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A classical continuum model of an effectively one-dimensional ferromagnet with exchange and
anisotropies of hard and easy-axis type is considered. In the presence of an external magnetic field

along the easy axis, the lowest-lying topological excitations are shown to be untwisted or twisted
pairs of vr-domain walls. The Quctuations around these structures are investigated. It is shown that
the Suctuations around the twisted and untwisted domain-wall pair are governed by the same set
of operators. The untwisted domain-waQ pair has exactly one unstable mode and thus represents
a critical nucleus for magnetization reversal in effectively one-dimensional systems. The twisted
domain-wall pair is stable for small external fields but becomes unstable for large magnetic fields.
The former effect is related to thermally induced coercivity reduction in elongated particles while
the latter effect is related to "chopping" of twisted Bloch wall pairs in thin films. In view of a
statistical mechanical theory of magnetization reversal which will be presented in a separate article,
the scattering phase shifts of spin waves around these structures are calculated. The applicability of
the present theory to magnetic thin films is discussed. Finally, it is noted that the static properties
of the present model are equivalent to those of a nonlinear cr model with anisotropies and an external
field.

I. INTRODUCTION

Macroscopic ferromagnetic samples ' consist of many
domains in which the magnetization is uniform and
directed along one of the minima of the crystalline
anisotropy. The phase boundaries between such regions
are formed by domain walls (Bloch walls) in which the
magnetization vector rotates continuously between differ-
ent anisotropy minima. The formation of these domains
is due to the long-range magnetostatic forces which tend
to avoid the formation of magnetostatic charges at the
sample surface. However, domain walls have locally pla-
nar symmetry and can therefore locally be described by
an effectively one-dimensional model. '

A one-dimensional description is also adequate for
elongated samples of mesoscopic size if the lateral sample
extension is less than a domain-wall width. Such parti-
cles are widely used in magnetic recording media; e.g. ,
Cr 02 particles are amost perfect needles with aspect
ratios of up to 20:1. For this reason and in view of
tremendous recent progress in sample preparation on the
nanometer scale, it is therefore of particular importance
to study the model of an effectively one-dimensional fer-
romagnet in detail.

In the following we shall focus on a description of the
Inagnetization within a classical field theory. Such a for-
mulation also provides the starting point for a quantum
mechanical theory in the semiclassical limit. The mag-
netization is treated as a classical vector of constant mag-
nitude and adjacent moments interact via exchange, thus
giving rise to a "stiffness" of the spin chain. The present
model contains single-ion anisotropies of hard- and easy
axis type which may have demagnetizing or crystalline
origin. In addition it includes an external field directed

along the easy axis. %ithout an external Geld, this model
is also known as a "biaxial ferromagnet. "

The present model has also been used to de-
scribe weakly coupled one-dimensional (1D) ferromag-
netic chains. In effectively 1D antiferromagnets such as
TMMC, it emerges as an effective model for the sublat-
tice magnetization. The dynamic version of this model
without external field and damping has been shown to
be integrabler and reveals a surprisingly rich palette of
soliton and breather solutions, the solitons playing the
role of domain walls.

The simplest static, topological excitation in a biax-
ial ferromagnet in the absence of an external field is the
n-Bloch walls'~o (see Fig. 1) which constitutes the tran-
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FIG. l. (a) The s-Bloch wall interpolates between difFer-
ent anisotropy xninirna; (b) fluctuations y, p around a given
structure with P„Psand 9 = n/2 at a given space point z.
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sition region between two equivalent anisotropy minima.
Its stability has been investigated by Winter who ex-
plicitly derived spin-wave excitations. He showed that
within the 1D system, Bloch walls are stable save for the
zero energy mode which describes a rigid translation of
the domain wall. Later nanak quantized the spin-wave
excitations around a pinned domain-wall and included
demagnetizing effects of spin waves running parallel to
the domain-wall. Hornreich and Thomas considered
a biaxial ferromagnet with an external field perpendic-
ular to the easy axis. They studied the instability of
domain-wall structures for large external fields and gave
variational stability boundaries including demagnetizing
effects of fluctuations.

In this paper we consider the different situation of an
external field applied along the easy axis without the
limitation to large external fields. The external field re-
moves the degeneracy between the two anisotropy min-
ima and consequently only pairs of Bloch walls can exist
as static solutions. The basic topological excitations of
this system are thus twisted and untwisted pairs of x-
Bloch walls.

Experiments and numerical simulationsi suggest
that the annihilation of twisted domain-wall pairs in thin
films requires much larger external fields than that of un-
twisted domain-wall pairs. Furthermore, the observed
coercivity reduction in elongated particles at finite tem-
peratures has no theoretical explanation.

In this work, it is shown that both of these efFects
are related to the stability properties of twisted and
untwisted domain-wall pairs. The primary aim of the
present paper is therefore a careful investigation of the
fluctuations around these structures. We shall reveal the
surprising fact that fluctuations around the twisted and
untwisted domain-wall pairs are described by the same
set of operators. This puts the stability discussion of
the untwisted and twisted domain-wall pairs on an equal
footing. It then follows immediately that the untwisted
domain-wall pair has exactly one unstable mode corre-
sponding to an expansion or a shrinking of the structure.
The untwisted domain-wall pair is thus identified as a
"nucleus" of critical size in a first-order phase transition
and thus plays a crucial role in thermally activated mag-
netization reversal in elongated particles. A detailed
statistical mechanical theory of magnetization reversal is
presented in the following paper.

Another immediate consequence of this relation is the
instability of the twisted domain-wall pair (or "2vr-Bloch
wall" ) for large external fields as has been discovered by
Magyari and Thomas and independently in Ref. 19.
By a careful examination of the nonlocal demagnetizing
fields which are not included in the model of a biaxial
ferromagnet, it is shown that this effect should be ob-
servable in thin films. In particular, the minimal attain-
able distance of two domain walls is shown to decrease
with increasing hard-axis ansiotropy. It is emphasized
that this efFect is beyond the otherwise highly successful
description of domain walls within Slonczewski's effective
model. The present results are also crucial for the cur-
rent design of vertical Bloch line memories whose read
operations rely on a distinction between domain-wall

pairs with different relative sense of twist.
The work is organized as follows. In Sec. II we present

the model and discuss its role as an effective model which
describes planar structures in a 3D model including de-
magnetizing efFects. In Sec. III untwisted and twisted
domain-wall pairs are presented and their energy is eval-
uated. It is shown that both structures can be viewed
as a coherent superposition of two vr-Bloch walls. In Sec.
IV the operators governing the fluctuations around the
2m-Bloch wall and nucleus are derived. In Sec. V these
results are applied to discuss the instabilities of these
structures. In Sec. VI bound state energies and scatter-
ing phase shifts of the fluctuation operators are discussed
analytically and numerically in view of a calculation of
nucleation rates of magnetization reversal. The discus-
sion of scattering phase shifts provides a lucid example
of the widely unknown version of Levinson's theorem in
1D: Scattering phase shifts do not converge uniformly to
those of the operators that are obtained in the limit of
small and large external fields. In Sec. VII we show that
the present model can account for several different ex-
perimental configurations in sufficiently thin films where
the nonlocal influence of demagnetizing fields on twisted
domain-wall pairs can be neglected. The present model
is thus adequate to describe situations where the wall
separation is comparable to the wall width.

It is not necessary that the reader follow all details of
the present paper. Those who are interested in experi-
mental implications may skip the more formal Secs. IV
and VI and directly proceed to Sec. VII.

