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Soliton-phonon interaction in anharmonic quasi-one-dimensional ferromagnetic crystals:
Soliton-induced modification of the speed of sound
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The influence of the spin-phonon coupling on soliton characteristics and the soliton response on the
lattice subsystem in a quasi-one-dimensional magnetic chain is examined. It was found that, in the case
of the ferromagnetic coupling, these correlations may induce reduction of the efFective exchange integral
which, in the temperature range where one-dimensional ordering prevails, may be maximally about 1%.
Consequently the soliton energy and width su@'er the negligible modification, too. On the other hand,
the magnetic subsystem may have a certain impact on elastic subsystem characteristics, the speed of
sound in particular. The character of these changes depends strongly on the type of the excitations of
the magnetic subsystem —solitons or magnons.

I. INTRODUCTION

The various phenomena in quasi-one-dimensional
(quasi-1D) magnetic systems may be attributed to non-
linear dynamics and successfully explained in terms of
the soliton solutions of the sine-Gordon (SG) equa-
tion. ' Thus, for example, the appearance of the central
peak in the energy spectrum of slow neutrons scattered
on the quasi-1D ferromagnets C,N;F3 and antiferromag-
nets [(CH3)~ N]M„C13 may be interpreted, on the basis of
the SG model, in terms of an ideal gas of solitons.
However, the applicability of this idealized concept for
the understanding of soliton properties is limited since
the external perturbations, always present in realistic
conditions, may affect soliton dynamics significantly.

In the present paper we shall examine the influence of
the thermal fluctuations of crystal lattices on soliton
properties and vice versa: the modification of phonon fre-
quencies due to the soliton presence. The system we are
considering consists of a compressible 1D magnetic chain
placed in a magnetic field. The simplest Hamiltonian
which may describe such a system includes the Heisen-
berg exchange interaction, anisotropy energy, and lattice
Hamiltonian:

QJ(Rf Rs)S—S +%„—gott gH S—I+At .
1

Here the spin-phonon coupling arises as a result of the
exchange integral dependence on the instantaneous sepa-
ration of magnetic ions which oscillate around their equi-
librium positions. Thus the position of the magnetic ion
in the lattice may be determined as Rf =f+uI, where u&
denotes the ionic displacement from its equilibrium posi-
tion f. Here %„and

Vf(=g +—gP(RI —R )
Pf
2ltl 2 f

are the anisotropy energy (whose explicit form will be
specified later) and lattice Hamiltonian, respectively,
while H is the applied magnetic field.

The usual treatment of spin-phonon systems is based
upon the application of the linear approximation for
spin-phonon coupling [i.e., J (R& —R ) =Jf
+y(uf —u )] and the harmonic approximation for the
lattice Hamiltonian. The dynamics of such a system is
usually described by a system of coupled evolution equa-
tions for the magnetic and elastic degrees of freedom.
That approach, based upon the application of the classi-
cal approximation for the phonon subsystem, analogously
to the large polaron problem, ' leads to a physical picture
which corresponds to the coexistence and simultaneous
propagation of the coupled magnetic and lattice solitons.
However, as a rule, in most of these papers favoring the
classical picture, the discussion of the validity of the ap-
proximation involved is lacking. Therefore it is not clear
to which realistic systems such a theoretical model corre-
sponds. Following the analogy with polaron problem, ' it
could be expected that the above-described physical situ-
ation can be realized in systems with strong spin-phonon
coupling. Namely, in the low-temperature limit, the de-

gree of excitation of each phonon mode is influenced ex-
clusively by spin-phonon coupling. Therefore the pho-
non modes become macroscopically (classically) occupied
in the strong coupling limit. Unfortunately, the accessi-
ble experimental data for the typical quasi-1D magnetic
systems' ' (C,N;F3, for example) do not always sup-

port this condition. Therefore the theoretical treatment
of soliton-phonon interactions should be completed by
also taking into account the quantum nature of the lattice
vibrations.

