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Interesting compounds of the ABX3 family can be modeled by antiferromagnetic chains arranged
according to a triangular pattern, where each spin is coupled with six nearest neighbors via a weak
interchain antiferromagnetic interaction. The behavior of this model in an external magnetic field

perpendicular to the c axis has been studied when a suKciently strong anisotropy forces the spins
in the c plane in order to explain the low-temperature transition occurring in CsMnBr3. We find
that interesting phenomena occur in the opposit limit of weak anisotropy. Indeed an umbrella
configuration intervenes between the low-field distorted helix c-onfiguration and the high-field fan
configuration. We evaluate the elastic-neutron-scattering cross section and suggest CsVC13, CsVBr3,
and CsVI3 as good candidates to test our theoretical prevision.

I. INTRODUCTION

The ABX3 compounds, where A is an alkali element,
Ba magnetic ion, and X a halogen, have been extensively
studied both experimentallyi and theoretically. 2

Indeed these compounds can be modeled by antiferro-
magnetic chains forming a hexagonal lattice so that the
spins in the c plane are localized on a triangular lattice
and are coupled by a weak antiferromagnetic interchain
interaction. This is a well-known source of frustration
inducing interesting reorientation phenomena when an
external magnetic field is applied. The ferromagnetic or
antiferromagnetic nature of the strong intrachain interac-
tion is crucial. The intrachain coupling is antiferromag-
netic for the most part of the ABX3 compounds, but it
can be also ferromagnetic as in CsCuC13. In the latter
case the model behaves quite similarly to the triangular
antiferromagnet, ' so that quantum and thermal fluctu-
ations select the spin configuration out of a manifold of
in6nite con6gurations which are isoenergetic in the pres-
ence of an in-plane external magnetic Geld. '

Magnetic resonance experiments in CsCuClq (Ref. 8)
are well understood on the basis of the spin con6gura-
tion selected by quantum fluctuations accounted for in
spin wave theory. ' Also the measurement of the mag-
netization as a function of the external magnetic field
is explained by the spin wave theory. ' In particular, the
plateau observed when the field is perpendicular to the c
axis is explained as a first-order phase transition between
a distorted-helix (H) configuration and a fan (F) phase.
Also the jump of the magnetization observed when the
magnetic 6eld is parallel to the c axis is explained as a
reorientation of the spins out of the c plane.

The antiferromagnetic intrachain coupling of the most
part of the ABX3 compounds provides good candidates
to test experimentally interesting theoretical expecta-
tions. Indeed the interchain. coupling is so weak that
one expects the elementary excitation spectrum to keep
track of the quantum scenario of the antiferromagnetic
chain conjectured by Haldane.

Another interesting topic is the behavior of the spin
con6guration in an external magnetic 6eld since reorien-
tation phenomena are expected. This scenario has been
already investigated2 when a sufficiently strong single-ion
easy-plane anisotropy forces the spins into the c plane. In
this case two second-order phase transitions are expected
at increasing magnetic 6eld; the former occurs between
a six-sublattice H configuration and a four-sublattice F
configuration similar to a spin-flop phase. The latter oc-
curs between the F phase and the saturated (S) param-
agnetic phase for a magnetic-field so high that cannot be
obtained in laboratory.

Here we investigate the spin con6gurations in the limit
of small easy-plane anisotropy. We 6nd that below a
triple point in the magnetic-Beld —anisotropy h-d plane,
another spin configuration intervenes. Indeed an um-
brella (U) phase with the axis parallel to the external
magnetic 6eld is stable over a substantial range of an in-
termediate magnetic field. The low-field spin configura-
tion is still the H phase but a 6rst-order phase transition
to the U phase occurs. A second-order phase transition
between the U and F phases is expected for a critical
6eld very close to the saturation 6eld. We find that the
h-d plane is divided into four regions: H, U, F, and S
corresponding to distorted helix, umbrella, fan, and sat-
urated phases, respectively. The H-U boundary is first
order whereas all other phase boundaries are second or-
der. The H-U, U-F, and H-F boundary lines meet at a
triple point above which the U phase disappears. The
magnetic 6eld at which the first-order H-U phase transi-
tion occurs is small (of the order of the weak interchain
coupling) whereas the magnetic field at which the second-
order U-F phase transition occurs is high (of the order
of the strong intrachain coupling). So the U phase is a
substantial feature of the model below the triple point.