II. MODEL

In this work we consider effectively one-dimensional

magnetization configurations described by the following

energy per unit area:

dz 2 O, M + O,M„+O, M,
M02

&e
2M, — 2M —II,„t, (2.1)

where M = M(z), 8, = 8/Bz, and Mo = ~M~ is the
constant magnitude of the magnetization. The first term
in the integrand of (2.1) is the classical counterpart of

exchange energy and A is an exchange constant. The
second term describes a hard-axis anisotropy character-
ized by the anisotropy constant Kp, ) 0, thus rendering
the xy plane an easy plane. The rotational invariance

in this easy plane is broken by an additional easy axis
anisotropy with anisotropy constant K ) 0. The last
term in the integrand of (2.1) is the Zeeman term which

is due to an external field H „qpointing along the easy
axis.

Apart &om the description of the (sublattice-) spin con-
figuration in 1D (anti)ferromagnetic systems, the en-

ergy (2.1) has found wide applicationsi 2 in the descrip-
tion of planar domain walls and their mobilities in bulk
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ferromagnets. As will be discussed in Sec. VII, it is also
adequate for the description of domain-wall pairs in thin
films. Due to the absence of discussion in the recent lit-
erature, it seems convenient to review how the energy
(2.1) may be derived from the energy of arbitrary 3D-
magnetization configurations M = M(r) in a volume V
with inclusion of demagnetizing efFects:

v I
MO'

(2.2)

In contrast to (2.1), the first term in the integrand is
the exchange term in three dimensions while the second
and third terms describe crystalline easy- and hard-axis
anisotropies of strengths Ke,cryst&Kh, cryst ) 0~ respec-
tively. The fourth term is the demagnetizing energy
with the demagnetizing field H obeying the magne-
tostatic Maxwell equations V x H = 0, V B = 0
(B = H + 4xrM). They can be rewritten in the form
of a Poisson equation V24~ = 47t V M with the mag-
netostatic potential 4 defined via H = —V4 . The
Poisson equation is integrated in a standard way, and
after splitting volume and surface terms we obtain

I

+ dS' o (r') r —r' s' (2.3)

H (z) = —4z M, (z)e„ (2 4)

where o (r) = M(r) n(r) is the magnetic surface charge
(n is the normal of the surface BV) and p (r) = V' M(r)
is the magnetic volume charge. Inserting (2.3) into (2.2)
one recognizes that the evaluation of a magnetization
configuration M(r) by minimization of (2.2) for given
boundary conditions is in general a hopeless task.

However, experiments reveal that the magnetization
distribution in the vicinity of a domain wall in the bulk
of a sample is a locally planar structure. This suggests
the existence of an effective energy density which is of
the form (2.1). In fact restricting ourselves to planar
structures M = M(z) and neglecting magnetic surface
charges2i in (2.3) we obtain for an infinite saxnple a de-
magnetizing field of the form

h = h, cryst + 2&MD

Ke = Ke,cryst + 0.
(2.5)

(2.6)

[This holds for a configuration as, e.g. , shown in Fig.
8(a).] For other sample geoxnetries and anisotropy config-
urations, we can similarly express the effective anisotropy
constants K„Kx,in (2.1) by shape and crystalline
anisotropies.

To incorporate the constraint M = M02 ——const in Eq.
(2.1), we use spherical coordinates defined by M/Mo
= (sin 8 cos P, sin 8 sin P, cos 8). Further it is convenient
to introduce dimensionless quantities by taking the scales
of length and energy per area as

[*]= [~l = [z] = A
[E] = 2/AK, . (2.7)

Consequently, the units of the magnetic field are given
by [H] = v 2K, . The length gA/K, is the width of the
static xr-Bloch wall, and 2+AK, is half the energy per
unit area of the static m-Bloch wall. With these defini-
tions, the energy (2.1) becomes

'1
E'= dz -[(8,8) +sin 8(8,$) ]

12

——lsio iicos ii —1]+ cos 8 —hsioiicosP),q —i

2 2

(2.S)

K,
Kh' (2 9)

describing the ratio of easy- and hard-axis anisotropy in
the efFective model (2.1). Note that this is a slight ex-
tension of the common definition where Kh ——2vrMO. In
(2.8) we have also used the reduced external field h which
is related to the external field H,„tin laboratory units
by

H.„,MO

2K. (2.10)

where 8 = 8(z) and P = P(z). The normalization is
chosen such that the uniform states 8 = z /2 and P = 0 or
P = n' have zero energy in the absence of an external field.
In (2.8) we have introduced the dimensionless anisotropy
ratio Q ) 0 with

where e is the unit vector in the z direction. For the
derivation of (2.4) we have also assumed that M (Woo) =
0. After insertion of (2.4) into (2.2), the dexnagnetizing
energy takes the form of a hard-axis anisotropy along the
z direction. The underlying physical picture is simple: A
planar arrangement of parallel dipoles has higher energy
when the dipoles stick out of the plane than if they are
in the plane. The form of the demagnetizing field (2.4) is
used to analyze wall motion experiments in garnet films.
For structures of planar symmetry we thus may reduce
(2.2) to (2.1) provided that

At first sight, the choice of the coordinate frame in
(2.1) and. (2.8) might be surprising since the polar angle
is not measured relative to the external field. The ad-
vantage of such an orientation is that the linearization in
the angles 8 and P around structures confined to the zxi
plane is equivalent to a linearization in a Cartesian kame
that is rotated along this structure ' but is simpler in
practice. Measuring 8 &om the external field w'ould not
allow linearization in the azimuthal angle P to describe
spin-wave excitations of a uniform state parallel to the
external field.
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III. DOMAIN-WALL STRUCTURES

In the following we shall focus on static easy-plane
structures of the model (2.8). It is shown that the only
solitary easy-plane structures are twisted and untwisted
pairs of vr-Bloch walls. Simple representations are pre-
sented that relate these solutions to each other.

Inspecting (2.8), we recognize that the hard-axis
anisotropy is minimized for 8 = 7r/2. The correspond-
ing static structures then identically satisfy the Euler-
Lagrange equation b'8/h8 = 0 while the Euler-Lagrange
equation in P reads

1 dP
q(P) = — dz —.

2'7r ~ dz
(3 6)

7Z (ir) corresponds to an (internal) rotation of the mag-
netization by an angle vr around the x axis (0 = ir/2),
whereas 7 represents a time inversion. Therefore, all
specific solutions quoted below have equivalents arising
through the action of R, 7, and 7 o 'R . For a given
direction of the external field there are thus exactly two
equivalent structures related to each other by the action
of 7Z (ir). To classify the solutions it is also convenient
to introduce the twist

d2$
+ sinPcosP+ hsing = 0.

dZ
(3 1)

Upon integration with dP/dz we obtain the first integral

with

-i —
I

+V(4)=C1 fdy)'
2 (dz)

V(P) = —cos P+hcosP.=1 2

2

(3 2)

(3.3)

Equation (3.2) has the form of an energy conservation for
a fictitious particle moving in the one-dimensional poten-
tial V(P). By this analogy, we can gain an overviewi of
all static easy-plane structures. Note that the potential
V(P) is the negative of anisotropy and external field con-
tributions to 8 for 8 = z /2 up to an irrelevant constant.

Solitary solutions are now obtained as trajectories of
the fictitious particle starting &om a local maximum of
V(P). Due to the "energy conservation" (3.2) it will ei-
ther creep into a difFerent maximum of the same height
or, if it started from a lower maximuin, it will bounce
back into the same state. For ti g 0 the degeneracy be-
tween the maxima of V (i.e. , minima of E) is lifted and
two distinct trajectories emerge. One trajectory connects
a global maximum of V at P = 0 with an adjacent one at
P = +27r. This trajectory corresponds to a twisted pair
of vr-Bloch walls. The second possible trajectory repre-
sents a localized excursion &om the lower maximum of
V at P = +sr which corresponds to an untwisted pair of
ir-Bloch walls. For other values of C in (3.2), periodic
solutions occur which may be regarded as generaliza-
tions of the above solutions to finite sample lengths.

