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Antiferromagnetic stacked triangular lattices with Heisenberg spins:
Phase transition and e8'ect of next-nearest-neighbor interaction
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We study by extensive histogram Monte Carlo simulations the phase transition in the antiferromag-
netic stacked triangular lattices with classical Heisenberg spins. It is shown that in a range of the anti-

ferromagnetic next-nearest-neighbor interaction J2, the transition is clearly of first order. We also
reconsider the controversial question concerning the nature of the phase transition when J2=0: we

show that the critical exponents obtained, in agreement with previous simulations, exclude the possibili-

ty of the O(4) class predicted by a nonlinear cr model in a 2+a renormalization-group calculation. The
phase diagram in the (J2, T) space ( T: temperature) is shown and discussed. For comparison, the phase
diagram obtained by a Green-function method in the case of quantum Heisenberg spins is also shown.

I. INTRODUCTION

Recently, there has been a growing interest in the na-
ture of the phase transition in the stacked triangular lat-
tices with classical Heisenberg spins interacting with each
other via nearest-neighbor (NN) antiferromagnetic in-
teraction J, . ' This is one of the simplest frustrated
systems where the frustration is due to the interaction
geometry. Despite extensive studies done in the last few
years, the nature of the transition in that system remains
an open question at present: using Monte Carlo (MC)
simulations and a renormalization-group analysis with
4—c. expansion, Kawamura'* has conjectured a new
class of universality in contradiction to Azaria, De-
lamotte, and Jolicoeur ' who predicted, by a nonlinear a
model in a 2+ @ calculation, that if the phase transition is
not of first order, then it is of second order with either
mean-field tricritical exponents (v=0.5, P=0.25, a=0.5,
y= 1) or the known O(4) class (v=0.74, P=0.39,
a= —0.22, y=1.47). Moreover, another recent theoreti-
cal calculation based on the so-called local potential ap-
proximation gives the v exponent equal to 0.63 and a re-
cent Monte Carlo (MC) work supports the MC results of
Kawamura. '

Generally speaking, the stacked triangular antifer-
romagnets (STAF) with classical Heisenberg spins belong
to the family of helimagnetic structures. Theoretical in-
vestigations on the helimagnetic transition include
early works by Garel and Pfeuty, and by Bailin, Love,
and Moore. An important number of experimental in-
vestigations has also been done to study the nature of the
helimagnetic-paramagnetic transition. ' ' Though
most of the experimental data seem to give the critical ex-
ponents in agreement with those obtained by MC simula-
tions, ' some of them do not exclude the possibility of a
weakly first-order transition, ' and in the Holmium case,
there is no such agreement. ' Note that MC simulations
of a helical structure on a body-centered-tetragonal lat-
tice' show a continuous transition with critical exponent
v=0. 57.

The controversy between 2+a, and 4—c calculations
on the nature of the phase transition in the Heisenberg
STAF with NN interaction has motivated the present
work. Our purpose is double fold. First, we recalculate
the value of the v exponent obtained by various au-
thors, ' ' ' ' and secondly, we study the nature of the
phase transition in the STAF taking into account the NN
and next-nearest-neighbor (NNN) interactions, J, and Jz,
respectively. As it turns out, we find in this work that the
transition at the J2 =0 point is definitely of second order
with critical exponents clearly different from those of
O(4) class and mean-field tricritical point, in agreement
with earlier MC results. ' ' ' The scenarios predicted
by Azaria, Delamotte, and Jolicoeur ' are thus not
verified. When antiferromagnetic NNN interaction is
taken into account, we find the existence of a first-order
transition at a finite temperature in the vicinity of the
critical value J2 =0.125J&, where collinear spin
configurations coexist with the 120' structure in the clas-
sical ground state (GS).

In Sec. II, we briefly recall the model and the MC
method. Results are shown and discussed in Sec. III
where the phase diagram in the phase space (J2/J„ tem-
perature) is displayed. In Sec. IV, we briefiy show, for
comparison, the phase diagram in the same space ob-
tained for quantum Heisenberg spins by a Green-function
method. Concluding remarks are given in Sec. V.

