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We study zero-temperature properties of the three-dimensional Edwards-Anderson Ising spin glass on
finite lattices up to size 12 . Using multicanonical sampling we generate large numbers of ground-state
configurations in thermal equilibrium. Finite-size scaling fits of the data are carried out for two hy-
pothetical scenarios: Parisi mean-field theory versus a droplet scaling ansatz. With a zero-temperature
scaling exponent y =0.72+0. 12 the data are well described by the droplet scaling ansatz. Alternatively,
a description in terms of the Parisi mean-field behavior is still possible. The two scenarios give
significantly different predictions on lattices of size ~ 12'.

I. INTRODUCTION

The theoretical problem to determine the equilibrium
ground-state structure of spin glasses has remained an
important, but elusive, question. It is generally agreed
that the statistical mechanics of the infinitely ranged
Sherrington-Kirkpatrick (SK}Ising spin glass is essential-

ly understood. The replica-symmetry-breaking mean-
field (MF} scheme discovered by Parisi' exhibits infinitely
many low-temperature states whose properties are con-
sistent with simulations, see Ref. 3 for a recent overview.

More realistic models rely on short-range interactions.
The simplest prototype of this sort is the Edwards-
Anderson Ising spin glass (EAI), defined by the Hamil-
tonian

HJ= —g Jjs;s
(ij )

Here the sum (ij ) goes over nearest neighbors. We con-
sider 3d systems with periodic boundary conditions and
N =L spins s; =+1. The exchange interactions between
the spins are taken J,"=+1, randomly distributed over
the lattice such that the constraint g(; ) J;.=0 is
fulfilled. The subscript J denotes the realization [J,"].
Extensive numerical studies of this model were carried
out in the past. In essence, these simulations seem to
have established the existence of a freezing phase transi-
tion, although not beyond all doubts.

After the SK model had been solved it became a ques-
tion of central theoretical interest whether, well below
the freezing temperature T, =P, ' = l.2, ' the three-
dimensional (3D) EAI spin-glass model exhibits Parisi
MF behavior. It was answered in the negative by pro-
ponents of a simple scaling ansatz. ' ' These droplet
scaling (DS) theories suggest that no more than two pure

II. THE OBSERVABLES

For each system there are (3N)!/[(3N/2)!] realiza-
tions of the quenched random variables J=[J;l]. A
quantity of decisive importance is the probability density
P (q) of the Parisi order parameter q:

P(q)=[PJ(q)],„= '
QPJ(q) .[(3N/2)! ]
J

(2)

states (related via a global fiip) exist at any temperature.
The MF approximation is surely valid for d~oo. For
the model at hand, with discrete exchange interactions, it
has been suggested' that the MF scenario holds for
d &4, whereas for d =3 there are just two pure states.
For Gaussian distributed exchange interactions d =6 is
conjectured"' to be the upper critical dimension, which
separates the MF from the DS scenario.

Simulations' in a magnetic field H seemed to favor the
MF picture rather than the alternative droplet model.
However, it has been pointed out that equilibrium at
suSciently low temperatures has not been reached, ' and
a recent Monte Carlo (MC} study' also disagrees with
the conclusions of Ref. 16. A study of contours of the
spin-glass susceptibility in the (H, T) plane as means of
distinguishing the two pictures was performed in Ref. 19,
but remained ambiguous in d =3. Finally, a recent inves-
tigation of the face-centered-cubic lattice is consistent
with the existence of an Almeida-Thouless line in the
(H, T) plane and thus favors again the MF scenario.

