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Scattering models of conduction around an antidot in a magnetic field
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Magnetotransport through a pair of parallel ballistic conducting channels separated by an antidot is
studied theoretically using models with magnetic edge states linked by unitary scattering matrices. Ana-

lytic solutions of the models are presented. A model is identified that exhibits abrupt phase shifts of
magnetoconductance oscillations and beatlike conductance features similar to those that have recently
been observed experimentally. The effect of temperature on the beatlike structures is discussed. Anoth-
er possible explanation for the experimentally observed phase shifts is also mentioned.

I. INTRODUCTION

Following the discovery' and explanation' of conduc-
tance quantization of ballistic constrictions in semicon-
ductor heterostructures, there has been much interest in
quantum transport in more general ballistic nanostruc-
tures. Systems of parallel ballistic conductors connect-
ing a pair of electron reservoirs are in this category. Ex-
perimental and theoretical ' studies of them have
revealed a number of interesting phenomena: In the ab-
sence of magnetic fields, they exhibit additive parallel
conductances, ' ' and possibly energy-level locking, '
although the latter effect is controversial. " When a mag-
netic field is applied, Aharonov-Bohm' -like conductance
oscillations appear * * because of the multiply connected
geometry.

Very recent progress in nanofabrication technology has
made it possible to study the parallel conduction experi-
mentally in a more controlled way, and a number of addi-
tional interesting effects have been observed ' At
high magnetic fields, a magnetic edge state bound to the
"antidot" separating the parallel conducting channels,
becomes suSciently weakly coupled to the rest of the sys-
tem that it exhibits pronounced charging effects. '

These are related to the Coulomb blockade, ' and their
presence in a completely open geometry is interesting.
However, certain phenomena observed at lower magnetic
fields have been interpreted in terms of noninteracting
electrons. These include abrupt phase changes' ' and
beatlike features' that are observed in the magneto-
oscillations of the conductance. Abrupt period changes
of the conductance oscillations that are also observed at
the lower fields have been interpreted as effects of edge-
state formation and its influence on the local Fermi lev-
el. ' Neither the high-field nor the lower-field behavior is
completely understood at present. Thus, it is important
to establish precisely what noninteracting electron
theories predict about these systems. One way to do this
is by computer simulations, using numerical lattice
Green's-function techniques. ' ' This approach has
very recently been applied to the problem of an antidot
between a pair of conducting channels. ' However, it is
also useful to understand the physics in terms of simpler

models and their analytic solutions. A suitable approach
is to model conduction in terms of magnetic edge states
linked by unitary scattering matrices. ' It has previ-
ously been used to study transport in Hall bars with reso-
nant defects, ' quantum wire junctions, ' quantum
dots, and quantum dot arrays. This approach relies
on the unitarity of scattering matrices (an exact proper-
ty), and good agreement with key results of much more
complicated numerical studies can often be achieved.

In the present paper, this approach is applied to the
problem of the parallel ballistic conductors. ~s In Secs. II
and III the edge-state models of these systems that have
been proposed previously are analyzed. It is found that
they cannot explain the abrupt phase changes of the mag-
netoconductance oscillations and beatlike features that
have been recently observed. An improved model is
presented, together with its analytic solution, in Sec. IV.
In Sec. V, it is shown that this model exhibits abrupt
phase changes and beatlike features similar to those that
are observed. The temperature dependence of the beats
and how it is affected by the magnetic field are briefly dis-
cussed. Some limitations of the model and a possible al-
ternative explanation of the phase changes are mentioned
in Sec. VI.

II. THE SIMPLEST EDGE-STATE CONFIGURATIONS

The simplest models of edge-state transport through a
pair of conducting channels arranged in parallel are
shown schematically in Figs. 1(a) and 1(b). Electrons are
excluded from the black areas. The center black region is
the antidot. The measured electric current flows in each
case between the two conducting regions (white areas) lo-
cated above and below the antidot. The solid lines
represent the electron edge states, while the dashed lines
indicate scattering processes between the edge states.
Figure 1(a) shows the case where the edge states are
transmitted through the two conducting channels with
some reflection (backscattering of an electron from L to
R or from R to L) happening because of the scattering be-
tween edge states occurring at a and b Figure 1(b) de-.

picts the edge states being reflected at the channel open-
ings with some transmissions through the channels
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in the form