Thus we have obtained an overview over all possible
solutions without having solved the differential equation
(3.2) in detail. This analog should also prove useful for
different models with other forms of the anisotropy and
difFerent orientations of the external field.

Apart &om the trivial symmetry arising &om the rep-
resentation of M in terms of spherical coordinates, Eq.
(3.1) is invariant under the symmetry operations

Single ir-domain walls belong to ~q~
= 1/2, whereas

twisted domain-wall pairs have ~q~
= 1 and untwisted

pairs have q = 0. Note that R (7r) changes the sign
of the twist q, whereas 7 leaves the twist invariant but
reverses the magnetization at infinity.

For a vanishing external field, h = 0, (3.2) with (3.3)
may easily be integrated with the boundary conditions
B,P(koo) = 0, P(—oo) = 0, and P(oo) = n to yield the
7r-Bloch wall

Px (z) = 2 arctan e',
(3.7)

Hic = ir/2.

E'x = dz/
/

=2,
dz )

(3.8)

where in the first step we have made use of the fact that
Px. obeys the "energy conservation" (3.2) with C = 1/2
and 6=0.

For 6 g 0, the degeneracy between the two anisotropy
minima at (0, $) = (ir/2, vr) and (7r/2, 0) is lifted. Con-
sequently, single Bloch walls cannot exist any more. In-
stead two difFerent types of Bloch wall pairs arise which
are discussed in the next two subsections.

The configuration (3.7) is shown in Fig. 1. The Bloch
wall represents a smooth transition region between the
two degenerate uniform states of minixnal anisotropy en-

ergy while the magnetization always lies in the easy
plane. In (3.7) an integration constant describing the
arbitrary wall position has been fixed such that the vr-

Bloch wall is centered around the origin. However, as
we shall see in Sec. IV, this degeneracy with respect to
translations will lead to a (Goldstone) mode of zero en-

ergy in the excitation spectrum. The finite domain-wall
width arises through the balance of exchange energy and
uniaxial anisotropy, the former tending to enlarge the
transition region, the latter tending to narrow the Bloch
wall.

Inserting (3.7) into (2.8) for h = 0 we obtain for the
energy per unit area of the vr-Bloch wall

and

R (ir):Pm —P (3.4)
A. Untwisted domain-wall pairs

7:Mm —M,
(3.5)

For 0 & 6 & 1, the boundary conditions ct, P(+oo) = 0,
P(+oo) = 7r, imply that C = 1/2 —h. The integration of
(3.2) then yields the "nucleus"
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(cosh z/6, )
P, (z) = 2arctan

~

slnh

area (2.8) of the nucleus relative to the "down" state
takes the simple form

h = sech R„ 6, = cothR, . (3.10)

The nucleus may also be written as a superposition of two
untutisted n-Bloch walls (3.8) centered at z/6, = +R„

P, (z) = P~(z/6, —R, ) + Plr, ( z/6, —R—,). (3.11)

Note that this relation is exact for all 0 & R, & oo.
Equations (3.9), (3.11) thus describe a domain with mag-
netization oriented parallel to the external field which is
delimited by a pair of untwisted z-Bloch walls (cf. Fig.
2). The existence of this structure is due to the balance
of exchange and Zeeman energy. The exchange energy
tends to attract the untwisted domain walls, whereas the
Zeeman energy pulls them apart since it favors the in-
termediate domain. As is illustrated by (3.10), (3.11),
and Fig. 2, the domain-wall separation tends to infinity
for h i 0 whereas for h —& 1 the two oppositely twisted
domain walls almost annihilate each other and the nu-

cleus degenerates to an infinitesimal deviation from the
uniform "down" state ($, e) = (z', n/2).

Using the parametrization (3.10), the energy per»»it

8, = ~/2.

As we shall see in Sec. V, the configuration (3.9) rep-
resents a Saddle point of the energy since it is unstable
for all values 0 & h & 1 of the external field. Since it
has exactly one unstable mode, it represents a critical
nucleus for magnetization reversal. The integration con-
stant in (3.9) is chosen such that the symmetry center
is located at z = 0. Note, however, that the continuous
degeneracy of (3.9) with respect to translations will give
rise to a zero energy (Goldstone) mode in the fiuctuation
spectrum, quite analogous to the case of the m-Bloch wall
above. In (3.9) we have introduced the "radius" R, of the
untwisted domain-wall pair. R, is related to the external
field h and the width 6, as follows:

M, =4R, . (3.13)

The deformation energy vanishes for R, ~ 0, re6ecting
the fact that untwisted pairs of domain walls are attrac-
tive. For R, ~ oo, the energy converges to that of two
independent x-Bloch walls.

From (3.12) and (3.10) we may immediately derive the
(formal) susceptibility

2

hi/1 —h
(3.14)

This susceptibility has only formal character, since as we
shall see below, the nucleus is unstable for all values of
the external field 0 & h & 1.

B. Twisted domain-wall pairs

For 0 & h & oo, and for the boundary conditions
8,$(+oo) = 0, P(+oo) = 0, we have t = 1/2+h. Equa-
tion (3.2) may then be integrated to yield the 2vr-Bloch
wall18, 19,22

( coshRs i
45(z) = 2arctan

~(sinhz 5)

85 = z /2.
(3.i5)

e. = z [y., e.j —e y = ~, e = — = (dP, )
2. q dz )

= 4tanhR, —4R, sech R, . (3.i2)

In the first step we have used the first integral (3.2) and
the integration is most easily performed with (3.11). The
first term on the right-hand side (rhs) in (3.12) describes
the deformation energy of the nucleus compared to the
uniform state in the absence of an external field. The
second term is the Zeeman energy —M, h. The magnetic
moment per unit area relative to the down state is thus
given by

The integration constant has been chosen such that the
symmetry center is located at z = 0 but as in the case of
the nucleus, the translational degeneracy will give rise to
a zero energy (Goldstone) mode in the fluctuation spec-
trum. The "radius" Rg of the twisted domain-wall pair
is related to the external Geld h and the characteristic
width bg as follows:

h = csch Rg, bq
——tanh Rq. (3.1S)

FIG. 2. The nucleus is shown for (a) small Selds (R, = 3.5)
and (b) for Selds close to the anisotropy Seld (R, = 0.4)

The 2z-Bloch wall (3.16) may also be written as a su-

perposition of two buisted m-Bloch walls (3.7) located at
z/bs = +Ri„

Ps(z) = Plc( z/bs + Ri) + P~—(—z/bi, —Rs). (3.17)
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ts=f Pi„8=-—8 /=0, 8=- = dz~
ir ir (dPi, )
2. - 2 ( dz )

= 4cothRb+ 4Rbcsch Rb. (3.i8)

where (3.2) and (3.17) have been used. The first and sec-
ond terms on the rhs in (3.18) describe the deformation
energy of the 2x-Bloch wall relative to the uniform "up"
state P = 0 in the absence of an external field, and the
Zeeman energy, respectively. The magnetic moment per
unit area relative to the up state is thus given by

This relation is valid for all values of Rb. Equations
(3.16), (3.17) describe a pair of ir-Bloch walls located at
z/h = +Ri, with equal relative sense of twist, enclosing
a domain of reversed magnetization (cf. Fig. 3). This
structure is stabilized by the balance of Zeeman and ex-
change energy. The Zeeman energy tends to enlarge the
domains oriented parallel to the external field, whereas
the exchange energy pulls the twisted domain walls apart.
As illustrated by Fig. 3(b), the 2m-Bloch wall decays for
h —i 0 into two individual m-Bloch walls with increas-
ing separation, whereas for h -i oo [Fig. 3(a)], the two
x-Bloch walls are squeezed and the transition region be-
comes in6nitesimally small.