II. EFFECTIVE HAMILTONIAN
AND VARIATIONAL PROCEDURE

In order to include the temperature effect in the mag-
netic subsystem characteristics, we shall take into ac-
count the anharmonic terms in the ionic displacement in
both the exchange integral and lattice Hamiltonian. For
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that purpose we shall apply a pseudoharmonic approxi-
mation. ' It consists of a transition from the model
Hamiltonian (1) to an equivalent one with renormalized

energy parameters, which should be determined self-
consistently using the Bogoliubov theorem. 9 Vfe first
assume that the system is well described by the trial
Hamiltonian

gfo= ——g Jf g(8)Sf Ss+%„—gpss Q H Sf+&/ y

2fg ' f

q

(8=ke T) (2b)

represents Hamiltonian of the so-called pseudoharmonic
phonons and p and u are Fourier transforms of the
momentum and displacement operators of the magnetic
ion, respectively. Jf g and Qq are variational parame-
ters which may be determined by minimizing the trial
free energy of the system:

F, =F,+&a

where

(2a) where Fo =F h+F, represents the free energy of the fully
decoupled spin-phonon model, while ( )0 denotes
averaging over the assembly of the noninteracting spin
and vibrational excitations. Therefore we may write

(% %) = ———g (J(Rf R)) ——Jf (8) (Sf S ) +—g (($(Rf R)) ——QMQ (u u )
q

(4)

Following Maskovic, Sajfert, and Marinkovic, we may expand J(Rf —R ) and (I)(Rf —R ) into a Fourier series,
and so the corresponding average values in (4) become

( Y(Rf R))0=——g Y(k)e'"' '(e ' )0 .
k

Here a denotes the lattice constant along the chain, while Y(k}=g e'"~ Y(p), where Y may be either J or (I).

Calculation of the above average value is straightforward' and so we obtain

2k
( Y(Rf R))0=——g Y(k)e' ' s'exp — g (u u )0[1 cosq( f ——g)a]

k

(5)

Now we may determine the variational parameters Jf (8) and 0, demanding stationarity of the trial free energy over
the Jf (8) and 0 or equivalently over the correlation functions u u )0 and (Sf S )0:

(
=0, Jf (8)=(J(Rf—R ))0,

F
f s

(7a)

Fi
()& u, .u

=0 0=—2
q

k'a'G(e) (k( ——)ag k (()(k)— (Sf.Ss )0 e " ' ' 'e'"' ' [1 cosq(f —g)a), (7b)—
f,g, k

G(8}= g (u u ) [1—cosq(f —g)a] .2

q

(7c)

In the nearest-neighbor approximation, f g= I, —
where l=+1. Now the effective exchange integral at-
tains the simplified form

J —J(8)— g elkQe k 0 G(e)J(I )f—g
k

According to Bennett, J(k}is simply

J(k)—= g J~e'"'=2J coska,
p=+1

P(8)=—ge " ' ' 'cos ka .
N

It can be calculated in the continuum approximation

1 g m/a
~ ~ ~ dk .

N 277 —m/a

Therefore the magnetic subsystem in the presence of
the thermal motion of magnetic ions may be described by
the effective Hamiltonian

where J is the nearest-neighbor exchange integral, which
yields J(8}=JP(8), where

&,(r= —J(8}g Sf .Sf+ ) +Sf„—g)((,e g H Sf . (9}
f f
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X (1—cosqa)
BV(8)
BG 8

(10)

where P represents interaction potential, the nonmagnet-
ic one, between neighboring magnetic ions.

From this equation one can find the speed of sound as
modified by the spin-phonon interaction
c=lim u(Q /q),

' 1/2

(8,H) =,(8) 1 ———g & SfS
f

Using an analogous procedure for the calculation of the
()I(k), we find an expression for the frequency of "pseu-
doharmonic phonons":

0 = 8$ J 1

2 P N f f1 ———y&S .S
a f

[y '=Ql —(u/uo) ], we finally obtain

1 2 J 1
(Sf Sf+'()0 JS —

N
(E„,(v))o . (15)

J(8) N

Here E„((u)=8J(8)S koay =E,y denotes the soliton en-

ergy (E, is the soliton rest energy).