Ufx =use "'
where uzi is real and positive, unitarity implies that the
scattering phase shifts tPzx obey

expl:& «xx+( xx —(xx —t xx) j= —1

and that

uf =u~ =Ql —(uf } =+1—(uf )

if X and X' are diferent edge states.
Edge state C accumulates a phase yb, in propagating

from scattering region a to scattering region b and a
phase y, b in propagating from b to a. Thus,

FIG. 1. The simplest models of a pair of parallel conducting
channels. There is only a single participating magnetic edge
state (solid line) at each boundary between the electron gas
(white) and depleted regions (black) ~ Dashed lines denote
scattering between different edge states. The electric current
flows between reservoirs located at the top and bottom of each
figure. (a) the edge states are transmitted through the conduct-
ing channels, with some reflection occurring due to mixing be-
tween edge states at a and b. (b) The edge states are reflected at
the mouths of the conducting channels, with some transmission
occurring due to mixing at e and f.

La LL JLa + ULC Ca

&C. = UcL JL~+ UccJc

cb cR JRb + cc cb
0 b I b I

0 b I b I
JRb = URR JRb+ URcJcb (4)

where U and U are the unitary scattering matrices
describing the scattering regions a and b. %'riting them

occurring because of the scattering processes e and f. A
switch from resonant reflection in the configuration of
Fig. 1(a) to resonant transmission in Fig. 1(b) has been
suggested as a possible explanation of the abrupt m phase
changes that are observed' ' in the magnetoconduc-
tance oscillations of the antidot systems. Such a switch is
not found in the theory described here.

A feature of the present theory is that although Figs.
l(a) and 1(b) may appear different physically, the same
mathematics describes both of them. That is, the cases of
weak and strong transmission through the constrictions
simply correspond to different values of the scattering
matrix elements. In the treatment given below, the nota-
tion refers to Fig. 1(a); however, the results are equally
applicable to Fig. 1(b). The objective is to calculate the
quantum transmission probability of an electron through
the pair of parallel channels and hence the two-terminal
conductance of the system.

In Fig. 1(a), let the three edge states present be labeled
L, R, and C as shown. Let the current amplitude of edge
state X that is incident on (fiowing out from) scattering
region y be Jx (Jx ). Then the scattering between the
edge states at a and b can be written as

"AsJo
Ca e Cb

JI +ha JOcb e (9)

The transmission probability of an electron at the Fer-
mi energy through the pair of parallel conducting chan-
nels is given by

JO
(lo)

if JRb =0, i.e., it is the probability that an electron enter-

ing the system in edge state L at the upper left in Fig.
1(a), exits via edge state L at the lower left.

Equation (10) can be evaluated by solving (1)—(4), using
(5)—(9). This yields

Here

t, =uLI. ucc (12)

b b
tb uzR =ucc

are the moduli of the transmission amplitudes of the two
individual conducting channels (r, and rb are the corre-
sponding transmission probabilities) and

0 ba+CC+9 ab+~CC (14)

is the phase accumulated by the edge state C in a com-
plete orbit of the antidot, including the phase shifts Occ
and 0« that are acquired in the scattering processes a
and b.

In Fig. 1(a), the orbit C comes into resonance when the
phase accumulated by an electron going around it once is
an integer multiple of 2m, i.e., when 4 =2mn. Since
0 ~ t, ~ 1 and 0 ~ tb ~ 1, this implies that on resonance the
total transmission T of the parallel conducting channels
given by Eq. (11}is always a minimum as a function of
+, irrespective of the transmission probabilities t and

tb of the conducting channels, i.e., this model exhibits
only resonant reflection, and not resonant transmission.
This is true of both Figs. 1(a) and 1(b), since mathemati-
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cally these cases are equivalent. The transmission proba-
bilities t, and r& and all of the phases in Eq. (14) should

vary smoothly with the magnetic field, so that no sudden
change of the phase of magnetoconductance oscillations
is predicted in these models when t, and/or tb passes
through any particular value. The crossover from Fig.
1(a) to 1(b) with decreasing t, and tb results simply in a
broadening of the reflection resonances. This is illustrat-
ed in Fig. 2, where T given by (11) is plotted against 4
for (a) strong and (b) weak transmission through the
parallel channels.

Thus, while these models can account for the existence
of magnetoconductance oscillations, they do not explain
the interesting details (abrupt phase changes, beats,
abrupt period changes) that have recently been observed.

III. INCLUDING MORE EDGE STATES

It is reasonable to ask whether more general scattering
models can do better. A model in which both resonant
transmission and resonant reflection can occur is shown
in Fig. 3. In addition to the edge states L, R, and C
shown in Fig. 1(a), another pair of edge states V and W
are present and couple to C at d and e.