The energy per area of the 2'-Bloch wall is given by

IV. FLUCTUATIONS

To investigate the stability of the structures presented
in the last section, we perform an expansion around a
given easy-plane configuration (Po(z), 0 = z/2) as fol-
lows:

P(z) = Po(z) + &(z),

Ii'(z) = lr/2 &(z)

(4.1)

where ~ig~, ~p[ (( 1. First, we shall review the Huctuations
around the x-Bloch wall because of their close relation
to the Quctuations of the 2x-Bloch wall and the nucleus.

Inserting (4.2) with Po ——~tK into (2.8) for h = 0 we

obtain up to second order in y(z) and p(z)

where E is the Bloch wall energy (3.8). No first-order
term in the Huctuations is present in (4.2) since PK obeys
the Euler-Lagrange equations (3.1) with h = 0. The
operator 'R is defined as

2 K 1 OO

Z(') = ZK+ — dz pRKp+ — dz p(RK+Q ')p,
—OO —OO

(4.2)

Mb ———4Rb. (3.i9)
'R = — + 1 —2sech z.K d 2

dz2
(4.3)

Note that the deformation energy in (3.18) diverges for

Rs —i 0 (i.e., Ii —i oo); i.e. , a compression of the 2z-
Bloch wall to zero width is connected with an in6nite
increase in exchange energy. For Rb ~ oo (i.e. , h —i 0)
the deformation energy tends to that of two single m-

Bloch walls and the Zeeman energy becomes zero. %ith
(3.18) and (3.19) we obtain the susceptibility

gK K( ) EK K( v=0, k. (4.4)

There is one bound state with zero energy,

The potential appearing in (4.3) belongs to the family of
reHectionless potentials which are of the form —m(m+
1) sech z (m an integer), and which are discussed in the
Appendix. The eigenvalue problem of (4.3) is

drab 2

hi/1+ h
(3.20)

yo (z) = sechz, Eo = 0,K 1 K (4.5)

For large external 6elds this susceptibility has a only for-
mal meaning, since the 2'-Bloch wall can become unsta-
ble for h+Q i/3 as we shall see in Sec. V.

and there are running (spin-wave) states,

X (z)= [
—ik + tanh z] e'"',

2ir(l + kz)

(4 6)
gK 1+ k2

FIG. 3. The 2s-Bloch wall is shown for (a) small fields

(Rs = 3.5) and (b) for large fields (Ri, = 0.4)

The easy-axis anisotropy leads to the gap 1 in the spin-

wave spectrum (4.6) while (4.2) shows that the hard-axis
anisotropy gives rise to the "mass" Q i of the p Huc-

tuations. Since go is nodeless and thus represents the
ground state of Q~ with eigenvalues zero, all eigenval-

ues of 'RK + Q i are positive. Therefore all fluctuations
around a m-Bloch wall have positive energy except for the
zero energy mode (rp, p) = (yo (z), 0). This mode corre-

sponds to a rigid translation of the Bloch wall: Taking the
derivative of (3.2) for Ii = 0 we obtain 'R dPK/dz = 0

and therefore yo oc dPK/dz. We conclude that in the
absence of an external field the static kink is stable with

respect to planar distortions except for rigid translations
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which involve zero energy. This result was first obtained
by Winter. ii We now proceed with a discussion of Huc-
tuations of the nucleus and the 2z-Bloch wall.

A. Nucleus

Inserting (4.1) with $0 ——P, into the energy (2.8) and
evaluating E'[P, 8] —E[P = vr, 8 = z) to second order in rp

and I we obtain

1 S 1
E', = E', + — dz rp'R'~p+ — dz pQ'i'p, (4.7)

—OQ —OQ

where the index v denotes bound states and scattering
states. An analytical solution of these eigenvalue prob-
lems seems only possible in the limiting cases R, ~ 0
and R, ~ oo. However, one bound state of '8'~, the
zero energy state, can be derived immediately by tak-
ing advantage of the continuous degeneracy of (2) with
respect to translations. Taking the z derivative of (3.1)
at P = P„weobtain with (4.8) 'R'~dP, /dz = 0, and
therefore

dP, i
i'z' =6, sech~ —+R,

i

—sech~ ——R,
~

dz '
i Eb, ') Eb,

where E, is given by (3.12). The first-order term in
the Huctuations is absent since P, satisfies the Euler-
Lagrange equations (3.1). The operators '8'~ and 'R'"
are defined as

Esg 0

(4.16)

with

'R' = —
d 2

+2cos p, +3sech R, cosp,
dZ

+2sech R, —1+q (4.9)

d2

2 + 2cos p, + sech R, cos p, —1, (4.8)
dZ

The antisymmetry of the zero mode g&~ with respect
to z is a consequence of the opposite relative sense of
twist of the two z-Bloch walls in (3.11). The remaining
bound state energies and the scattering phase shifts will

be investigated analytically and numerically in the next
section.

B. 2m-Bloch wall

sinh R, —cosh (z/h, )cos s =
sinh R, + cosh (z/h, )

(4.10)
Inserting (4.1) with $0 ——Ps into (2.8) we obtain for

E[$,8] —E[P = 0, 8 = 2) to second order in p and p

, +6, 'V
i

—,R, i,
d', /z

(4.11)

This form of the Huctuation operators is rather involved.
Since the nucleus can be represented as a superposition
(3.11) of untwisted z'-Bloch walls, we expect these oper-
ators to contain potentials of the form (4.3) for each of
the constituents of the nucleus. Indeed, (4.8) and (4.9)
allow for the much simpler representation

OQ OQ

E,"' = E, + — dz ~ X'~~+—
—OQ —OQ

(4.17)

with Es given by (3.18). The operators 'R ~ and 'R+ are
defined as

2
'R ~ = — +2cos Ps+csch Rscosgs —1, (4.18)2 2

dZ

'8'" = —„,+ h, 'V+
i

—,R. I + q ',dz
2 (z

where the potentials Vy are given by

(4.12)
+ 2 cos Ps + 3 csch Rs cos Ps

2 2

CLZ

—2csch Rs —1+q (4.19)

V~((, R) = 1 —2sech ((+R) —2sech (( —R)
+2 sech(( + R) sech(( —R). (4.13)

The second and third terms on the rhs of (4.13) are the
potentials (4.3) of two noninteracting n-Bloch walls lo-
cated at z/bs = +Rs. The last term, which vanishes
for R, ~ oo, describes the interaction of the two x-
Bloch walls and is thus sensitive to their relative sense of
twist. The constant q in (4.12) is due to the hard-axis
anisotropy and leads, in analogy to the m-Bloch wall, to
a finite mass of Huctuations out of the easy plane. The
corresponding eigenvalue problems are

sinh (z/bg, ) —cosh Rgcosfg =
sinh (z/bs) + cosh Rs

(4.20)

'R = — +bs V+
i
—,Rs ~,)

(4.21)

The operator (4.18) is identical to that describing the
Huctuations around a kink in the double sine-Gordon
model. In analogy to the nucleus, (4.18) and (4.19) al-
low for a much simpler representation

'R'"y'~(z, R, ) = E„'~(R,)y'„~(z,R,),
'R ~y'„~(z,R, ) = EP(R, )y'„~(z,R, ),

(4.14)
(4.15)

d''R+ = — +6~ V
i
—,Rg i+Q (4.22)
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where the potentials V~ are given by (4.13). The rep-
resentation (4.21) has also been obtained by Sodano et
al. in the discussion of kinks in the double sine-Gordon
model. It is instructive to compare (4.21) and (4.22) with
(4.3): The second and third terms on the rhs of (4.13) are
the potentials of the noninteracting domain walls located
at z/bb = +Rb. The last term describes the interaction
of the two domain walls and vanishes for Rg ~ oo. The
constant Q

~ in (4.22) is due to the hard-axis anisotropy
and leads to a finite mass of out of easy-plane fluctua-
tions.