II. MODEL AND METHOD

We consider a system composed of the triangular lat-
tices stacked along the z axis. The Hamiltonian is given
by

where S; (S ) is a vector spin of unit length occupying the
lattice site i (j) and the sum runs over NN and NNN in
the xy planes (perpendicular to z, the stacking direction)
and NN in the z direction. We call J& the antiferromag-
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netic NN interaction ( )0) and Jz the antiferromagnetic
NNN interaction ( )0) in the xy planes, and we take the
NN interaction along the z direction J3 equal to J, , for
simplicity. Hereafter, the energy and temperature will be
measured in the unit of J, .

For vector spins, the classical GS can be determined by
17minimizing the energy after a Fourier transform. It is

given as follows: for 0 & J2 &0.125J1, the classical GS is
the 120' structure, for 0.125J1&J, &J, the classical GS
degeneracy is continuous, the collinear (antiparallel)
configurations are particular GS configurations in this
range of parameters. For J2 )J, the GS is incommensu-
rate with threefold degeneracy: spins on each line are
parallel and two neighboring spin lines form an angle a
given by cosa= —(I+a)/2a where a =Jz/J, (see Ref.
17).

We have performed extensive histogram MC simula-
18, 19tions. The method has been described elsewhere.

The sample sizes used in our simulations are L XL XL
with L =12, 18, 24, 30, and 36. Periodic boundary condi-
tions have been used (in the incommensurate phase,
J2 & J, , care has been taken to choose only compatible
angles). In each run, from 300000 to 500000 MC steps
per spin have been discarded for equilibrating and
2000000—4000000 MC steps per spin have been used
for averaging. During each run, we followed the inter-
mediate results and stopped the simulation only when the
results do not depend significantly on the time.

III. RESULTS
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A. J2=0

We show first the results for the case where there is
only NN interaction (Jz=0). The temperature at which
the simulations are made is TO=0.9576J„which is the
critical temperature estimated for the infinite system.

Figure 1(a) shows the internal energy per spin E as
function of the inverse of the number of MC steps per
spin. As seen, only after 10 MC steps per spin that E is
stabilized. Other quantities are also very well stabilized
with little Auctuations around the respective stabilized
mean values, except the specific heat with strong Auctua-
tions around its stabilized mean value [about 2%, see Fig.
1(b)].

The transition is clearly of second order since the ener-

gy cumulant C„=1 —(E ) /(3(E ) ) tends to —', as L be-

comes large (not shown here). In order to calculate the
exponent v, we calculated the V, cumulant defined as

FIG. 1. Internal energy E (a) and specific heat C„(b) as func-

tions of inverse Monte Carlo steps per spin X (MCS), at the
infinite-size transition temperature, for L =24.

different fits between different couples of sizes. This value
is in agreement with that recently obtained by Kawamu-
ra, and by the Ref. 6 which is 0.585+ / —0.009.

At this stage, it is worth to emphasize that the above
value does not correspond to any known universality
class as noted earlier by Kawamura. ' If one rejects the1,2

conjecture of Kawamura for a new universality class, the
reason is certainly not from the precision on the value of
v, but should come from another deeper argument.

The exponents P and y are obtained from the log-log

Ln V,
3.5—

3
where M and E are magnetization and energy per spin,
and ( ) means thermal average. For a second-order
transition, V& behaves as V&(L)L' . We show in Fig. 2
the log-log plot of V, versus L. The points lie remark-
ably on a straight line whose slope gives the value of 1/v.
We obtain

v=0. 59+ / —0.01,

2.5 "-„

2 ~
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Ln L

FIG. 2. The cumulant Vi versus L in the ln-ln scale. The
slope gives the value of 1/v.where the error was estimated by taking into account the
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plots M and X (susceptibility) versus I. shown in Figs. 3
and 4, respectively. One obtains from the slopes of the
straight lines of values of —p/v and y/v:

P/v=0. 50+ / —0.02,
y/v=2. 12+ / —0.03 .

From these, one has P=0.28+ / —0.015 and
y=1.25+/ —0.03. These values are in agreement with
those given by Kawamura (p=0.30+ / —0.015 and
v=1.17+/ —0.07). The errors were estimated from the
fits and errors on To.
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FIG. 4. Susceptibility Xversus L in the ln-ln scale. The slope
gives y/v.
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FIG. 3. Magnetization M versus L in the ln-ln scale. The
slope gives —p/v.