The analysis in the preceding section can be extended
straightforwardly to this case, noting that here the total
transmission T through the parallel channels takes the
form T = TLL + T~~ + TL ~+ T~~, i.e., it consists of
terms describing transmission from the edge states enter-
ing the system at the upper left in Fig. 3 to those exiting
at the lower left. The result is

t'+t'+ t't'(t't' t' —t') —1—
&.'tbrd't, ' 2&.r, tdr, c—os(y )+1

(15)

Here t, and tb are still given by (12) and (13); t, and t~
are the transmission probabilities of the individual paral-
lel channels. td and t, are defined analogously:

td =Q yy
=Q gg (16)

te =~mw=~cc

(b)

0

(2z)

FIG. 2. Examples of the total transmission T of the parallel
channels for the models shown in Fig. 1 vs the phase 4 accu-
mulated by an electron in going around orbit C. Curve (a) is an
example of the case in Fig. 1(a) with individual conducting
channels having transmission probabilities t, =0.8, tb=0. 9.
Curve (b) is an example of Fig. 1(b) with t, =0.1, tb =0.2. In
each case T is a minimum on resonance (N =2nm), i.e., both
curves represent resonant refiection.

Re:

FIG. 3. Model of conduction through a pair of parallel chan-

nels similar to Fig. 1{a)but with an additional pair of edge states
V and W that couple to the antidot orbit C at d and e.

i.e., td is the probability that an electron in edge state V
passes through the scattering region d without being scat-
tered into edge state C; t, is the corresponding probabili-
ty for edge state IV. In (15),

X P +~CC+P b+OCC+Pbd+~CC+Pd +~CC

(18)

yc is the phase accumulated by an electron in going
around the orbit C. Note that as in Eq. (14) for the phase
entering the transmission probability in Sec. II only those
scattering phase shifts enter (18) which correspond to
transmission of an electron along the orbit C. The phases
of all of the other elements of the scattering matrices U',
U, U, and U', were eliminated from the expression for
T using the unitarity condition (6). As is the case with

in Sec. II, y can be thought of intuitively as some-
thing resembling an Aharonov-Bohm phase associated
with edge state C. On resonance, y =2mnfor integ. er n

If edge states V and W are decoupled from the antidot
orbit C (by setting td = t, =1), then Eq. (15) for T reduces
to the result (11) of Sec. II, and the system exhibits reso-
nant reflection. However, if C is instead decoupled from
L and R ( t, = tb = 1), then the total transmission is

(1—
td )(1—r,')T'= 1+

tdt, 2tdt, cos(y )—+1

which is a maximum on resonance, so that the system ex-
hibits resonant transmission. More generally, resonant
transmission (reflection) occurs if the numerator of the
second term on the right-hand side (RHS) of Eq. (15) is
positive (negative). Thus, if the values of t„tb, t„and td

vary with magnetic field, the system can switch abruptly
from resonant transmission to resonant reflection when
the value of the numerator passes through zero. This im-
plies that T =1 at the switchover. That is, in this model,
the transition from resonant transmission to resonant
reflection occurs when the two-terminal conductance of
the system is me /h, with m =1 or 2, depending on
whether the system is spin resolved or not. '

This is the case in the numerical simulations reported
in Ref. 9, where the transition occurs at the m =2 con-
ductance plateau. However, since only one Aharnov-
Bohm-like phase y" appears in the transmission T given
by (15), only a single series of resonant spikes (switching
over from transmission to reflection) is to be expected in
this model, whereas the behavior found numerically in
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Ref. 9 is, at least in some cases, more complicated.
The transition from resonant transmission to resonant

reflection in this model results in a m phase shift of the
conductance oscillations, which is abrupt, happening in a
single oscillation. But this is clearly not the explanation
of the experimental m phase shifts that have been report-
ed, ' ' since these were seen at conductance values that
are not close to integer multiples of e /h.