The format of this paper is the following: In Sec. II the
minimization of the classical energy for the hexagonal
Heisenberg antiferromagnet with single-ion easy-plane
anisotropy is performed. The main results are discussed
for a selected choice of the Hamiltonian parameters. In
Sec. III the elastic-neutron-scattering cross section is ob-
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tained and discussed for the different spin configurations.
Our theoretical results are applied to CsMnBr3 and the
expectation of a second-order H-F phase transition is
confirmed. We find a kink in the intensity of the (0,0,1)
peak as function of the magnetic field in good agreement
with the experimental result.

When the easy-plane anisotropy is small enough and
the U phase intervenes, the kink is replaced by a jump.
We suggest elastic-neutron-scattering experiments in a
magnetic field perpendicular to the c axis for CsVC13,
CsVBr3, and CsVI3. Indeed such compounds, already in-
vestigated in zero magnetic field, ' should develop the
U phase on the basis of our theoretical previsions keep-
ing the Hamiltonian parameters suggested by inelastic-
neutron-scattering experiment.

We expect that our calculations are reliable although
worked out in a classical approximation. Indeed crucial
and interesting quantum efFects on the elementary ex-
citation spectrum related to the quasi-one-dimensional
(quasi-1D) nature of the ABX3 compounds certainly es-
cape the classical approximation and linear spin wave
approach, but the essential features of the ground state
configurations should not be severely affected by quan-
tum corrections owing to the high value of the spin and
the 3D nature of the phases we consider. A summary
and conclusions are contained in Sec. IV.

where 2 J~~ ) 0 and 2J~ ) 0 are the antiferromagnetic ex-
change couplings between nearest neighbor pairs of spins
along the c axis and in the c plane of a hexagonal lattice,
respectively. D & 0 is the single-ion easy-plane anisop-
tropy strength, H is the external magnetic field, g is the
Lande factor, and p,~ is the Bohr magneton.

The zero-field minimum energy configuration of the
model Hamiltonian (2.1) is a six-sublattice configura-
tion with antiferromagnetic order along the c axis and
120 triangular order in the e plane. This configuration
has been found for the most part of the ABX3 antifer-
romagnets, with the interesting exception of RbMnBr3
where an incommensurate helix configuration has been
seen. ' We think that this surprising configuration
could be explained only if further frustration mechanisms
such as exchange competition between different shells of
neighbors were accounted for. Here we limit ourselves to
nearest neighbor interactions as from Hamiltonian (2.1).
Moreover, we suppose that the presence of the magnetic
field leaves the magnetic cell unchanged. This is con-
firmed experimentally since no shift of the Bragg peaks
with field is seen.

We look for the minimum energy spin configurations
in a classical approximation, where the spins are repre-
sented by classical vectors

II. MINIMUM ENERGY SPIN CONFIGURATION
S = S (sin 8, cos P„sin8, sin P„cos8, ) (2.2)

The Hamiltonian we consider reads

'8 = 2JII) S„S+i+ 2J&) S, S,.
n (ii)

+D) (S;) —gPIIH ) S, , (2.1)

In (2.2), 3 = 1, 2, 3 labels the three sublattices in a c
plane, and 8 = 4, 5, 6 labels the same sublattices in an
adjacent plane. 8„$,are the polar and azimuthal angles
with respect to the c axis we assume to coincide with the
z axis. Substitution of (2.2) in (2.1) leads to the reduced
energy

Ep 1-
eo —— ——— sin 81 sin 84 cos(QI —p4) + cos 81 cos 84

2J~~NS2 3-

+ sin 82 sin 85 cos($2 —$5) + cos 82 cos 85 + sin 83 sin Hs cos($3 fs) + cos 83 cos Hs

+—j siI181 siI1 g2 cos(PI —P2) + cos 81 cos 82 + siI182 siI1 83 cos($2 —$3) + cos 82 cos 83
2