In the present paper we employ multicanonical MC
techniques ' to shed new light on the spin-glass
ground-state problem. In Sec. II, the observables used to
characterize the spin-glass properties are introduced.
The numerical results are then presented in Sec. III, and
Sec. IV contains a few concluding remarks.
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By [ ~ ],„wedenote averaging over the realizations J,
whereas ( &r denotes the thermal (time) average for a
given realization of bonds. For such a fixed realization
Pz(q) is the probability density of the overlap

Iql" =[(Iqjl"&r].,=2f q "P(q)dq . (4)

Of course, q =[(q"&r],„=~jq~" for n even. For a fixed
realization J the analogous averages are defined by

nIq~l"=(Iq&l" &&=2f q "P&(q)dq . (5)
0

In the infinite volume limit the overall scenario is that for
MF theory P(q) takes nonzero values in a continuous
range

~ q ~
& q, with peaks at kq, „and0 &q,„&q, . We

denote the value at the peak by P,„=P(q,„)
=P ( —q,„).If the DS picture is correct, only a double-

peak structure survives in the infinite volume limit, i.e.,
limr „P(q)=0for qAq ~, where q",

„

is the infinite
volume limit of q,„.Whenever, without confusion, pos-
sible, we drop the subscript denoting the lattice size.

Let us now discuss moments of the order-parameter
distribution. For the spin-glass susceptibility ye=Nq
the MF as well as the DS scenario suggest divergence

y -X for T(T, . However, they give significantly
different predictions for the variance

cr'(Iql)=2 J'(Iql q)'p(q)dq =q —Iql'—. (6)

Let us temporarily confine the discussion to zero temper-
ature. In the limit L ~ ao one has o ( ~jq~ )~finite in MF
theory, while o ( ~q~ ) -L ~~0 within the DS approach.
Here y = —yz is the zero-temperature scaling ex-
ponent, "' denoted 8 in Refs. 12 and 14. Within the DS
ansatz it is supposed to govern quite generally the finite-
size-scaling (FSS) corrections of expectation values. For
instance, for the moments ~q~z

—~jq~jl"„-L ~, or for the
position of the maximum q,„—q",„-L . For MF
theory we assume for most of our fits 1/Volume correc-
tions. The assumption of exponentially small volume
corrections may be even more appropriate. However,
this introduces one more fit parameter and presently we
have not sufficiently many lattice sizes to allow its deter-
mination self-consistently. By this reason exponentially
small corrections are only explored once (for the energy).

Assuming DS, the above zero-temperature scaling ex-
ponent should also govern the falloff of the probability
density P (q) for q away from q

" . For instance,

1
q qj Qsi si

l J

Here s,.
' and s; denote two replicas (i.e., statistically in-

dependent configurations} of the realization J at tempera-
ture T. Our normalization is

f P(q)dq = f +',PJ(q)dq =1 .

Due to the magnetic field being zero we have the symme-

try P( q)=P—(q), such that f +&q "P(q)dq =0 for n odd.
We are therefore only interested in averages over the
range O~q &1:

holds. In Ref. 16 the probability density itself was stud-
ied through [f [P(q) Pz(q)—] dq],„.This was criticized

by the authors of Ref. 17 on the reason that the probabili-
ty density is so singular that it would be non-self-
averaging in the DS picture too. Following their sugges-
tion we estimate

Again, this quantity stays finite in MF theory, but drops
off -L "in the DS picture.

In contrast to this, standard thermodynamical quanti-
ties like the energy per spin e or the entropy per spin s are
self-averaging in both scenarios:

and

e =N '[(H & ],„=N '(H & (10)

s =N '
( T [ (in' & r ],„)

=N ' (T(1Z & },
where Zz is the partition function for realization J. The
multicanonical method allows one, including proper nor-
malization, to evaluate the partition function and its
derivatives numerically.

III. NUMERICAL RESULTS

With the development of multicanonical techniques for
disordered systems it has become feasible to generate
spin-glass ground states in thermal equilibrium; see Ref.
24 for a brief, general review, Ref. 25 for the earlier um-
brella sampling, and Refs. 26-28 for the related sirnulat-
ed tempering. A pilot study for the model at hand has
been presented in Ref. 29. In essence a multicanonical
spin-glass simulation proceeds in three steps. First
Monte Carlo weights are recursively constructed which
will allow one to simulate an ensemble, the "multicanoni-
cal," which yields canonical expectation values in the
temperature range 0~ T ~ ~ through use of the spectral
density. Second, equilibrium configurations with respect
to the multicanonical ensemble are generated by means of
standard MC. In a third step canonical expectation
values at desired temperatures are obtained from the
analysis. Multicanonical sampling circumvents the no-

Pr(0)-L . However, numerically it is rather tedious
to get sufficiently good statistics at a particular q value.
It is more convenient to rely on the probability distribu-
tion

x(q)=2f P(q')dq',

where q (q,„should stay sufficiently far away from

q,„.It is clear that the FS behavior is still xr (q) -L
but the statistical noise will be considerably suppressed.