The average value in (15) will be calculated within the
ideal soliton gas approximation, which is applicable in
the low-temperature limit k~T &(c, The procedure of
averaging is the standard one and may be carried out in
two steps. 2 ' ' We first calculate ( ), assuming that
the only one soliton is excited in the system. Here
( ), denotes the calculation of the following integral
over the soliton momentum (p) and position (zo):

dp dzo

1

where cu(8) =2&(P/M) [BP(8)/BG (8) ] denotes the
speed of sound in the absence of spin-phonon coupling.
Here we assume that P (0 as a result of the stability con-
dition of the lattice. '

It is easy to prove the relation

1 Z]
(E,o((v) )

1

(17)

III. CONSEQUENCE
OF THE SPIN-LATTICE CORRELATIONS

FOR THE SOLITON PROPERTIES

%,(t=S J(8)a f
2

B((u 1 B(p

Bz u() Bt

2

In what follows we shall restrict ourselves to an exam-
ination of the 1D ferromagnetic with planar (easy-plane)
anisotropy &z =Agf(Sf'), the magnetic field being
perpendicular to the chain direction. If we take the chain
direction to be along the z axis (x-y plane is the easy
plane) and if the magnetic field is applied along the x axis,
then in accordance with a well-known procedure, ' ' the
magnetic subsystem as modified by the phonon field may
be described by the SG model:

where

dp dzp —E (U)/6)
Z = sol

1
h

is the single-soliton partition function.
temperature limit, it approaches

' 1/2

hvp 2

In the low-

(18)

where L is the length of the magnetic chain. From (17)
and (18), we obtain (E

~
( v ) ),=8/2+ e, . Generalization

to the system with small but finite soliton densities is
straightforward, ' ' ' and it simply demands the rnulti-

plication of ( ), by an average number of solitons:
1/2 ~s 267

N, =4Lku(PE, /2n)' e ', ' .' which finally results in

+ko(1 —cosy) ', (12) —y &s, s,+, ),=JS'- ' (8+2., ) .
J(8) 4

2
$ a B(p(z, t)
2N — Bz p a

(13)

Then, using the soliton solution of the SG equation,

Rip

az

'2
4ko

sech koy(z —zo)
1 —v /vo

where vp and kp are related to the parameters of the orig-
inal Hamiltonian as vo =2 AJ(8)$ a /R and

ku=gfJ&H/SJ(8)a . Here A )0 is the easy-Plane an-

isotropy constant, while y is the polar angle of the mag-
netization vector.

Let us now calculate the contribution of SG solitons to
the static spin correlation function in (11). Here we first

apply the continuum approximation to obtain

1 g (Sf' f+1 0
J

G(8) = g v + — (1—cosqa),2 A 1

2MQ, ' 2
(20)

AO /8
where v =(e ' —1) is the phonon average number.

Here n, =2N, /L is the soliton density. The factor of 2 is

due to the presence of the equal number of solitons and
antisolitons in the system.

With the help of this result, one can examine the char-
acter of the soliton impact on the phonon subsystem,
which is determined through the explicit dependence of
the speed of sound on the soliton parameters. However,
before that, we first have to estimate the changes of the
effective exchange integral due to spin-phonon coupling.

As a first step, we shall determine the explicit tempera-
ture dependence of the function G (8), which, after the
substitution of the phonon displacement correlation func-
tion (uqu )0 into (7c), attains the form
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Substituting the summation over the phonon quasimo-
menta by an integration and using the explicit form of
Q, G(8) becomes

SMac(H, 8)

4~ 8 me{H, 8)hi~s
X 1+

mA c (H, 8}

(21)

If we focus our attention on the archetypical example
of a 1D ferromagnet C,N;F3 where 1D ordering appears
in the temperature range 3 & T & 16 K, ' ' we may safely
utilize the low-temperature limit for the calculation of
the integral in (21). Namely, substituting the known
values of the system parameters ' ' J/ki) =23.6 K,
A/ki) =5 K, S=1, g =2.4, and a =2.6 A., we may ex-
tend the integration boundary to infinity, while at the
same time (e"—1) ' may be approximated by e ", and
the integral in (11) is practically equal to unity.