+ siI1 83 siIl 81 cos($3 PI) + cos 83 cos 81 + sl11 84 s11185 cos($4 P5) + cos 84 cos 85

+ sin 85 sin Hs cos($5 —Ps) + cos 85 cos Hs + sin Hs sin 84 cos(gs —P4) + cos Hs cos 84

+—d(COS 81+ COS 82+ COS 83+ COS 84+ COS 85+ COS HS)
1 2 2 2 2 2 2

6

——h ( sin 81 cos QI + sin 83 cos p2 + sin 83 cos $3 + sin 84 cos p4 + sin 85 cos $5 + sin Hs cos ps),3
(2.3)

where Ep is the classical energy of the model and j =
J&/Jll, d = D/2 Jll' h = gp+H/4JIIS In Eq. (2.3) the
external magnetic field is assumed to be parallel to a row
of in-plane nearest neighbors. In our choice of reference
system this is the x axis. When the external magnetic
field is directed along the c (z) axis the reduced energy is

still given by (2.3) where the contribution proportional
to h, has to be replaced by

1——h (cos 81 + cos 82 + cos 83 + cos 84 + cos 85 + cos Hs)
3

(2.4)
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Minimization of e() with respect to the 12 variables 8„$„
is performed nnmerically. We find that for small j the
only stable configurations when the external magnetic
field increases f'rom zero to the saturation field are an
in-plane phase (H/F) characterized by

~s ) 8 ~) " ) )

44 = —6, 45 = —42 4'6 = —42,

where pi, $2, 4is are solutions of the equations

(2 5)

sin(2/i) + —j sin(pi —p2) + sin(pi —ps) —h sin pi ——0,

sin($2 + ps) + —j sin($2 —ps) + sin(4)2 —pi) —h sin $2 ——0,

sin($2 + 4is) + —j sin(ps —pi) + sin(ps —p2) —h sin ps ——0, (2.6)

and a U phase with the axis directed along the field (z axis) characterized by

7r
84 —81 — i 86 82 i 85 83 )r 82 i (it'4 — 4'1 c (it'5 —4'6 — 4'2 i (it'3 —Q2 (2 7)

where (tii, (ti2, 82 are solutions of the equations

sin(2/i) + 3j sin 82 sin(gi —$2) —h sin Pi ——0,
sin 82 sin 82 sin(2/2) + —j sin($2 —pi) —h sin $2 ——0,

3. -

Goods sic iis 1 + cos(2d s) + —j cos(ds —ds) + 2 sic dc —d sic dc —hcos dc I
= 0 (2.8)

When the field is directed along the c (z) axis the sta-
ble configuration is a "cone" configuration with the axis
along the field and apex angle

2IIE,
8 =cos 4+ 9j+ 2d

(2 9)

The polar angles are given by pi ——4), $2 ——p+
5, $4 ——4'+n, (t'5 ——4) —5, $6 ——Q+ s. The

arbitrary P angle refiects the invariance of Hamiltonian
(2.1) under rotation about the z axis when the field is
along the c axis.

The solutions of Eq. (2.6) correspond to a distorted
helix for h ( h() ~3j and to a fan ($2 ——Ps) for h ) hp.
The H-F transition is continuous and independent of the
anisotropy. These phases are the same as those found
in a Heisenberg model with large single-ion easy-plane
anisotropy2 or in a planar model. is At h = h, = 2+ 2j a
continuous transition to the saturated phase occurs. We
find that the U phase occurs for small single-ion easy-
plane anisotropy d ( do 3j/2 in agreement with a
calculation at leading order in d and j.