We write the eigenvalue problem of (4.21) and (4.22)
in the following form:

'R ~y„~(z, Rb) = E„~(Rb) g„~(z, Rb),
'R+y+(z, Rb) = E+(Rb)y+(z, Rb)

(4.23)

(4.24)

b~ drab, f z l (z
go~ oc =bb ' sech

I

—+ Rb I+sech
~

——Rb
Idz ' (bb ) (bb )

(4.25)

The symmetry of yz~ with respect to z reflects the equal
sense of twist of the two domain walls in (3.16).

The index v denotes bound states and scattering states.
Again, an analytic solution of these eigenvalue problems
seems only possible in the limiting cases R, -+ 0 and
R, -+ oo. In analogy to the nucleus, one bound state of
'R'~ can be derived immediately. Taking the z derivative
of (3.1) at P = P, we obtain 'R'v'dP, /dz = 0 and therefore

y'„~(z,R) = y„,
~

—z, R ~,

(b,
&~(z, R) =&„~

~

—'z, R ~,
b )

(5.5)

(5.6)

where for bound states v = v' and for scattering states
v = k, v' = (b, /bb)k. The continuum eigenvalues are
defined as E~&~ ——b +k2, E~&" ——Q ~+E~&~ for j = s, b

2
In (5.1)—(5.6) we have used

hb/b, = tanh R. (5.7)

The relations (5.3), (5.4) together with (4.16), (4.25) now
allow us to discuss instabilities of the nucleus and the 2z'-

Bloch wall in a simple and straightforward way.
The function go as given in (4.25) is symmetric and

nodeless, and hence it represents the ground state of 'R~~

with zero energy. Except for this state, 'Rb~ has a strictly
positive spectrum and so has 'R'~, i.e.,

E ~(Rb) & 0, E„'"(R,) & 0, (5.8)

for all v and 0 & Rb, R, & oo. It thus follows that (i) the
2~-Bloch wall is stable with respect to easy-plane Quctu-
ations (neutrally stable with respect to the zero mode),
and (ii) that the nucleus is stable with respect to out of
easy-plane fluctuations.

On the other hand, the function g~ is antisymmetric
with one node and thus represents the first excited state
of 'R'~. Since it has zero energy, there is exactly one
nodeless, symmetric bound state of negative energy, i.e.,

Eo~(R, ) & 0, (5.9)

V. INSTABILITIES

We are now in a position to state one of the central re-
sults of this paper. Comparing (4.21), (4.22) with (4.11)
and (4.12) we infer the remarkable connection

2

g"(z, R) =
~

—'
~

Z"
~

—'., R
~

+ q-',
ib) (5.1)

8+(zR)=~
I

R
1

zR/+q
&~b )

(5.2)

Here, for clarity, the notation 'R'~(z, R) = —d2/dz2 +
b, V (&', R), b, = cothR, has been used and analo-

gously for the remaining operators. Equations (5.1), (5.2)
show that the fluctuations around the 2'-Bloch wall and
around the nucleus are governed up to rescaling by the
same set of operators. Consequently the eigenvalues are
related by

Eo+(Rb) = Q —coth RbiEp(Rb)i & 0, (5.10)

where Rg is related to the external field as 6 = csch Rg.
In (5.10) we have made use of (5.4).

Anticipating results of the next section for the asymp-
totic behavior of the eigenvalues, we obtain the following
asymptotic behavior for this instability condition:

for all 0 & R, & oo. The inequality (5.9) is the origin of
the following instabilities:

Nucleus: Fluctuations in y direction exhibit exactly
one mode of negative energy EP. Since 'R'~ is positive,
we conclude that there is exactly one unstable mode of
the nucleus for all values of R, . Since P, is untwisted
[i.e. , q(P, ) = 0], the instability in p provides an example
of a topologically induced instability.

2'-Bloch squall: The 2x-Bloch wall is stable with respect
to p fiuctuations because of (5.8). Since q(pb) = 1, this
stability is of topological origin. However, an instability
against out of easy plane distor-tions occurs if

2

E:~(R) =
~

—'
~

E„'",(R) + q-', (5.3)
Q i&2h, h«1,
Q

i & 3h, h » 1.

(5.11)

(5.12)
2

E~(R) =
I

—'
~

E„'~(R) q-',
b)

and the eigenfunctions obey

(5.4)
This asymptotic behavior is shown together with (5.10)
in Fig. 4. The instability of the 2m-Bloch wall is in ac-
cordance with the result of Magyari and Thomas who
gave also an improved analytical estimate of the insta-



50 FLUCTUATIONS AND INSTABILITIES OF FERROMAGNETIC. . . 16 493

100 .
.

10.

0.1 .
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Note that the rhs's of (6.1) and (6.2) are the exact zero
energy eigenfunctions of 'R'~ —Q and 'R'~, respec-
tively. Since for large R, these operators differ by a term
Q(e R'), we obtain within first-order perturbation the-
ory

Rsy "~v'3
Ee~(R )

(Xo ) Xo

XQ ~ XQ

2 3 1

cosh R, sinh R,
0.01 10 100

FIG. 4. Stability and instability regions of the 2m-Bloch
vrall as a function of the external field h and the demagnetizing
fleld strength Q '. The dotted and dashed lines refer to (5.11)
and (5.12), respectively.

and

2R, —sinh2R,
X

2R, + sinh2R,
M

—88
—2R,

(6.3)

(6.4)

bility range for large h; however, they did not discuss
the nucleus and the relation of its fluctuations to the 2s-
Bloch wall.

Since we have shown in this section that the eigenfunc-
tions and eigenvalues of 'R+ and 'Rs" can be expressed
by those of 'R'" and '8'~, we may restrict ourselves to a
discussion of the latter operators in the following.

1

cosh R

2R, + sinh2R,
X . +

2R, —sinh2R,

~ 8e
—2R~ +Q —1

EeP(R )
(X1 & Xl )

1 s — sp ep

3
h

—2

sinh2 R,
M

(6.5)

(6 6)

VI. DISCUSSION OF 'R'" AND 'R'~

In this section we evaluate the eigenfunctions of 'R'~,
'R'" numerically and provide analytical results in the lim-
its of large and small R, . We first discuss bound state
energies which are related to the stability properties of
the 2n-Bloch wall and the nucleus. In view of statistical
mechanical approximations, the scattering phase shifts
of the continuum eigenfunctions are discussed. Further-
more, it is shown that the appearance of zero energy
resonances in the spectrum require a subtle analysis of
the applicability of analytical approximations.

A. Bound states

In the limit of large and small R„the eigenvalue prob-
lems of 'R'~ and 'R'" can be solved exactly:

For large R„the potentials V~(s', R, ) decay into two

independent wells of the form —2h, zsech (&' + R, ) and

we denote the corresponding operator by 'R'. This limit
of large R, is sometimes also referred to as "thin-wall
limit". 2s The bound states of 'R'~ and 'R'" are then given
by the symmetric and antisymmetric combinations of the
bound states of the single wells. For B, -+ oo we thus
have yQ~ ~ yQ~ and yz" ~ g~P, where

where (u, v) denotes the standard scalar product jdzu'v.
For small R„wehave 'R'~ m 'R'v' and 'R'& ~ 'R'&

with

'R'~ = — + h, 1 —6 sech
d 2 z (z)

dz2 s
&h ). (6.7)

'R'~ = — + h, 1 —2 sech
~

—
~

+ Q . (6.8)
, (zl

dz

Both potentials (6.7), (6.8) belong to the class of reflec-
tionless potentials which are discussed in the Appendix.