According to the explicit dependence of the renormal-
ized speed of sound c(H, 8) on G(8), relation (21)
represents a rather complicated self-consistent equation
for G(8), and in the general case it cannot be found in a
closed form. However, knowing the values of the basic
physical parameters of the system, we may distinguish
two limiting cases when P(8) and G(8) have relatively
simple forms. The first one corresponds to the high
values of G(8) [G(8)»1],while the other one is related
to the opposite limit. For G(8}»1 the Gaussian term in
the expression for P(8) [Eq. (8)] rapidly decreases so that
the integration boundaries may be extended to infinity
yielding P(8)=[mG(8)] '~ (1+e '~ ).

Unfortunately, this result cannot be used for the
analysis of the soliton properties in C,N;F3 since it is
relevant in the high-temperature limit only, but when 1D
ordering is no longer preserved. ' ' Namely, using the
data for C, N;F3 and according to Eq. (20), one can see
that G may be greater than 1 for the highly populated
(vv »1) phonon modes. Therefore, for this particular
case, we should restrict ourselves to the calculation of
9'(8) assuming G(8) (( l. A preliminary estimate,
neglecting the renormalization of the speed of sound due
to spin-phonon coupling, confirms this statement. In that
case we may expand the exponent in Eq. (g), and keeping
just the two first terms, we easily obtain

9'(8)=1—3.SG(8). Using this expression to obtain P(8},
we find G(8)=a(1+PT ), where a=1.4X 10 and
P=4.7X10 K . Thus we may conclude that the
spin-phonon correlation leads to a negligible reduction of
the effective exchange integral. Using the data for
C,N;F3, we may estimate this reduction to be maximally
about 1%. Consequently, the soliton width and energy,
being both proportional to +J(8), also decrease, while
its efFective mass increases. The degree of these changes
with respect to their bare values is also very small. Since
the soliton peak in neutron scattering in C,N,.F3 has con-
siderable strength at low temperatures [T-6 K (Ref. 2)],
these temperature variations of J(8} may not have a
significant infiuence on the neutron-scattering data.

However, there arises an interesting possibility for an
indirect experimental examination of solitons in accor-
dance with the above predicted magnetic field depen-
dence of the longitudinal speed of sound [Eq. (12)],which
may be quite difFerent for difFerent types of the excita-
tions of the magnetic subsystem:

c (H, 8)=co(8)v'1 p(H, 8)—,

where

(22)

JS
)t)(H, 8)=

for solitons and

Jn, a
(8+2e, )

4J(8)P
(23a)

JS JSfivo 1 k 1f(H, 8)= &k+
J(8)4 N k Qk'+k'o

(23b)

Ra)k /8
for magnons. Here vk=(e —1) is the magnon
average number (cok =voQk +ko ). Equation (23b) fol-
lows straightforwardly from a linearized version of the
SG model (cosy'=1 —

—,'q) ), which may be quantized in
the standard way.

Summation over the magnon quasimomenta is rather
complicated and cannot be performed exactly. However,
in the low-temperature hmit, which is the most interest-
ing one, one can neglect the magnon occupation number
(vk « I), so that the dominant contribution arises from
the second term in (23b). Using the standard procedure,
we may replace the summation over k by an integration.
It gives (S=1)

J ffvp
)t)(H, 8}=——

44

' 1/2

+ko2
g 2

n /a + }/ n /a +k o——k ln (24)

Using the typical data for C,N;F3 with H being of the order of a few kG, it follows that m/a &)kp, and so we finally
may estimate the most important part of the soliton and magnon contribution to t()(8,H) as

f(H, 8)= .

H'~4 —a,a'/'ze
81/2

——D e ' for solitons

J Avp7F gag H gPgHl+ ln
44~ 2&J(8} 4~'J(8)

for magnons,
(25)
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(gPa) J, D2=8+gp J(g) .

