(p'R'~y + — dzp'R'~p
2 2

(A13)

V (z) = ) .V- X."(z) (A14)

For the evaluation of the functional integrals we use the
self-adjointness of 'R'~ and 'R'" acting on functions with
periodic boundary conditions on [

—z, z ]. Therefore they
have an orthogonal and complete set of eigenfunctions
x"x'" with &'"x" = E"x" &"x'" = E"x'"
where v, p, denote the bound states v, p = 0, 1, (2) and
scattering states v, p = k as well. Therefore we can ex-
pand

But note that we have to restore /PA/2z' in the in-
tegration over the zero mode which does not contain a
Gaussian and note also that the integration measure in

q is the usual one. We now perform the integrations in
y„and p„except for the amplitudes of the zero mode yq
and that of the unstable mode, yo, to obtain

~

e—pAs. 1r=x dpi
v det 'R'+ Vd«'R'&

x dip —exp
27K

(
2 ( & Egg

iU:i'~ t

pxx exp iqUo yo + IEo"lpo (A18)

( S

The expression det 'R stands for the product of all eigen-
values of 'R. The double prime on the determinant and
the summation indicates that the terms v = 0, 1 corre-
sponding to the»notable mode and the zero mode, are
omitted.

We now turn to the evaluation of the zero mode.
To this end we remember that a pure translation of
the nucleus can be described by P, (z + dz) —P, (z) =
P', (z)dz or since y~~ oc dP, /dz we can equally well write
P, (z+dz) —P, (z) = x~~(z) dye. This allows us to replace
the integration over the zero mode by an integration over
z. Since X~~ is normalized to unity and reinstating the
integration measure (A17) of (dye) we have

p( ) =):p.x„'(*), (A15)

(A19)

where y g
——y&, and y„,p are complex expansion co-

eKcients. Since y and p are real, we have y„= p'„
and p„= p' „. Expanding similarly u = P U„" 'y„+
g U~ 'p„we obtain

F = A — — dy dp„

'. I' . P~ .x exp ) iqU~ '(p„— E„'~p„'(p„
)

x exp xQU p~ — E p pI ~, A16
.(. „. px .. .

where

l:—:~Z,L. (A20)

Here we have made use of (2.15). After performing the
q integration (A18) we have to convince ourselves that
the remaining integral converges. This is ensured by the
following relation, which follows from (A5) and (A10):

) dzU;(z)R, 'U;(z) = —i~iPA &. 0. (A21)

Using the expansions of U; in terms of the y'„~'" and
recalling that Uz = 0 we see that the exponent is in
fact negative. We are now le& with the evaluation of Z.
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Since g« is strongly peaked at the metastable state we
can perform a Gaussian approximation

Z = B(PBPexP — — dx P Q
2

A+ PA det'8 ~

det' ('8'v'~
(A24)

det 'R'i'

1 dxP'R P P
2

(A22)

where in contrast to the above y and p now describe
Buctuations out of the metastable state. They are defined
by P = z. + (p and 8 = 7r/2 —p, where ~p[, [p( && 1. This
integral is performed analogously to the previous one: y
and p may be expanded into the (plane wave) eigenstates
of Q 4', 'R ".The integrations then are all Gaussian and
using the measure (A17) for the integrations, we finally
obtain

z= 1 1
(A23)

gdet'R ~ gdetR ~

After having performed the q integration we can now
carry out the final Gaussian integration over the unstable
mode yo. Using (A5), (A18) leads to the final result

A+ PA
2z. 2z. g(gv'IE,'+@,'r @,'r

rIk2z~, p

Qyl EysP (A25)

where according to (A20) 8 = L~E, [8, is given by
(2.15)] and A+ is determined by (3.2). Note that in our
case of two equivalent saddle points P+ we have to mul-

tiply this final result by a factor of 2.

where det' ~'R'~~ denotes the product of the modulus of
the eigenvalues with omission of the zero mode. Apart
from the dynamical prefactor the result looks as if we had
evaluated in Gaussian approximation the ratio Z /Z,
of the partition functions at the metastable state and
the saddle point, respectively, with the unstable rendered
into a stable one. Or loosely speaking, the nucleation rate
is proportional to the imaginary part of the ratio Z /Z, .
For later reference, we express the result (A24) in terms
of the eigenvalues E„'~,E„'":
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