Lack of self-averaging is one prominent feature of MF
behavior. This means physical quantities Q exist for
which

lim [(Q —Qz) ],„%0
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torious ergodicity problems of canonical low-temperature
spin-glass simulations through regular excursions into the
disordered phase, while staying in equilibrium.

In this paper we focus on the investigation of ground-
state properties. A lower bound on the number of statist-
ically independent ground states sampled is obtained by
counting how often the system moves from the energy
E ~ 0 region to the ground-state energy E;„,and back to
the E)0 region. This has been termed "tunneling"
and we follow this notation, but one should bear in mind
that the free-energy barriers are actually not overcome by
a tunneling process. Our tunneling time ~ is the average
number of single-spin updates corresponding to one tun-
neling event.

We will interpret our data through FSS fits of our mea-
sured quantities. The DS scenario implies that the
leading-order FS corrections are governed by the zero-
temperature scaling exponent y. Less clear are the lead-
ing FS corrections to MF theory. The exactly solvable
random energy model ' was constructed to exhibit prop-
erties typical for long-range interactions of the SK type.
It exhibits 1/Volume leading corrections at T=O. A
two-parameter fit of this type is what we assume, with
one exception, throughout this paper. For the energy it-
self, this turns out to be inconsistent with the data. A
consistent fit is still possible, if one assumes exponentially
small corrections in L (V=N=L ), which require a
three-parameter fit. This would be typical for noncritical
short-range interactions. Each spin "sees" the periodic
boundary only via exponentially decaying correlations.
Unfortunately, our limitation to rather small sized lat-
tices prohibits a self-consistent estimate of the leading
correction from the data.

A. Statistics and slowing down

We have performed simulations for L =4, 6, 8, 12
(N =64, 216, S12, 1728). For L (8 the sum (2) is ap-
proximated through 512 randomly chosen realizations of
the (J, I, whereas we have only 7 realizations for L =12.
For all 1543 cases multicanonical parameters were deter-
mined recursively. Then each system was simulated

twice with independent random starts and random num-
bers. This constitutes our two independent replica per
realization. In these production runs iterations were
stopped when a preset number of tunneling events n had
occurred: n, =128 (L =4), 64 (L =6), 32 (L =8), and
10 (L =12). Despite this decrease in tunneling events,
the average number of updates per spin n, (sweeps) did
steadily increase. Approximate values are n, =8X10
(L =4), 10 (L =6), 7.6X10 (L =8), and SOX10
(L =12). The average CPU time spent on one L =8 re-
plica was approximately 800 min on an IBM 320H
workstation.

Per replica we have stored up to 2048 ground-state
configurations. Due to correlations the number of en-
countered ground states is, of course, much larger than
n, . If the number exceeded 2048, the stored
configurations were randomly selected from the total set.
For ground-state configuration n this is elegantly done on
line by picking a random integer i„in the range 1 i, n.
Configuration n is stored at position i„if i„2048and
discarded otherwise. For both replica the same ground-
state energy has to be found between all tunneling counts.
This is a strong, albeit not rigorous, criterium to ensure
that the correct ground-state energy has not been missed.
Indeed, in course of a study, aimed at improving the al-
gorithmic performance, lower-energy states have been
found for a few of the L = 8 and 12 configurations used in
this paper. In all I. =8 cases the improvement is just by
a single energy step, and the indication is that it happens
for less than 2% of our recorded configurations. Com-
paring the ground-state properties of the old and new
configurations shows that the presently implied bias
favors the MF picture, but is negligible within the statist-
ical noise due to the small number of configurations
affected. For L =12 the problem is more serious, but
they are anyhow of limited relevance to the subsequent
discussion. No improvements were found for any L =4
or 6 configurations.