L

we V

I ~ 5 ~

a
~ L ~ I

IV. AN IMPROVED EDGE-STATE
COUPLING SCHEME

The model discussed in Sec. III is the simplest possible
coupling scheme involving the 6ve edge states C, L, R, V,
and W. However, as was shown above, it cannot explain
the recent experimental data. Here I will discuss another
possible coupling scheme between the edge states V and
C, and W and C, which may be more realistic. If the
mixing between these edge states is due to the geometry
of the depletion potential (rather than random defects),
then it is reasonable to expect it to be strongest near the
openings of the parallel conducting channels, where the
potential has the most structure. This suggests the cou-
pling scheme shown in Fig. 4. The scattering events
shown between edge-state pairs L and V, L and W, R and
V, and R and W, have no effect on the conduction
through the parallel channels. This is because these pairs
of edge states either originate at a common reservoir be-

I

FIG. 4. Model of conduction through a pair of parallel chan-
nels with the edge states present similar to those in Fig. 3, but
with a different coupling scheme between edge states V, 8', and

C.

fore the scattering event, or flow to a common reservoir
after the scattering event. On the other hand, the pairs of
successive scatterings labeled c and d, and f and g, form
interference loops between the pairs of edge states V and

C, and W and C, respectively, and can have a strong
effect on the conduction. Analogous coupling
schemes ' have been successful in describing quantum
interference effects that are observed ' in magneto-
transport through quantum dots.

The total transmission T through the parallel channels
can be found analytically for this model as well. The
procedure used is again a direct extension of that de-

scribed in Sec. II. The result is

T =1+ (tbX r, )F (rdt—„r,td, Qvc) r, rbF+(r, rd—, t, td, Qvc)

1 2t, tb &+t,—t&F+(r, rd, t, td, Q vc )F+ ( rf rg tf t Q wc )

(20)

where

X=r,F+(rflg tftg Qwc)+F (rgtf rftg Qwc),

1'=r, rd G(Qvw Qv)+t, td G(Qw Qc)

F—(a, b, Q) =a +2ab cosQ+b

G (Q &, Q2 )=rf rg cosQ]+ tf tg cosQ2,

~vc=~v ~c ~wc=&w c
(21) and

(22) ~vw=v+~w ~c
(23)

(24)

(25)

t; is defined as in the preceding sections [Eqs. (12), (13),
(16), and (17)], so that t; is the probability of an electron
passing through scattering region i without switching to a
different edge state. The phases appearing in the above
expressions are

+C Fag +CC +0 gf +~CC +0 fb +CC +9 bd

+CC+Pdc +CC+0 ca +~CC (26)

V 0 ag +CC +0 gf +CC +9 fb +~CC +f bd

~CV+0 dc +VC +0 ca + ~CC (27)

This expression for T is complicated enough that its
implications are best studied numerically. Nonetheless,
having the analytic result is useful. This is because the
effects of the six unitary matrices representing the
scattering at a, c, d, b, f, and g in Fig. 4 are expressed in

terms of only six real transmission amplitudes t„t„td,

tb, tf, and tg, and three Phases Qc, 0v, and 0w, which

have simple physical meanings: Qc is the phase (includ-

ing the scattering phase shifts) accumulated by an elec-

tron in going around the orbit C in Fig. 4. Qv is the
phase accumulated by going from d to c clockwise along
orbit C and completing a closed orbit by crossing from C
to V at c, going from c to d along V and returning to C at
d. Q w is the phase accumulated around the correspond-

ing orbit constructed out of C and the part of 8'between

f and g.

+W 0 ag ++CW +0 gf +~WC +0 fb +~CC +0 bd

CC +f dc +~CC +0 ca +CC

with

(28)

V. IMPLICATIONS OF THE MODEL
AND POSSIBLE CONNECTION WITH EXPERIMENTS

I wi11 now discuss the implications of the analytic re-
sults presented in Sec. IV, focusing particularly on the
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possible relationship between these results and conduc-
tance features that have been observed experimentally in

two distinct regimes.
A representative plot of the transmission T given by

(20) in the low-conductance regime where mph. ase shifts
of the magneto-osci11ations of the conductance have been
reported' ' is shown in Fig. 5. In the plot, the ampli-
tudes t„t„td, tI„tf, and tg are held fixed and the phases

Qc, Qv, and Qw are varied, keeping the ratios Qv/Qc
and Q w/Qc constant. The vertical lines in the plot are a
uniformly spaced grid. The transmission T exhibits sharp
phase changes of approximately m (similarly to those seen

experimentally) at the nodes of the pattern that occur
near Q&=6X2m and QC=35X2m. However, smaller

and more gradual phase changes in the oscillation pattern
can also be seen in Fig. 5; these occur wherever the en-

velope of the oscillations of T with Qc narrows. It is un-

clear whether such slower phase changes are also present
in the experimental data. It should be noted that the
phase changes visible in Fig. 5 are not due to switching
between resonant transmissions and resonant reflection.
Rather, they are an interference effect between the
different orbits that an electron can take around the anti-

dot in the magnetic field. In the vicinity of the phase
changes in Fig. 5, the local period of the oscillations is

slightly larger than it is before or after the phase change.
The opposite behavior (local compression of the period of
the oscillations at a phase change) also occurs in this
model in situations where t, and td, and/or tf and r are
close to 0.5.