The phase diagram in the j-d-h space is sketched in
Fig. 1. For j = 0 (noninteracting antiferromagnetic linear
chains) one has the usual spin-flop (SF) phase that goes
continuously into the saturated (S) phase. For j g 0
any h-d plane is divided into four regions. For d ( do
one finds H, U, F, and S phases at increasing magnetic
field. The H-U transition is first order, while the U-F
and F-S transitions are continuous. Indeed Eqs. (2.8)
reduce to Eqs. (2.6) with $2 ——ps when 82 ——2, so that

the U phase changes continuously into the F phase. The
H-U transition occurs at low field (0 ( hi ( h() where
hi depends on the anisotropy strength), while the U-F
transition occurs very close to the saturation field, so
that the U phase is stable over a wide range of magnetic
fields. The H-U and U-F boundary lines meet at a triple
point (h(), d()) above which only the H, F, S phases exist.

g/
I

i /
il

d / /
I

/
U

FIG. 1. Sketch of the phase diagram in the j-d-h space. H,
U, F, SF, and S mean distorted helix, umbrella, fan, spin-Hop,

1
and saturated phases, respectively dp —j, h. p (3j) & is a
line of triple points. h, = 2 + 2j is the saturation field.



16 478 E. RASTELLI AND A. TASSI 50

For d = 0 the U phase coincides with a cone phase with
the axis along the x axis and apex angle 8 = cos i( " . )4+9j
and it is stable over the whole range of magnetic fields
(0 ( 6 ( Ii, ). For j = 0.01 we find that the U phase
is stable for 0.079 & 6 & 2.040, 0.144 ( h & 2.013,
0.157 & 6 ( 1.985, 0.170 ( h, & 1.859, for d = 0.003,
0.010, 0.012, 0.014, respectively. The triple point is at
dp = 0.015, hp = 0.176. Note the fatness of the U-
F transition line close to the triple point. One should
also notice that in the U phase the spins 1,4 and 2,3,5,6
lie on the surface of two cones with the same axis but
with difFerent apex angles Pi, and cos (sin02cos$2),
respectively, where Pi, P2, 82 are solutions of Eqs. (2.8).
In the U phase the change of Pi, P2, 82 with the field
is very smooth: For small fields, say, 6 ( 0.5, that is,
for fields that can be obtained in the laboratory, one has

2 2 ' ~2 2 ' 2 (2' —2d/3)'
Figure 2 shows the H-F second-order phase transition
giving the angles Pi, P2, Ps as function of ti for d ) do.

We have evaluated analytically the anisotropy dp and
the field hp corresponding to the triple point as a series
expansion of j. Arriving at the triple point from the fan
phase one can see from the numerical calculations that

—7r/2 and P2 ——Ps ir/2 so that we assume

'Tr

Pi ————+n
2

7r42=42= ——P
2

(2.10)

where a and P are small. In terms of these new variables
Eqs. (2.6) read

2sinncosn+ 3j(sinncosP+ coscIsinP)

—ho sin P —do ——0 . (2.13)

Solution of Eqs. (2.11), (2.12), (2.13) is

( 4
sinn = 1 —cos2P

~

2 ——.sin P
~)

1
sinP = —/3j (1+X),

2
(3.

ho ——2sinP
~

—j+ cos P ~

3. , ( 4+—j 1 —cos2p~ 2 ——.sin p i2 3$ )
do ——2sin P, (2.14)

where X is the solution of the equation

Since the H-F transition is continuous, the Hessian of the
reduced energy vanishes at 6 = hp. This implies

3.—j (2 —cos n cos P + sin n sin P) —ho sin P = 0 . (2.12)
2

Moreover, at the triple point the spins of the U configura-
tion collapse into the c plane, so that the third equation
of (2.8) leads to

3.
1 —cos(2P) + —j (2 —cos n cos P + sin n sin P)2

—kpcoso! = 0 ) (-',j' ——,'j) x'+ ( —,',j' —,'q+ 1) x'—

3.2sinPcosP+ —j(sinacosP+ c soosi nP)
2

(2.11) —(sj —
4j + 2) X + (isj + 4j + 1) X + -j = 0 .

(2.15)

—hocosP = 0 . For small j one has

3.0 I I I I I I I I I I I I I I I I
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(h —0.175771)x 10

FIG. 2. Angles (in radians) of the pla-
nar (H/F) phase versus magnetic field for

j = 0 01, d & do —— 0 015. Notice
the H-F second-order phase transition at
hp ——0.17577315 where P2 ——Ps. The in-

set shows that Pi g $2.