The (unnormalized) bound states of 'g'~ and their en-
ergies are given by

ge" (z) = sech —, Eo = —3h,
S

(6 9)

g~~(z) = sech —tanh —, E~~ = 0,
b, b,

' (6.10)

and the unnormalized spin-wave states read

g„(z)= ~

3tanh ——3ikh, tanh ——1 —(kh, ) ~

e' ',f 2z . z

h.
'

h.
(6.11)

(z l (z
(z) oc sech

~

—+ R,
~
+ sech

~

——R, ~,

yz"(z) oc sech
]
—+ R,

)

—sech
(

——R,
[
.

(6.1)

(6.2)

The operator W'P is up to rescaling analogous to the
operator (4.3) which describes the fluctuations around a
single n-domain wall. It has one bound state go"(z) =
sech(z/h, ) with energy EP = Q ~, and spin-wave states
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gq (z) =
~

—ikb', + tanh —
i

e*z );~.
b,

g P g
—1+g—2+k2

(6.12)

with Ez ——0, and a weakly bound state whose energy is
always within 1'Fo of the continuum threshold according
to numerical calculations. For applications such as the
evaluation of nucleation rates we can therefore use

Ei

/N E0 s

b)

0

In Eqs. (6.7)—(6.13) we have to put b, = R, in order to
be consistent with the terms neglected in the derivation
of 'R'" and 'R'~

We are now in a position to verify the asymptotic be-
havior of the instability threshold of the 2x-Bloch wall.
Inserting (6.4), (6.9) into (5.10) we obtain (5.11), (5.12),
respectively.

For arbitrary R„the bound state energies of '8'~ and
'R'" have been evaluated numerically and the results
are summarized in Fig. 5. The values of the asymp-
totic formulas (6.3) and (6.5) are represented by dashed
lines. Note that they are accurate for values as small
as R, 1.5. The operator 'R'~ has three bound states,
the ground state of negative energy Eo~, the zero mode

(6.13)

This bound state does not seem to be a numerical artifact
since its existence also follows from the long-wavelength
behavior of the scattering phase shifts 6'~ as we shall(e)
see in the next section. The ground state wave function

can be considered as an internal "breathing" mode
of the nucleus, corresponding to an expansion or shrink-
ing, depending on the sign of yo". Note, however, that
according to (6.1), go~ oc dP, /dR, only holds in the limit
R, i oo. The operator 'R'& always has two bound states.
The ground state with constant energy EP = Q ) 0
has its origin in the Goldstone mode of the 2x-Bloch wall
while the excited state yz" of energy E&" is related to the
"breathing" mode of the 2~-Bloch wall.

Comparing the previous analytical discussion with
these numerical results we are left with a paradox. 'R'~
and 'R' both have two bound states, whereas numerical
calculations reveal the existence of three bound states of
'R'~. Similarly, 'R'" has one bound state, whereas 'R' and
'R'" have two bound states. The resolution of this para-
dox lies in the fact that each of the operators obtained in
the limits R, -+ 0, oo exhibits a zero energy bound state.
Any increase in the potential strength thus leads to an
additional bound state which is precisely the reason for
the excess bound states of 'R'~ and 'R'i'. The two-well
approximation 'R' has the same number of bound states
as '8'" but an additional zero energy resonance. As R,
becomes finite, the zero energy resonance of 4' is shifted
into the continuum.

B. Scattering phase shiAs

0.6 .

UJ
04-

The knowledge of scattering phase shifts is of impor-
tance for statistical mechanical applications. In par-
ticular, the results of the present section will be used
in the following paper on nucleation of domain-wall
pairs. The scattering phase shifts At'i (b, (,')) of the odd

(even) eigenfunctions y&'i ), (yP(, )) of the operators 'R",
i = y, p are de6ned as follows:

0.2 .

0

0

y'„'i,)(z + koo, R, ) oc cos kz+ 6(,*)(k,R,)/2, (6.14)

g&'( i(z m +oo, R, ) oc sin kz+ b.i*)(k, R,)/2, (6.15)

FIG. 5. The rescaled bound state energies of R, '~ and 'R'"
are shown as a function of R, (6, = coth R, ). The shaded
region indicates the continuum states. The horizontal lines
E~~ and Eo" correspond to the zero modes of 'R'~ and 'R ",
respectively. E2~ is a very weakly bound state just below the
continuum threshold. The dashed lines indicate the approxi-
mation formulas (6.3) and (6.5). The bound state energies of
'R ~ and '8 " may be obtained from (5.3),(5.4).

where i = y, p. It is suKcient to restrict our considera-
tions to the phase shifts of 'R'~, since according to (5.5),
(5.6) we have

(6.16)

(6.17)
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16'(k) = 4arctan (6.18)
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b, '~(k m 0, R, ) = 3~,(e)
4'" (k ~ 0, R, ) = ~,(e)
6'" (k -+ 0, R, ) = 2~,(~)

(6.21)

—6.20), however, deliver thefor all R, . Equations (6.18)—(

4 5 6 7 8

dPeven-parity scattering phases ofFIG. 7. The odd- and even-parity
are shown. e

R -+ oo is nonuniform.b'~ (k) -+ b, '(k) for B, -+ oo is noand (~)

relations

b, 't"(k m 0) = 2m,

b, '(k-+0) =2~,
6'"(k m 0) = n.

(6.22)

1 2 3k 4 5 6 7 8

the paradox en-

hli ' ofh h hif

The odd-parity wave functions e ave i
tering problem:

b." (k m 0) = 2vrN( ), Z = p)p)(o) (6.23)

- arity bound states ofis the number of odd-pari ywhere N( )
ls e n
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shifts of even-parity wavetering phase s s o
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arit scattering phases of '8'"
are s own
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N" =N" =N~ =1,(~) (o) (o)
N~ = 2.(e)

(6.25)

(6.26)

This shows that the k ~ 0 behavior of the scattering
phase shifts (6.21) is in complete agreement with the
number of bound states of 'R'" and R'" as evaluated
in the previous subsection.

If zero energy resonances are present and if the po-
tential is refkctiordess, Eqs. (6.23), (6.24) have to be
replaced28 by the parity-independent expression

4(,') (k m 0) = ~ (N( )+ N. (',)), (6.27)

where i = rp, p and j = e, o. Equation (6.27) relates
(6.22) to the number of bound states of the refiection-
less operators 'R'~, 'R'", and 'R' as given in (6.4)—(6.12).
Levinson's theorem thus relates the nonuniform conver-
gence of the scattering phase shifts towards 6'~, 6'", 6'
to the appearance of zero energy resonances in 'R'~, 'Q'~,
and 'R'. How this subtlety aKects statistical mechanical
considerations, will be discussed in the following paper. 7

The short-wavelength behavior of the scattering phase
shifts can be described within Born's approximation. 2

For an operator —d2/dz2 + V(z) with a symmetric po-
tential [V(z m koo) = 0], the phase shift is given by

Indeed, it is the purpose of this section to show that
for sufBciently thin films and at external fields below
the threshold (5.10), twisted domain-wall pairs may be
brought su8iciently close such that the exchange inter-
action between the individual domain walls becomes im-
portant and nonlocal demagnetizing effects become irrel-
evant. In this case our model adequately describes the
equilibrium separation of the walls. We shall use cgs
units throughout this section.

To be specific, we choose coordinate axes as in Figs.
8(a), and 8(b) and consider a film of thickness D in the
z direction which extends infinitely in the y direction
and has length I in the z direction. Further we assume
the magnetization to be strictly one dimensional, i.e.,
M = M(z). The demagnetizing energy per area, E'

—(1/2D) I dx dz H (x, z) ~ M(z), can then be cast into
a very convenient form due to Dietze and Thomas: 2

2
Kh Kp crypt + 27K Mo

b, (,
'.
) (k)

dz V(z) sin (kz).
2 2k

(6.28)

) L

easy-

If k ~ is much smaller than variations in V(z), we can use
sin (kz) 1/2 and after insertion of Vy(z/b„R, ) —b, 2

[cf. (4.13)] into (6.28) we obtain

-'a 'a / z
K e Ke,cryst

&(,')(k)
2 kh', sinh R, cosh R,

for kb, )) 1,

(6.29)

= Kh, cryst

where the upper sign refers to the i = p and the tan
function has been replaced by its argument. Finally it
is interesting to note that for 'R'~ the Born approxima-
tion (6.28) with sin (kz) + 1/2 coincides with the exact
result (6.20).