Table I presents our zero-temperature estimates for ob-
servables introduced in the previous section. The error
bars are with respect to the different realizations, which
are statistically independent and enter with equal

S

cr (e)
o (s)

qmax

~max

P{0)
x{—')
0. (q)
0J(q )

L=4

398E2(15E2)
1.737 8(28)
0.074 0(09)
0.003 73(25)
0.000 784(53)
0.785(07)
0.669(09)
0.939(06)
4.08{15)
0.206 {30)
0.265(17)
0.053 2(26)
0.038 5(17)

TABLE I.

336E4(30E4)
1.767 4(13)
0.053 5(05)
0.000 749(51)
0.000 190(13)
0.800(06)
0.685(08)
0.925 2(25)
6.04(21)
0.231 (41)
0.204(15)
0.044 6(27)
0.025 8(15)

Data.

L=8

171E6(46E6)
1.779 9{08)
0.047 9{03)
0.000 277(19)
0.000 070 9(48)
0.817(06)
0.703(07)
0.9160(15)
8.38(26)
0.140 (37)
0.160(15)
0.035 4(27)
0.021 4(15)

L =12

139E8(77E8)
1.793 6{27)
0.043 7(24)
0.000 057(34)
0.000 046(27)
0.880(28)
0.786(38)
0.901{10)
16.0( 5.0)
0.007 (07)
0.042(42)

0.013(13)
0.006(06)
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weights. Let us first discuss the slowing down as inferred
from the FS behavior of the tunneling time v. A formal,

linear fit corresponding to the power law ~=a, V ' gives

az =3.8+0. 1 and is depicted in Fig. 1. This is a bit worse
than our preliminary estimate a2 =3.4+0.2. In addi-
tion, the fit is somewhat ambiguous because the distribu-
tion of the ~~ with respect to different realizations J is
not Gaussian (for a fixed realization it is trivially Poison).
This obscures, at least for L =8 and 12, the meaning of
the error bars entering this fit. A more detailed analysis
indicates that exponential slowing down, due to some
particularly bad realizations, may still be feasible.
Presently the —V slowing down has limited our inves-
tigation to rather moderately sized lattices.

10$'2 I I ~ I I

10io

10

T 108

10
P

106

105

~ I ~ ~ I ~ ~
I

I I I I 1 I I

Tunneling Times (updates); =

Fit r=0 00.59 VII.S

B. Parisi order-parameter distribution

On a semilog scale Fig. 2 depicts the obtained zero-
temperature probability densities (2) for the Parisi order
parameter. The L =12 probability density, presented
without error bars, is very bumpy due to the small num-

ber of realizations, and may only be reliable for a few of
the considered physical quantities. Note, altogether the
data respect the P (q) =P (

—q) symmetry well. For
L =8, Fig. 3 plots the Pz(q) probability densities of two
rather extreme L =8 realizations: two peak shape versus
continuous distribution. Various different shapes in be-
tween these extremes are also found. Figure 4 shows all
L =8 realizations together. From Figs. 2-4 it is evident
that only a careful quantitative analysis of these distribu-
tions may give hints concerning the L ~ 00 ground-state
distribution.

Table II summarizes two-parameter fits of the data
from Table I, assuming alternatively MF theory or the
DS ansatz to be true. If MF and DS scenario lead to the
same functional form, the fit is marked "All." The 00

104 a a a ~ a I

100

~ ~ h i k lil

1000
V

10000

FIG. 1. Tunneling time vs lattice size L' on a double log
scale.

column gives the infinite volume extrapolations of the
considered quantity, Q is the goodness of fit, 33 and R,z
comments "Yes" or "No" on the reliability of the L = 12
data for the purposes of the particular fit. With an excep-
tion for P,„,the MF and ALL fits are of the form
a, +a2/L, whereas the DS fits are either of the form

02a,L '
(y =a2), or, when the zero-temperature scaling

exponent is already determined, of the form a
&
+a2L

Let us first discuss P,„.In the MF as well as in the
DS scenario the self-overlap gives rise to a 5-function
singularity. Therefore P is supposed to grow —V and
the appropriate fit is a,L +a2. Including all data points

10 -.