0.0
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I I I I I I I I I I I I I I I I
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1 . t' 3 . 9 .2 189 .3 1377 .4sina= ~3j
I

1 ——j+ —j + j — j +
2 i 2 16 64 64

(2.16)

1 . ( 9 .2 27.3 567.4 1701.3»n & = -v» I
1 ——~'+ —~'+ ~' — ~'+ "

2 i 16 64 512 512
(2.1?)

. ( 3 . 27 .z 81 .3 1539 .4 43011 .3 (2.i8)

9 . 27 . 81 . 3645 .
d, = j 1—— j'+— j'+—j'—— j'+

2 ( 8 32 32 512

The Grst terms of ho and do agree with those found in Ref. 20 where a leading order expansion was done.

(2.19)

III. NEUTRON-SCATTERING CROSS SECTION

The cross section for the coherent elastic magnetic scattering is

el

= f o I

—gF(k) exp( —W(k)) I (~S) ) '
b(k —G)

gdO) 2

x
I

1 ——
I

lm (G)lz+ 1 ——" lm„(G)l +
I

1 ——'
I Im, (G)lk') i k2 "

g k') (3.i)

where

6

m (G) = i) exp(iG 8,)sing, cosg, ,
s=1

6

m„(G)= si ) exp(iG 6,) sin 8, sin P, ,
s=l

6

m, (G) = si) exp(iG b, ) cos8, .

(3.2)

G(l', m', n') = (t'+ m') —u + (l' —m') u„a * v3a"
i 2'

+A —VL

c (3.3)

of the unit magnetic cell. a is the nearest neighbor dis-
tance in the c plane and c is the nearest neighbor distance
along the c axis:

s=1

The vectors bi ——(0, 0, 0), b 2
——(a, 0, 0), bs ——(2a, 0, 0),

84 ——(0, 0, c), bs ——(a, 0, c), bs ——(2a, 0, c) label the spins

I 2 1 i 1 2 1l'= —l ——m, m'= ——l+ —m, n'= —n,3 3 ' 3 3 '
2

(3.4)

with l, m, n integers. In Table I we give the analytic forms

TABLE I. Magnetizations for the planar (p) (helix or fan) and umbrella (U) phases. In the P
phase pi, $3, $3 are given by the solutions of Eqs. (2.6). In the U phase pi, $3, 83 are given by
the solutions of Eqs. (2.8). The external magnetic field is applied along the x axis.

Im (0, 0, 0)l
Im„(0,0, 0)l
lm. (0, 0, 0)l
m 3 ) 3 )

my 3)3)2
z 3 ) 3 )

Im-(-.' —.
'

o)I

Im. (o, o, —,')I
lm„(0,0, -')I
Im. (o, o, —,')I

P phase

3 I
cos $1 + cos $3 + cos A)3 I

0
0

COS 2 —COS 3
i

I
2 sin pi —sin &3 —sin &3 I

0

3 I2 cos (Pi cos $3 cos P3 I

sin 2 —sin
0
0

—
I
sin/i + sin/3+ singbl

0

U phase

3 I
cos 4i + 2 sin 83 cos 4 I

0
0
0

-'I sin/i —sin83sing3I—cos 821
~3

—
I
cos Pi —sin 83 cos $3 I

0
0
0

—
I sin/i + 2sin83 sinp3I

0
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M

Q

N
~ ~

bQ
a5

im0.4 im, (1/3. 1/3. 1/&) I

oooo ooaaaoaooaaaaoaaaaoao plG. 3. Magnetizations ~m ('G)i as de-
fined in Table I for C = (0, 0, 0) (unifo™
magnetization), (-, s, i) (staggered mag-

netization), and (0, 0, 2), versus field for

j = 0.01, d = 0.01. Notice the first-order
H-U phase transition at h = 0.144.