-a

) E

easy-

2
Ke Ke cryst 2K Mp

VII. 2m-BLOCH WALLS IN THIN FILMS

The results of the previous sections are rigorous within
the 1D model of a biaxial ferromagnet which contains
exchange and local anisotropies and the coupling to an
external field. While we have seen in Sec. II that local
demagnetizing effects can be incorporated into the model
by a redefinition of the anisotropy constants, one might
question the applicability to thin films where nonlocal de-
magnetizing effects are not a priori negligible. Since the
nonlocal demagnetizing interaction decays algebraically
while the exchange interaction between domain walls de-
creases exponentially, we expect the exchange interaction
to be dominant and thus our model to be adequate for
small domain-wall separations.

-a
II

hard

'a
2

Kh Kh c~st + 2K Mo

FIG. 8. Magnetization configurations in films that can be
described by the model (2.8). Note that the anisotropy con-
stant has to be chosen as indicated to incorporate the local
part of the magnetostatic interaction. Note also that the ori-
entation of the coordinate frame in (a) as used in the text is
difFerent from (b) and (c).
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L/2
dz 2aM, (z)

—L/2
L/2 I /2

dz dz' [M (z)M (z') —M, (z)M, (z')]
—L/2 —L/2

(xlni 1+
z —z' z)

f~"~ = E [M~ l] —8 [Mpe ]

4Mp DA 4 tan —+ 2n ln n

+i ——a iln(1+a ))
(7.4)

Equation (7.1) reduces to a simple hard-axis anisotropy
energy in the following two limiting cases:

For a film thickness D smaller than the characteris-
tic length scale of M, i.e., smaller than the domain-wall
width, the integration over the relative coordinate in the
second term on the rhs in (7.1) can be performed, and
Eq. (7.1) reduces to

L/2
E' = 27r dz M (z).

—L/2
(7.2)

This has the form of a hard-axis anisotropy energy nor-
mal to the film plane.

In the opposite limit of large D )) I, the second term
on the rhs of (7.1) tends to zeroM and we recover the re-
sult (2.4). This form of the demagnetizing energy is used
for the description of domain-wall dynamics in moder-
ately thin ( 1 pm) rare earth garnet films. i z

As the magnetostatic interaction has the form of a
hard-axis anisotropy in these limits, the energy density
(2.8) can be used to describe three distinct experimental
con6gurations. In addition to the bulk situation consid-
ered so far [cf. Fig. 8(a)], it describes configurations in
thin films (D/gA/K, & 1) which are perpendicularly
[Fig. 8(b)] or in-plane [Fig. 8(c)] magnetized provided
that the coordinate axes are chosen appropriately. The
results of the previous sections thus hold for all configu-
rations shown in Fig. 8 in the limit of infinitesimally thin
61ms. In the following it is discussed how nonlocal demag-
netizing fields, i.e., the nonlocal contribution in (7.1), will
affect these results for a film of 6nite thickness.

where a = 2a/D is the width of the reversed domain with
respect to the film thickness. Note that the rhs of (7.4)
decreases with increasing a and thus favors an expansion
of the reversed domain independent of the relative twist
of the domain walls. For the twisted domain-wall pair it
thus competes with the repulsive exchange interaction.

An external magnetic 6eld H,„talong the positive x di-
rection [cf. Fig. 8(b)] will counteract this magnetostatic
repulsion. A relation for the corresponding equilibrium
width is obtained by minimizing the energy (7.4) plus the
Zeeman energy of the intermediate domain, 2MpH gDo, ,
with respect to o. with the result

H,„2 1 a I' 1 )= —tan ———ln
~

1+—
4mMp z n vr q n2) (7.5)

Note that the relation (7.5) does not depend on the ab-
solute size of the reversed domain but only on its relative
size with respect to the film thickness. Since on the other
hand the mutual exchange repulsion of twisted domain
walls depends on their absolute distance, it can only be
observed if the equilibrium width in Eq. (7.5) is small.
However, since the external 6eld must not exceed the
instability threshold, this can only be achieved in suffi-
ciently thin films.

To investigate this effect quantitatively, we have to
compare the equilibrium width 2a = aD of (7.5) with
the separation 2a = 2Rsbgbp of the domain walls forming
a 2z-Bloch wall (3.16), (3.17) where hp ——gA/K, is the
static Bloch-wal1 width. It is suKcient to look at small

H,„qMp/(2K, ) where this relation between equilibrium
width and external 6eld can be expressed as

A. Perpendicularly magnetized Slms
e.„, 2Z, 2a

2 exp
4z Mp vr Mp2 hp

(7.6)

M(p), , Mpe for I & ~z~ ) a,
(~) = —Mpe for ~z( & a, (7.3)

for 0 & x & D, —oo ( y ( oo, and vanishing else-
where. The nonlocal magnetostatic interaction is due to
the nonuniform surface charge distribution caused by the
reversed domain at ~z~ & a [cf. Fig. 8(b)]. Inserting (7.3)
into (7.1) and performing the limit I ~ oo after evalua-
tion of the integrals, we obtain

Consider a situation as in Fig. 8(b) which requires the
crystalline easy-axis anisotropy to be larger than the de-
magnetizing energy, i.e., K, „~,& & 2vrMp2, and the easy
axis to be oriented perpendicularly to the film, a situa-
tion typically realized in bubble films or in barium-ferrite.
To estimate the nonlocal demagnetizing interaction for
domain-wall separations large compared to a domain-wall
width, we consider the con6guration

This topological (exchange) interaction between the do-
main walls thus decreases exponentially, while the mag-
netostatic interaction (7.5) decays algebraically, i.e.,

H,„t/4z'Mp ——D/(2+a), for large 2a/D Since the rhs. of
(7.6) is proportional to the "quality factor" K, /(2vrMp2)
of the domain-wall, the exchange repulsion will manifest
itself at larger domain wall separations with increasing
quality factors and decreasing 61m thickness.

This is illustrated in Fig. 9 where the solid lines show
the exchange dominated-wall separation (7.6) whereas
the dashed lines represent (7.5). The experimentally re-
quired field to reach a certain wall separation will follow
the curve that has the maximal value of H,„tconsistent
with the sample parameters. Note that the exchange re-
pulsion between the domain walls has a drastic effect.
E.g. , for a film with D/bp ——0.1 and K, /(2mMp) = 10,
the external fields to establish a distance of Yap predicted
by (7.6) exceed that of (7.5) by an order of magnitude
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B. In-plane magnetised films
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Consider the configuration shown in Fig. 8(c) with
a crystalline easy axis in the film plane. All previous
formulas hold also for this configuration provided that
we redefine all coordinates appropriately, i.e. , (x, y, z) +

(z, z, y). Since the magnetization configuration is exclu-
sively in the 61m plane, there are no induced magneto-
static surface charges in a 61m that extends infinitely
in the x direction and there is no equilibrium domain
formation in the infinite film geometry. However, we as-
sume that domain walls exist that have been created,
e.g. , by nucleation at a sample end and/or nonuniform
external fields. If domain walls are present, a magneto-
static interaction arises between the magnetostatic vol-
ume charges of the domain walls. For sufFiciently well
separated twisted domain wall pairs, Eq. (3.17) takes
the form Ms/Mo ——sech[(y + a)/bo] —sech[(y —a)/ho].
Inserting this into (7.1) (with redefined coordinate axes)
we obtain, for a much larger than a domain-wall width
bo,

Hext
mM0:

2

~ ~ = 2D(7rMo)'
I

—'
i, 2a)

(7 7)

1a4-

2 4 6 8 10
2a/50

12 14

FIG. 9. Domain-waQ separations for a twisted domain-wall
pair in (a) perpendicularly and (b) in-plane magnetized films
due to balance between external field and exchange [solid line,
Eq. (7.6)] or between external field and demagnetizing efFects
[dashed line, (a) Eq. (7.5), (b) Eq. (7.8)].