Figure 5 displays the phase diagram in the phase space
(Jz/J&, T). Let us describe briefly this diagram. For Jz
small and not close to 0.115JI, there is a second-order
transition from the 120' structure to the paramagnetic
state at a finite temperature. However, when J2 larger
than about 0.115J„there are two transitions: the low-

temperature one is between the 120' structure and a col-
linear spin configuration, and the high-temperature one
between the latter and the paramagnetic phase. For
0.125J, &J, &J„there is only on transition between the
collinear state and the paramagnetic state. For
JI &J2 & 1.12JI, one has two transitions. Finally, for J2
larger than 1.12JI, there is a transition between the in-
commensurate state and the paramagnetic state.

We have checked by histogram method that the transi-
tions denoted by black circles in Fig. 5 are of first order.
If the system is at the transition temperature, then the en-

ergy distribution P(E) is bimodal in a first-order transi-
tion. We show in Fig. 6, P(E) and J2=0. 12J& at almost
the transition temperature for each lattice size. As seen,
the bimodal energy distribution is observed. The heights
of the two peaks in each size are not equal because the
temperature T at which the simulation was performed is
not exactly the transition temperature. Of course, by
varying T, one can obtain the exact transition tempera-
ture when the peak heights are equal. Furthermore, be-
cause of the finite-size efFect, there is no real gap between
the two peaks. In histogram method, when a bimodal
distribution of P (E) is observed, it is not easy to calculate
from P (E) physical quantities in the neighborhood of the
simulation temperature. We therefore show in Fig. 7 the
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FIG. 5. Phase diagram in the (a=J2/JI, T) space. First-
order transitions are shown by black circles. Squares and
crosses indicate the second-order transitions. L, H, and IC
means collinear, helimagnetic (120' structure), and incommens-
urate phases, respectively. See text for comments.

temperature dependence of the internal energy per spin E
for J2=0.120JI obtained by standard MC runs. The
high-temperature transition has a first-order aspect with
an almost "discontinuity" in E, while the low-

temperature one shows only a slight, but sudden, change
in the slope of E (not easy to see in the scale of Fig. 7).
The low-temperature transition has a second-order
feature though the symmetries of the two phases (120'
and collinear) are not compatible. We think that the
spin-wave excitations play an important role in making
that transition a continuous one.

Other physical quantities confirm the first-order char-
acter of the high-temperature transition. The inset of
Fig. 7 shows the finite-size scaling of the maximum of the
specific heat, C„,„, as a function of L, in an ln-ln scale.
The slope for largest sizes studied in standard MC runs is
2.6 which shows that for larger sizes, C„,„ is likely pro-
portional the system volume, suggesting that the transi-
tion is of first order. '

Another interesting point in Fig. 5 is the fact that the
collinear configurations are preferred at finite tempera-
tures over the infinite number of GS in the range
0. 125JI &Jz &J&. This verifies the conjecture by Hen-
ley, in analogy with what was called order by disorder
predicted for Ising spin systems by Villain et al. The
collinear phase space is, in addition, extended over the
noncollinear ones at finite T as seen in Fig. 5, where the
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FIG. 6. Bimodal distribution of P(E) is observed for a =0.12 with L =12 (diamonds) and L =18 (crosses), at a temperature very
close to the transition temperature of each size. See text for comments.
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curve issued from Jz =0.125J, is canted to the left, and
that from Jz=J, to the right.

Let us give a simple explanation for the first-order
transition between the colinear phase and the paramag-
netic phase: in the collinear phase selected by entropy
effect, the degeneracy, apart from the infinite degenera-

cy due to global rotation, is three since there are three
ways to choose the antiparallel spin pairs in a triangle.
This threefold degeneracy is reminiscent of the three-
state Potts model in three dimensions which is known to
undergo a first-order transition at finite temperature.
Note however that unlike the Potts model, there is a pos-
sible influence of the continuous degrees of freedom of
vector spins (excitations of spin waves) that can change
the nature of the phase transition. This may explain why,
away from the critical values of Jz (0. 125J, and J, ), the
first-order character of the transition is weakened, and in
the range Jz & JI, the transition is of second order.
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FIG. 7. Internal energy per spin E vs temperature T for

a =0.120. The low-T phase is indicated by void circles and the
high-T one up to paramagnetic phase by solid circles. The low-
T transition is characterized by a slight (but sudden) change in
the slope of U (not easily seen in this scale). The high-T transi-
tion is of erst order. The inset shows ln(C, ,„)versus ln(L).