0.0 ' ——
0 0.1 0.2 0.3 0.4

of the magnetizations ~m (G)i with cr = z, y, z, related
to some Bragg peaks of interest for the planar and um-
brella phase. Notice that im (0, 0, 0)i and im (s, s, z)~
are the components along the field of the uniform and
staggered magnetization, respectively. The magnetiza-
tions of Table I are shown in Figs. 3 and 4 as function
of the external field for j = 0.01 and d = 0.01. Notice
the H-U transition at h = 0.144 singled out in Fig. 3 by
a jump in the component along the field of the uniform

and staggered magnetization. The same quantities are
given in Figs. 5 and 6 for j = 0.01 and d & dp = 0.015.
Notice the continuous H-F transition at hp = 0.176.

Let us now list the intensity of some neutron scattering
elastic peaks:

I(0, 0, 1) = I(1,—1, 0) = im (0, 0, 0)i

Notice that I(1,1, 0) = 0 because of the factor in (3.1):

(111' (k)(111' (11 li (k2)(111'
+ m

I

— — —
I

+I1 ——',
I

m. l-- —
I

i 3 3 2) i k2) i, 3 3 2) (3 3 ) ( k2) (3.6)

0.030 I I I I I I I I I I I I I I I I

0.025

N

0

N
~ W

bQ

0.020

0.015

0.010

FIG. 4. The same as Fig. 3 but
c = (-,', —,', 0).

0.005

0.000
0.1

im (1/3, 1/3, 0)i
o o o o o 1 o o o o o o o o o I o p o p o p o p

0.2 0.3 0.4
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Oo6

I I I I I I I I I I I I I I I I

eeeeeeeeeeeeeeeeeeeee
~ )m (1/3. 1/&. 1/2)l

eee
~ e

e

0
~ A

S
tg

0.4

0.2

FIG o 5. The same as Fig. 3 but
d & dp ——0.015. Notice the second-order H-F
phase transition at h, = hp = 0.176.

0.0 ': ——
0 0.1 0.2 0.3 Oo4

where k = (s, 0, —,),

I/ —,—,0/ = m„i —,—,0/
(1 1 ) (1 1

E3 3 r
"

E3 3 r
(3.7)

Ii 0, 0, —
/

= m„/ 0, 0, —
/

( 1) t' 1i
2)

(3.8)

Figure 7 gives some of the above quantities for CsMnBr3,
for which we expect the high-anisotropy scenario be-
cause the parameters characterizing this compound are

j = 0.00216 and d = 0.00795 greater than the triple-
point anisotropy dII ——0.003 24 obtained from Eq. (2.19).
For this reason we expect a second-order H-F phase tran-
sition at h, = h0 ——0.0808 corresponding to H, = 6.2 T
as was suggested2 and confirmed experimentally. 1s No-

tice that the intensity of the (0, 0, 1) peak shown in the
inset of Fig. 7 has the right qualitative behavior as that
observed experimentally (see inset of Fig. 1 of Ref. 13).
Obviously our calculation refers to zero temperature so
that no quantitative agreement on the transition Geld can
be obtained with the experiment performed at T = 7 K.
Anyway the kink related to the H-F transition is clearly
seen in the inset of our Fig. 7. We expect an even more
pronounced kink in the intensity of the (s, s, 2) and

(0, 0, —,') peaks.
In Figs. 8, 9, and 10 we give the intensities of

the (s, s, 2), (0, 0, 2), and (0, 0, 1) peaks for CsVClq,
CsVBrs, and CsVIq, respectively. For these com-
pounds we expect the occurrence of the U phase be-
cause the single-ion anisotropy is less than the triple-
point anisotropy. Indeed the inelastic neutron scatter-
ing experiment1 suggests j = 0.00006, 0.00025, and

0.030 I I I I I I I I I I I I I I I I

0.025

M

0
~ ~
af
N

~ W

Q

tg

0.020

0.015

0.010

FIG. 6. The same as Fig. 5 but
(1 1 p)

0.005

0.000
0 Ooi

i m (1/3, 1/3, 0) iofoeoeoeoI't'I
0.2 0.3 0.4
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0.5 I I I I I I I I I
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0.05 0.1

h

FIG. 7. Elastic-neutron-scattering peak
intensity of CsMnBr3 versus magnetic field

(j = 0.00216, d = 0.00795). Notice the kink

at the H-F continuous phase transition for
h = hp = 0.0808 (H = 6.2 T).
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FIG. 8. Elastic-neutron-scat tering peak
intensity of CsVC13 versus magnetic field