L=4

,

~[t
L=6::

L 12--

01

FIG. 2. Probability densities
P(q) for the Parisi order param-
eter (L =4, 6, 8, and 12).
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FIG. 3. Probability densities
PJ(q) for two very different
I. = 8 realizations.

the fit is still consistent. Although, omitting the smallest
lattice indicates that L =4 may not fully exhibit the
asymptotic behavior.

Let us now discuss a (~q~) and o J(q ). The DS fit is

a, L . Fits and data are depicted in Fig. 5. For each
case we give two St curves. The upper one relies on three
data points (L =4,6, 8), whereas the lower one includes
also the L =12 result. When only three data are used,
MF and DS fits are both consistent (Q =0.10 and 0.43).
Once the L = 12 data point is included, the consistency of
the MF fit becomes marginal (Q =0.04). However, from

y =0.72+0. 12 . (12)

The error bar is not reduced as both estimates rely on the

the L =8 data we have the experience that 10% of the
realizations amount to 99% of the P(0) contribution.
Consequently, the L =12 data su8'er not only from large
statistical fluctuations, but are altogether unreliable for
quantities which are sensitive to the sxnall-q distribution.
We now rely on the three-point fits for cr (~q~) and
crj(q ) The two. y =a& estimates are still compatible,
and we summarize them to

100 L=8

10

%II~)(I~'

01

FIG. 4. All I'J{q) probability
densities for L. =8.

0.01

0.001
0.5
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TABLE II. Fits as defined in the text.

—e
—e
s
L o. (e)
L3a2(s)

1~1

Iql
qW

qW

qmax

qmax

~max

~max

P(0)
P(0)
x( —')
~( —,')
o'(~P)

cr (q~)
~2 (qY)

a)
a&

a&

a&

a&

a(
al
al
a,
a,
a)

a&

0
a&

0
a)
0
a&

0

a(
L =4—+8t

1.785 41(92)
1.840 51(42)
0.044 19(46)
0.128(10)
0.035 2(25)
0.8168(53)
0.863(17)
0.702 9(64)
0.752(21)
0.9135(20)
0.880 8(85)
3.58(17)

0.168(35)
0.36 (22)
0.157(15)
0.71(19)
0.035 9 (25)
0.116(24)
0.0195(15)
0.129(25)

—3.23(21}
—0.279(18)
1.947(97)
7.1(1.4)
0.98(31)
—2.18(62)
—0.225 (61)
—2.32(78)
—0.239(76)
1.82(42)
0.165(36)
0.009 74(67)
L =6,8, 12:
2.8(3.3)
0.38(36)
7.1(1.6)

0.71(16)
1.15 (25)
0.55(13)
1.23(16)
0.88(12)

0.01
0.16
0.49
0.94
0.56
0.20
0.44
0.20
0.48
0.12
0.73
0.04

0.13
0.17
0.23

0.73

0.10
0.43
0.59
0.44

a)
L =4—+12t

1.786 37(88)
1.838 9(40)
0.044 13(46)
0.128(10)
0.035 3(25)
0.8196(51)
0.873(16)
0.705 9(63)
0.764(20)
0.9129(19)
0.879 1(81)
3.60(17)
4.39(39)
0.002(07)
0.76(39)
0.146(13)
0.82(21)

0.0349 (25)
0.123(25)
0.018 8(14)
0.137(26)

—3.23(21)
0.274(16)
1.954(97)
7.2(1.4)
0.97(31)
—2.41 62)
—0.258(59)
—2.58(78)
—0.278(74)
1.90(42)
0.171(34)
0.009 58(65)
0.007 7(11)
14.9(2.1)
1.21(24)
8.1(1.6)

0.80(15)
1.22 (26)
0.59(12)
1.28(16)
0.92(12)