Equation (7.7) is simply the interaction energy of two in-
finitely long strings of dipoles along y with dipole moment
per unit length, p,„=D JdyM&(y) = DbovrMo The.
magnetostatic interaction between the walls is thus repul-
sive for the twisted domain-wall pair and competes with
the exchange interaction between the individual walls.
(For untwisted domain-wall pairs the magnetostatic as
well as the exchange interaction would be attractive )An.
external magnetic 6eld in the x direction will counteract
this repulsion. The equilibrium distance 2a between two
domain walls is obtained by minimization of demagnetiz-
ing plus Zeeman energy, E'~ +4MOH, „ta,with the result

or, vice versa, the wall separations differ by a factor of 3
for II,„i/(4+Ms) = 0.01. This large discrepancy should
be accessible to experimental verification.

So far we did not discuss the case of untwisted domain-
wall pairs. Despite the fact that they have been shown to
be unstable in Sec. V, Eq. (7.5) shows that such domain-
wall pairs can exist in thin 6lms due to the balance of de-
magnetizing and Zeeman energy, provided they are well
separated. However, the ansatz (7.3) overestimates de-
magnetizing effects. As the wall separation decreases, the
untwisted walls annihilate each other [cf. Fig. 2(a)] and
the magnetostatic surface charges are drastically reduced
compared to those of (7.3). This implies that the experi-
mentally observed separation of untwisted wall pairs will
not follow the dashed curve in Fig. 9 down to vanishing a
but exhibit an instability at finite a. This instability will
occur at fields that; are much smaller than the instability
threshold of the twisted domain-wall pair. We do not
consider this case further but conclude with the remark
that a quantitative theory can be obtained by improving
the ansatz (7.3) by replacing it by the nucleus solution
(4" ~ ).

II.. ~D &baal

4+Mp 2 b'p (2a) (7 8)

VIII. CONCLUSION

In this paper we have discussed the stability of twisted
and untwisted domain-wall pairs within a 1D model of
a ferromagnet. The fIuctuations around these structures

In Fig. 9(b), this is compared with the wall separation
(7.6) which is predicted by our model. Demagnetizing
effects are obviously weaker than in a perpendicularly
magnetized 6lm. For films of thickness D = 0.1bo and
K, /(2+Mes) = 10, the exchange interaction dominates
the demagnetizing interaction already at a domain-wall
separation of 2a = 13bo which is surprisingly large con-
sidering the exponential decrease of the exchange inter-
action (7.6). Note also that the external fields which are
required to achieve a domain-wall distance of 680 difFer

by a factor of 100. Finally, we note that untwisted wall
pairs in in-plane magnetized Glms are never stable for the
anisotropy configuration shown in Fig. 8(c).
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APPENDIX

In (4.3), (6.7), (6.8) we encountered Schrodinger oper-
ators of the form

2
(~}

dx2
m(m+ 1)

cosh z
(A1)

with m an integer. In the following, we shall show how
the corresponding eigenvalue problems may be solved ex-
actly with the method of Ref. 33. The continuum eigen-
functions of W( ) have the remarkable property that
their re6ection coeKcient is zero. %'e write the eigen-
value problem of (A1) as follows:

have been shown to be described by the same operators.
By means of exactly known eigenfunctions which are re-
lated to the Goldstone modes of these structures it has
been shown that untwisted domain-wall pairs exhibit ex-
actly one unstable mode while twisted domain-wall pairs
are subject to an instability at large external fields.

Furthermore, we have argued that this model ade-
quately describes the separation of twisted domain walls
in ultrathin films and thus the above instability should
be observable.

Although untwisted domain walls are unstable within
the biaxial ferromagnet, they can exist in thin films at
large separations due to the long-range magnetostatic in-
teraction. However, as a consequence of their topological
instability, the corresponding collapse field will be much
smaller than that of twisted domain-wall pairs. There
are experimental~4 and numerical~s hints for this behav-
ior, but more systematic studies are required to allow for
a quantitative comparison with the present theory.

Another important aspect is the role of untwisted
domain-wall pairs as nuclei for magnetization reversal in
elongated particles. As has been reported elsewhere,
the existence of such nonuniform nuclei fact can lead to a
substantial reduction of the coercivity compared to stan-
dard theories of magnetization reversal. Further details
of the statistical mechanical theory of magnetization re-
versal are covered in the following paper. "

with

Q~ —p —+ m tanh z.(~) d

dx
(A5)

Operating on (A2) &om the left with Q, Q+
+

we recognize that if g&~
) is an eigenfunction of 'R( ) with

eigenvalue A, then

@(m-1) Q(m) g(m)

(m+1) ~(no+1) ] (m)

(A6)

(A7)

are eigenfunctions of 'R( ~), 'R( + ), respectively, to
the same eigenvalue A.

The continuum eigenfunctions of 'R( ) can thus be re-
lated to those of 'R( ). Since 'R( ) represents the free
problem, the continuum eigenfunctions of 'R( ) can be
obtained by successive application of Q+( onto plane
wave solutions, i.e.,

.( ) ( ).. . (2)~(1) '~ (A8)

and belong to the eigenvalue A = k . For R( )

—dz/dzz —2 sech z, Eq. (A8) yields

——Q+) e'" = [
—ik + tanh z]e'" . (A9)

For 'R(z) = —dz/dz2 —6 sech z we obtain the continuum
eigenfunctions

i.(2) Q(2) Q(~) '»
+ +

= [Stanh z —Siktanhz —1 —k2]e'" .
(A10)

(A11)

+oo
= (4+m ) dz(v/rz ) . (A12)

Continuing this recursion towards lower values of m we

recognize that the normalization of, say, g&(
) would be-

come negative. This can only be avoided if the recursion
(A12) stops, i.e., if the bound state eigenvalues are given
by

l =1,2, . . . , m. (A13)

According to (A12) this implies that

Q(&)@(&) 0 (A14)

To find the bound states with A ( 0, we first remark
that the normalizations of bound state eigenfunctions
with different m are related as

+oo +oo
d (@(™—~)) d @(m) Q( ) Q(m)y( )

~(m) ~(m) ) ~(m)
A (A2) This differential equation can be integrated with (A5),

7i (m) Q(m) Q(m)

Q(m+1) Q(m+1)
( + 1)2

(A3)

(A4)

The key point for the solution of the eigenvalue problem
(A2) is the observation that 'R( ) may be factorized in
two diferent ways:

@p, (z) = sech'z. (A15)

= Q+ . . . Q+ sech z.(~) (m, ) (l+1) (A16)

For m ) I, the unnormalized tth bound state (counted
Rom the continuum) can be obtained recursively with
the help of (A7),
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Specifically, we obtain for m = 1

7b = sech x,

with energy Aq
———1, and for m = 2

y,"= sech'~,

= sech x tanh z,(2)

(A17)

(AIS)

(AI9)

with energies A2 ———4 and Aq
———1. All operators

(Al) share the property of having a zero energy reso-
nance. This means that an infinitesimal increase in the
potential strength of (Al) leads to an additional bound
state. Therefore, the occurrence of the operators (Al)
as describing fluctuations around nonlinear structures in
some limit of the external field has to be handled with
care, since their number of bound states in general differs
&om those of the operators they emerge Erom.
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