(j = 0.00006, d = 0.00006). Notice the

jump at the H-U first-order phase transition
for hi ——0.0110 (Hi ——5.7 T).
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FIG. 9. Elastic-neutron-scat tering peak
intensity of CsVBr3 versus magnetic field

(j = 0.00025, d = 0.00014). Notice the

jump at the H-U first-order phase transition
for hi ——0.0167 (Hi ——6.2 T).
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0.00168 and d = 0.00006, 0.00014, and 0.00149 for
CsVC13, CsVBr3, and CsVI3, respectively. The triple-
point anisotropy is dp ——0.00009, 0.00038, and 0.002 52,
respectively, so that we expect the occurrence of the U
phase for all three vanadium compounds. We have cal-
culated the Geld at which the Grst-order H-U phase tran-
sition occurs and we have found hi ——0.0110, 0.0167,
and 0.0547 corresponding to Hi ——5.7, 6.2, and 13.3 T as-
suming g = 2, S = 3/2, and Jii =10, 7.1, and 4.7 meV,
respectively. is As one can see such fields can be easily
obtained in the laboratory. In Figs. 8, 9, and 10 the H-U
phase transition is revealed by a jump in the peak inten-
sity so that the signature of this phase transition is easy
to single out.

Elastic-neutron-scattering experiments on CsVC13,
CsVBrs, and CsVI3 in an external magnetic Geld perpen-
dicular to the c axis are suggested to test our theoretical
expectation of the U phase.

IV. SUMMARY AND CONCLUDING REMARKS

The ABXs family, where A is an alkali element, B a
magnetic ion, and X a halogen, can be modeled as for
the magnetic properties by a hexagonal Heisenberg an-
tiferromagnet with strong antiferromagnetic intrachain
coupling and weak interchain coupling. In general a
single-ion easy-plane anisotropy forces the spins in the c
plane and the antiferromagnetic interchain coupling en-
ters frustration owing to the triangular structure of the c
plane. The elementary excitation spectrum is expected to
show features related to the quantum antiferromagnetic
chain and peculiar reorientation phenomena should be
induced by an external magnetic Geld. 2 This couple of
reasons explains the high experimental interest for the
ABX3 compounds and the theoretical e6'ort about mod-
els suitable to describe such compounds.

In this paper we have studied in a classical approxima-
tion the minimum energy spin configuration of a hexago-
nal Heisenberg antiferromagnet in an external magnetic

field perpendicular to the c axis for a generic single-ion
easy-plane anisotropy (Sec. II). We have found that an
umbrella phase occurs for intermediate magnetic fields,
when the anisotropy is less than a critical value. The
U phase intervenes between the low-field distorted-helix
phase and the high-field farl phase. The H-U transition
is Grst order; the U-F phase transition is second order as
well as the F-S (saturated) phase transition. The U phase
disappears above a triple point in the Geld-anisotropy
plane where the only transitions are the second-order
H-F and F-S ones. We stress that the U phase is sta-
ble over a substantial region in the parameter space. In
Sec. III we have evaluated the elastic-neutron-scattering
cross section for the diferent spin configurations. Appli-
cation of our results to CsMnBr3 agrees with previous
expectation2 of the second-order H-F phase transition.
Indeed the easy-plane anisotropy of this compound is
larger than the anisotropy characterizing the triple point.
Moreover, the intensity of the (0, 0, 1) peak we evaluated
as function of the external magnetic field recovers the
behavior observed experimentally.

We expect that the U phase should occur in CsVC13,
CsVBrs, and CsVIs, where elastic- and inelastic-neutron-
scattering experiments in zero field provide a set of
Hamiltonian parameters which support such a phase. We
expect that the signature of the H-U phase transition is
a jump in the intensity of the elastic-neutron-scattering
peak as a function of the external Geld as is shown in
Figs. 8, 9, and 10. We suggest elastic-neutron-scattering
experiments in an external magnetic Geld perpendicular
to the c axis on the above mentioned vanadium com-
pounds in order to test the existence of the umbrella spin
configuration.
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