Another regime in which experiments have been car-
ried out' corresponds to total conductances G above the
first (spin unresolved) quantized plateau, i.e., for
G )2e /h. The present model exhibits behavior qualita-
tively similar to that observed in this regime as well. In
this regime, the gates defining the system in the experi-
ments are set so that there is perfect transmission of one
mode through each of the two parallel conductors. In
the present model this corresponds to t, =t&=1; the

scattering pattern is illustrated in Fig. 6. A representa-
tive plot of the transmission T given by (20) in this regime
is shown in Fig. 7. Here again the amplitudes t„td, tf,

R

FIG. 6. Model for the case of perfect transmission through

the two parallel conducting channels. The hatched areas are
the interference loops responsible for the beat pattern in Fig. 7.

and tg are held fixed and the phases Qc, Qv, and Qw are
varied, keeping the ratios Qw/Qc and Qv/Qc constant.
The beatlike features shown in Fig. 7 are very similar to
those observed experimentally. Their origin can be un-

derstood as follows: For t, =th=1, T given by (20)

reduces to

Q WC ( +CW +0 gf +~ WC ) ( ~CC +0gf +@CC ) (30)

that follows from (26) and (28), and the corresponding ex-

pression for Qvc. Consider an electron that has entered

edge state C from Vin Fig. 6: To be transmitted through
the structure it must exit C through edge state W. This

2-

F (rg&f rftg QWC)F (rd&„r,&d, Qvc)T"=1+
1 2Y+F—+(r, rd, t, ~d, Qvc)F+(rfrgptfrg&Qwc)

(29)

The factors F in the numerator of the RHS have mini-

ma when Qvc=Qv Qc a"d Qwc=Qw Qc are equal

to integer multiples of 2~, and these minima manifest
themselves as the nodes of the beat pattern in Fig. 7 that
are marked 0 and +, respectively, i.e., the beat pattern is
due to interference between the orbit C of the antidot,
and the two orbits discussed at the end of Sec. IV that are
constructed out of C and Vand C and 8'.

This interference effect can be understood intuitively

by considering the result

10 20 30

Q (2z)

I

40 50

0+ 0 + 0 + 0 + 0

0 10 20 30 40 50 60 70 80 90

Q (2n)

FIG. 5. Total transmission T through the pair of conducting
channels calculated for the model in Fig. 4, at low transmission.

Q~ is the phase accumulated by an electron in going around the
orbit C of the antidot. Model parameters used are t, =0.15,
tb =0.25, t, =0.8, td =0.7, tf =0.75, t =0.6, Q v/Q& = 1.1, and

QIv/Q& =1.07. The vertical lines are a uniformly spaced grid.
Abrupt m phase changes of the transmission oscillations occur
at the nodes of the interference pattern near Q~=6X2m and

Q~ =35 X2m. Slower phase changes not equal to m occur where
the oscillation envelope narrows near Q& = 15, 22, and 50 X2m'.

FIG. 7. Total transmission T through the pair of conducting
channels calculated for the model in Figs. 4 and 6, for perfect
transmission through the channels at a and b. Q& is the phase
accumulated by an electron in going around the orbit C of the
antidot. Model parameters used are t, =1.0, tb =1.0, t, =0.8,
t&=0.7, tf =0.75, tg=0. 6, Q~/Q&=l&'~, and Qv/Qc=118 ~

The two series of nodes of the beat pattern are marked 0 and
+. They occur where Qv —Qc and Q~ —Qz equal integer
multiples of 2m; respectively. Their physical meaning is ex-
plained in the text.
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kT* =g (t, —l~)
a

(31)

where I i and 12 are the azimuthal eigenvalues I of the in-

nermost and next-to-innermost edge states, respectively,
at the Fermi energy e, and g is a geometrical factor close
to unity. The l, need to be calculated as a function of the
energy c., in order to evaluate (31). A convenient numeri-
cal procedure for this is described in Ref. 37. Applying it
here yields T*—5 K at B =2 T for a 400-nm-diameter
antidot in a two-dimensional electron gas in GaAs and
c, =7.15 meV. Equation (31) also implies that T* de-
creases with increasing B or decreasing c, because