10-'
0.29
0.64
0.85
0.55
0.01
0.09
0.02
0.08
0.09
0.77
0.08
0.66
10-'
10

—11

0.12

0.19

0.04
0.28
0.06
0.29

Y

Y

N

N
N
Y

Y
Y
N

N
N
N

N
N

MF
DS
All
All
All
MF
DS
MF
DS
MF
DS
All
All
MF
DS
MF
DS
MF
DS
MF
DS

same data set. It should be noted that the estimates of
the literature correspond to a Gaussian distribution of
the exchange coupling and that the discrete distribution
constitutes a difFerent universality class. '

The above fits were also used for P(0), but the data are
too inaccurate to yield meaningful results. As discussed,
this is different for the distribution function x (q) with an

appropriate choice for q. Our smallest FSS extrapolation
of q",

„

is 0.8791&0.0081 (Table II). Therefore q =
—,
' is

certainly an appropriate choice. Table I includes our nu-
merical estimates for x( —,'). It should be noted that for
L =12 the error bar matches the estimated value, be-
cause the entire contribution to x ( —,') comes [as for P(0)]
from a single realization. Table II contains the FSS fits
for x( —,) which we also display in Fig. 6. Relying on
three lattices again, it is quite satisfying that the obtained
zero-temperature exponent y =0.71+0.16 is in excellent

O. I Data o'(~q() '

Data o&(q ) '
~

MF
Ds I ~ ~ e

0.35

0.3—

l i l l

Data z(-,'):~:

o'(I~I)
and

o~(q')

~ ~
~ ~

~ ~
~ ~

~ ~
~ c

~ ~

0
~ ~

~ ~
r

~ ~ ~ ~
~ ~

~ ~

(
0.25—

0.2—

MF
DS r ~ ~ e

0.01—
~ ~

~ ~
~ ~

~ ~

g
~ ~

~ ~

~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~ ~

0.15—

0.1—

0.05—

~ ~
~ ~

0 ~
~ ~

~ ~ ~ ~
~ ~

~ ~ ~ ~ i

~ ~

0 5 "10 15 20 25
L

0 5 10 15 20 25 30
L

FICy. S. Fits for o (~q~) and oz(q ). They rely either on the
mean-field (MF) or on the droplet scaling (DS) scenario. For
each case there are two fits, such that the lower one includes the
(unreliable) L =12 data.

FICr. 6. Fits for x(2 ). They rely either on the mean-field

(MF) or on the droplet scaling (DS) scenario. For each case
there are two fits, such that the lower one includes the (unreli-
able) L =12 data point.



16 450 BERND A. BERG, ULRICH E. HANSMANN, AND TARIK CELIK 50

agreement with Eq. (12).
Assuming that our L =4—8 lattices show already typi-

cal scaling behavior, we conclude from Figs. 5 and 6 that
similarly accurate data on lattices up to size L =16
would discriminate between the MF and the DS ansatz.
Due to the —V slowing down the needed CPU time
would be about 3000 times larger than the one spent on
the present investigation. With upcoming massively
parallel devices in the teraflop range such a factor can be
achieved.

The DS fits for q, q and q, „

in Table II are of the
form a, +a zL ~, where the exponent y =0.72 (12) is
now used as input. The corresponding MF fits are of the
form a, +a2L . A relevant consistency check for the
correctness of the DS picture is that the infinite volume

estimates of q,„,+q and ~q~ agree. Figure 7 shows the
MF and DS fits for these quantities. For L a log scale is
used to exhibit L ~ 00 clearly, and the infinite volume es-
timates are depicted towards the end off the scale. With
the previously determined zero-temperature exponent the
DS values are indeed consistent. For the MF fits

~q~ „&Qq „&q",„,as it should be. It is notable that
fitting with a wrong zero-temperature exponent may pro-
duce entirely inconsistent results. For instance, with

y =0.2 one finds iqi „)I ) q ",„.
C. Ground-state energy and entropy

Energy and entropy are self-averaging quantities, in
contrast to the observables of the previous subsection.
Consequently, the L = 12 lattices may contribute

sufficiently accurate results and we rely now on all four
data sets. To check that the self-averaging property is
indeed consistent with our data, we have performed fits
of the form L o ( )=a&+aiL for the energy and en-

tropy variances o (e) and o (s). The corresponding
goodness of fits, reported in Table II are entirely satisfac-
tory.