IV. CONCLUDING REMARKS

In the present paper we have examined the influence of
spin-phonon coupling on the soliton properties in quasi-
1D magnetic materials. It was shown that the thermal
motion of magnetic ions may induce the reduction of the
effective exchange integral, while at the same time the
spin subsystem in response modifies the speed of sound.
The degree of the changes of the effective exchange in-
tegral, within the utilized approximations, depends prac-
tically on the phonon subsystem characteristic only.
Quite to the contrary, the character of the temperature
and magnetic field dependence of the speed of sound de-
pends on the type of magnetic coupling and on the type
of excitation of the magnetic subsystem. On the basis of
Eqs. (22} and (25), we obtain that the spin-lattice correla-
tions for ferromagnetic coupling (J)0) increase the
speed of sound. Increasing the magnetic field strength
and temperature softens these modifications of the speed
of sound if the system is exclusively populated by soli-
tons. However, the magnon contribution shows a quite
different behavior. Namely, using the typical data for
C,N;F3 and choosing H to be of the order of a few kG,
we estimate gp~H l4n J-5 X 10,where fi is of the or-
der of unity. Consequently, the logarithmic term in (24}
is negative, which implies an increase of the speed of
sound with an increase of the strength of the magnetic
field.

In the case of antiferromagnetic coupling (J (0), the
above conclusions could be considerably modified.
Namely, depending on the mutual ratio of J and P, the
renormalized speed of sound may be much smaller than
in the absence of spin-phonon coupling. This, in
response, influences a possibly significant increase of the
parameter G(8), which should lead to a quite different
temperature behavior of the effective exchange integral.
In particular, our preliminary investigations show that it
can be highly reduced as compared to its bare value.
Furthermore, the character of the temperature and mag-
netic field dependence of the renormalized speed of sound
is also quite different. These details are very interesting
in their own right and demand deeper investigations.
The results of these examinations will be published sepa-
rately.

The method applied here is the closest to that of
Maskovic, Sajfert, and Marinkovic who have studied
the temperature behavior of ferroelectric solitons utiliz-
ing the effective Hamiltonian approach, but without
analysis of the response of soliton system on the frequen-
cy of lattice vibrations and speed of sound. Furthermore,

we also must note that although the influence of the spin
excitations on lattice properties in quasi-1D systems has
been the subject of both experimental' ' and theoreti-
cal studies, the soliton impact on phonon frequen-
cies and speed of sound did not attract considerable at-
tention.

The limitations of the applicability of the present ap-
proach for the understanding of soliton properties in a
realistic system arise primarily as a result of the applica-
tion of the idealized pure 1D model for both the magnetic
and vibronic subsystems and as a result of the neglect of
the remaining spin-phonon interaction. Although the
magnetic subsystem may be considered as practically 1D,
according to the smallness of the ratio of the interchain
(Jj ) to intrachain (J) magnetic interaction
(10 —10 ), this is not necessarily the case for the
phonon subsystem. Therefore examination of the
influence of the three-dimensionality of the realistic pho-
non spectrum on the magnetic subsystem characteristics
is of particular interest. However, according to the ex-
perimental examination of the elastic properties of
C,N;F3, ' ' the phonon spectrum seems to possess con-
siderable anisotropy, and so the approximation utilized
above could be satisfactory.

The remaining spin-phonon interaction

V= —P [J(Rf—Rg )
—Jf g ]Sf Sg

1

' f,g

may have a certain impact on the soliton dynamics, and
for a consistent treatment one should take into account
also the consequences arising due to its presence. This
term induces the energy exchange between soliton and
phonons, which in turn causes the dynamic damping of
soliton motion. " According to some previous examina-
tions of the soliton-phonon system within other mod-
els, ' we believe that a similar situation, as described
there, may arise in this case too. Consequently, we ex-
pect that the soliton dynamics, as a result of the remain-
ing interaction with the lattice should attain the charac-
ter of the Brownian motion caused by a Cherenkov-like
emission and absorption of real phonons. ' This prob-
lem, its relevance for neutron-scattering experiments (i.e.,
the modification of the dynamical spin correlation func-
tion), and the corrections arising as a result of the
difference in the dimensionalities of the constituent sub-
systems will be examined in a subsequent paper.
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