~
i312/Bs~ becomes large as the second-lowest Landau level

involves the scattering events f and g. The first set of
parentheses on the RHS of Eq. (30) for Qirc is the total
phase that the electron acquires when it scatters from C
to W at f, travels from f to g in W, and then scatters
back from 8' to C at g. The second set of parentheses is
the phase that the electron acquires if it stays in C at f,
travels from f to g in C, and then stays in C at g, i.e. ,

Q~c is the difference in phase between the two paths that
an electron can take around the shaded region at the bot-
tom of Fig. 6. When this difference is an integer multiple
of 2n., there is constructive interference, and transmission
from C to C via f and g is enhanced. Correspondingly,
transmission from C to W via f and g is suppressed.
Thus T is reduced, and a node occurs in Fig. 7. The
shaded region between C and V in Fig. 6 has a similar
role.

An analogous interference mechanism has been suc-
cessful in describing quantum Hall anomalies that are ob-
served in quantum dots. Those anomalies are known to
persist to temperatures that are unusually high for mesos-
copic interference phenomena, up to several kelvin. Thus,
it is interesting to consider whether the node-antinode
structure of the beat pattern in the present antidot system
should be similarly robust to temperature. This appears
to be the case experimentally. To calculate the temper-
ature T* at which kT smearing of the Fermi function
would be expected to destroy the beat pattern, it is neces-
sary to know the energy dependence of the phase
differences Q, «and O~& at fixed magnetic field. A com-
plete treatment of this problem would require elaborate
numerical calculations and is beyond the scope of this pa-
per. However, a simple estimate can be obtained by mod-
eling the parts of C and V between c and d (and the corre-
sponding parts of C and W) as portions of the innermost
and next-to-innermost edge states of an isolated azimu-
thally symmetric antidot, respectively. These eigenstates
are of the form %&„=e'~R&„(r)where r and P are the ra-
dial and azimuthal coordinates. Then, neglecting the en-
ergy dependence of the scattering phase shifts 0&i that
appear in Q«and O~c, one can estimate the tempera-
ture at which the beat pattern should disappear as

—1

depopulates. In fact, when the Fermi level coincides with
the second bulk Landau level, the second edge mode of
the antidot at the Fermi energy becomes a bulk state and
is then dispersionless, so that ~i}12/Bs~ diverges. The rap-
id decrease of T with increasing B predicted by this ar-
gument is in qualitative agreement with the results of re-
cent measurements. However, the values of T* es-
timated in this way are somewhat larger than the experi-
mentally observed smearing temperatures. This sug-

gests that inelastic scattering also may play a significant
role in smearing out the beat pattern as the temperature
increases, as is the case with the related quantum Hall
anomalies in quantum dot systems.

VI. CONCLUSIONS

It has been shown above that the scattering model de-
scribed in Sec. IV is able to account qualitatively for
some key features of the experimental data at low and
moderate magnetic fields. These features are abrupt
phase changes of the magneto-oscillations of the conduc-
tance at conductance values G (2e /h (spin un-
resolved), ' ' and beatlike conductance structures at
G )2e2/h. ' However, this model does not account for
abrupt increases of the period of the conductance oscilla-
tions that are observed to occur with increasing magnetic
field in the G ) 2e /h regime. ' These period jumps can
be explained' in terms of a different mechanism, namely,
edge-state formation at random variations of the poten-
tial in the vicinity of the antidot. Experimentally, the
period changes are often accompanied by abrupt phase
changes of the conductance oscillations. ' Thus, it ap-
pears that in addition to the mechanism discussed in this
paper, there is at least one other (quite different) way in
which abrupt phase changes can be generated. In view of
this, it may be significant that m phase changes at low
conductance have been reported also at high magnetic
fields (B -9 T) in the spin-resolved regime where only the
lowest spatial Landau level is populated. ' In this re-
gime, the edge states V and 8'in Fig. 4 have the opposite
spin to that of edge states L, C, and R, and thus an ex-
planation of ~ phase changes within the present scatter-
ing model would require spin-Aip scattering. It is not
clear whether this requirement is satisfied by the experi-
mental system. On the other hand, edge-state formation
at potential irregularities is certainly possible under these
conditions. Further experimental and theoretical studies
of these effects will clearly be of interest.
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