Most interesting are the FSS fits for the ground-state
energy. With L = 12 included, the MF fit with 1/Volume
corrections, —ei =a, +a2L is ruled out (Q =10 ),
whereas the DS fit —

eL =a, +a2L with y =0.'72 is
well consistent. The DS ground-state energy estimate

e = —1.8389+0.0040 (13a)

is considerably lower than results reported in the litera-
ture, e = —1.75, e = —l. 76+0.02 (Ref. 35), and
e = —1.7863+0.0028. The latter discrepancy comes
because our now very accurate data on lattices with L ~ 8
rule out the previously used fit with 1/Volume correc-
tions. We like to remark that finding better (lower)
ground-state energies for the L =12 lattices (we noticed
some problems with our present estimates ), would only
amplify the discrepancy with the MF fit, as the L =12
ground-state energies would become even lower com-
pared to the reliable other lattice sizes. This result is our
strongest trend in favor of the DS and against the MF
scenario. Unfortunately, there is still a catch to it. It
may well be that the corrections to the uncritical MF
behavior are exponentially small. Although FSS correc-
tions for larger systems would then be greatly reduced,
the disadvantage at the present level is that the appropri-
ate —eL =a, +a2exp( —a&L) fit has three free parame-
ters. A consistent fit

0.94 g

1 I
I

I I
I

I I
I

I I I

Data, ~, —
e = —1.7956+0.0042, (13b)

0.92—

MF
DS ~ ~ ~ e

0.9—
From
up to

0.88—
~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ $$

0.86—
~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~

~ ~

0.84—

0.8—

0.78—

10 100 1000 10000 100000
L

FIG. 7. Fits and extrapolations for q,„,i/q, and ~qi. They
rely either on the mean-field (MF) or on the droplet scaling (DS)
scenario (the L = 12 data are not included for these fits).

a2= —0.21+0.04, a3 =0.33+0.06, and Q =0.19 is then
still possible. All three fits are pictured in Fig. 8. The
sharp turnover, necessary for the exponential fit looks
rather unnatural. Again, accurate data on lattices up to
L =16 would unambiguously allow to differentiate this
behavior from DS. But in contrast to results for the Par-
isi order parameters, it may be sufficient to simulate a
fairly small number of lattices with L ~ 12.

Our final remarks address the ground-state entropy.
Its multicanonical calculations follows the lines of Ref.
23. Already Kirkpatrick noticed that the exact J;J.=+1
degeneracy of the quenched random variables implies
that free single-spin fiips are possible for about 5% of the
ground-state spins. This implies a large ground-state de-
generacy even for realizations for which the Parisi order-
parameter distribution has a two-peak structure, as in
one of the cases depicted in Fig. 3. Overlaps will be
smeared out over a q range —V ' . Consequently ei-
ther of our scenarios wi11 have a nonzero ground-state en-

tropy, and we expect noncritical 1/Volume corrections.
Table II reports that this fit works indeed well, and our
infinite volume estimate for the ground-state entropy per
spin is

s =0.044 12+0.00046 .
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FIG. 8. Fits for the ground-state energy
(from up to down: DS, MF with exponentially
small corrections, and MF with 1/volume
corrections).
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This is considerably lower than the "historical" estimate
s =0.062, and in agreement with other literature
s =0.04+0.02, s =0.046+0.002.

IV. SUMMARY

rithmic improvements, simulations on larger lattices will
become feasible. It seems we are approaching a numeri-
cal conclusion about the correct ground-state picture of
the 3D EAI model.

The DS ansatz is so far consistent, and in particular
also supported by results for the ground-state energy.
For the particular model our investigation presents the
first MC estimate of the zero-temperature scaling ex-
ponent, which then enters self-consistently into a number
of other estimates. Obviously, our lattices are too small
to allow a definite infinite volume extrapolation. In par-
ticular, the MF picture is still a valid alternative. It is
clear that, either by brute computer power or by algo-
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