FIG. 8. Phase diagram in the space (a, T) in the case of quan-
turn Heisenberg spins, obtained by the Green-function method.
1, 2, 3, and 4 mean helimagnetic {120 structure), collinear, in-

commensurate, and paramagnetic phases, respectively. See text
for comments.
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IV. PHASE DIAGRAM IN THE QUAN'I'UM CASE

In order to compare qualitatively to the case of classi-

cal spins, we have studied the quantum spins on the
STAF. %e briefly show the results in the following.

%e define the following double-time Green functions

G,, (t, t') and F,, (r, t') by

G,,(t, t') = ((S,+(r);S, (r') )),

F,, (r, t') = ((S; (r);S, (t') )),

where S;+(t) and S (T) are the usual notations defined

from the x and z spin components. For each spin, the lo-
cal z axis is chosen along the direction of the spin. We
write the equations of motion for these functions, and use
the Tyablikov decoupling scheme. Furthermore, we in-

troduce the two-dimensional and time Fourier transforms
in the xz plane. The resulting equations of motion can be
rewritten under a matrix, we diagonalize it and use spec-
tral theorem to calculate the local magnetization at ar-
bitrary temperature T for spin —,'. We note that in the

infinite degeneracy region (0.125 (a (1), the energy cal-
culated with collinear configuration is always lower than
that with noncollinear configuration even at T=0. The
same is true at the degenerate point a =0.125: the GS
energy calculated by using the collinear classical GS is
lower than that using 120' structure. Thus, quantum and
thermal fluctuations lift the degeneracy and select col-
linear configuration as conjectured. The critical temper-
ature T, is determined when the local magnetization be-

comes zero. Details of the calculations have been shown
elsewhere. We only show in Fig. 8 the resulting phase
diagram in the space (a =Jz lJ„T,). As seen, there is no
inclination of the critical lines issue from a =0.125 and
a =1. Such behavior is thus a consequence of the spin
quantum nature. Furthermore, due to approximations
used in the decoupling of correlation functions to reduce
higher-order Green functions, all lines in Fig. 8 are of

second order. The nature of the transition, therefore,
cannot be clarified by such a method.

V. CQNCLUDING REMARKS

%'e have reconsidered the controversy of the problem
of the nature of the phase transition in antiferromagnetic
stacked triangular lattices with Heisenberg spins predict-
ed by 2+@ and 4—c. calculations. The critical exponents
have been carefully calculated. Our results are in agree-
ment with those recently obtained, but in contradic-
tion with the scenarios predicted by nonlinear cr model
with 2+a expansion. ' At this stage, we note that while
there is a consensus about the value of the critica1 ex-
ponent v, one can neither confirm nor reject the conjec-
ture about the new universality class proposed by
Kawamura. It is interesting to emphasize that for frus-
trated systems studied here, the 2+ s and 4 —s expan-
sions do not agree with each other in three dimensions as
they do for nonfrustrated systems. More investigation
should be done to explain this contradiction. As the first
step in this direction, we have checked the validity of the
rigidity condition used in the nonlinear o model. ' The
rigidity condition consists in neglecting the loca1-spin
fluctuations in each triangle, i.e., the three spins on each
triangle form rigidly a 120' structure even at finite T. We
have found that when the rigidity is imposed on the sys-
tem as it has been done in the nonlinear 0 model, ' the
nature of the phase transition changes, namely the values
of the critical exponents are significantly difFerent.

The effect of NNN interaction Jz on the phase transi-
tion has also been studied here. A nontrivial phase dia-
gram was obtained. The existence of a region of first-
order transitions is seen. Furthermore, in the range of
0.125J, &J2 &J, where the GS is infinitely degenerate, it
was found that only the collinear spin configurations are
selected by thermal fluctuations. This is in agreement
with a theoretical conjecture. Finally, we hope that the
results discussed in this paper may help to stimulate fur-
ther theoretical effort on the problem of phase transition
in frustrated spin systems.
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