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Percolative difFusion of a dumbbell interstitial defect on a fcc lattice:
Calculation of a percolation threshold with use of a series method

J. L. Bocquet
Centre d'Etudes Xucleaires de Saclay, Departement d'Etudes du Comportement des Materiaux,

Section de Recherches de Metallurgic Physique, 91191Gif sur Fve-tte Cedex, France
(Received 2 February 1994; revised manuscript received 25 April 1994)

The analogy between electrical conductivity and matter transport holds only in simple cases, where
the point defect which is responsible for the diffusion does not alter the shape of the percolating cluster.
In the five variants of a model of matter transport by a dumbbell interstitial defect mechanism in fcc al-

loys, the point defect migrates on a sublattice of coordinance 8 and has only two jump frequencies at its
disposal. When the disparity between these frequencies tends to infinity, a percolative regime of
diffusion is observed, but the critical threshold arising in the diffusion problem can be identified with a
standard percolation one only under restrictive conditions. The present paper evaluates the site percola-
tion threshold p, corresponding to one of the five variants by the usual series method. Extensive com-
puter enumeration yields perimeter polynomials for clusters containing up to 14 sites. A classical
analysis by Dlog-Pade approximants to the first two moments of the cluster density function n (s) yields
the two critical exponents P(p, ) and y(p, ) associated to the percolation probability and the mean cluster
size, respectively, as functions of the (unknown) threshold p, , It is shown further that, using the higher-
order moments of the cluster density function n(s), a very tight range for p, can be proposed
(0.2775 &p, &0.2782), and that the corresponding values P(p, ) and y(p, ) are in close agreement with

the recent and most commonly adopted values for both of these exponents.

I. INTRODUCTION

The approach for the electrical conductivity of an in-
homogeneous medium in terms of percolation has been il-
lustrated and worked out in various ways during the last
two decades. ' Whereas the 6rst models focused on the
problem of hopping conductivity with a continuous dis-
tribution of jump probabilities for the charge carriers, '

most of the calculations have tackled the problem of dc
and ac conductivity on lattices which were decorated,
randomly or not, ' isotropically or not, "' by a binary
distribution of conductances, a fraction p of which being
either zero (isolating bond) or infinite (superconducting
bond): The formulation was later extended to include
capacitors' ' and even diodes. ' ' Outside a region cen-
tered around some critical threshold p„the effective con-
ductivity of such lattices can be well approximated by
effective-medium approximations, ' ' but its behavior
in the vicinity of the threshold obeys scaling laws instead:
Most of the preceding quoted studies focused their effort
on the determination of the critical exponents rather than
on the determination of p, itself, since only the difference

p —p, is the relevant parameter. Real-space renormaliza-
tion methods seem now to bridge the gap between both
approaches, since they yield both the critical exponents
and the value ofp„'' and further, provide also an ap-
proximation of the conductivity far from p„which turns
out to be even better than the effective-medium one, at
least for simple two-dimensional (2D) lattices.

The problem of mass transport in solids has been re-
cently envisaged with the preceding theories as a starting
point. ' Although the formulation is that of a random
walk on a lattice, it cannot be straightforwardly taken as

a realistic and physical description of diffusion since the
analogy between electron and mass transport, although
intuitive, is not quite obvious. Indeed, unlike the elec-
tronic transport, a severe complication arises in solid-
state mass transport, where diffusion is known to be
mediated by point defects, which reshufBe permanently
the components of the medium among the available lat-
tice sites. In the most simple diffusion models we can
think of for random substitutional binary alloys, the
point defect is viewed as a random walker which has two
jump frequencies at its disposal, the choice between them
being dictated by local considerations: In the case of a
vacancy mechanism, for instance, the frequency depends
on the chemical nature of the atom with which it ex-
changes; ' for the dumbbell interstitial mechanism, the
composition of the defect itself plays a role too, ' as
will be recalled in more detail hereafter. The only ap-
proaches which take explicitly into account the nature of
the point defect and the details of the atomic jump mech-
anism are effective-medium approximations of the
diffusion problem itself. Numerous Monte Carlo simula-
tions have shown that they are quantitatively reasonable,
as long as the disparity in the jurnp frequency is not too
large. ' On further consideration, the agreement is all
the more surprising as the analytical approach cannot in-
clude detailed modifications of the lattice site occupan-
cies operated by the defect migration, whereas the simu-
lation algorithm takes them explicitly into account.

When the disparity of the jump frequencies becomes
very large and tends to in6nity, the onset of a percolative
regime shows up. In the case of the vacancy mechanism,
the vacancy will exchange with only one species (say, 8)
while avoiding the other (A): Long-range diffusion is
possible only if the concentration of the mobile species is
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above some critical threshold. Below the threshold, the
defect is trapped in B clusters of finite size, which ire en-
tirely embedded in the immobile ( A) component; above
the threshold, there exists one infinite B cluster spanning
over the entire alloy and allowing the long-range migra-
tion of the point defect. The agreement between the
mean-field model and the numerical simulations
deteriorates within a small concentration range around
the critical threshold. In the usual case where the vacan-
cy is believed to migrate via first-neighbor jumps, the
critical threshold is the site percolation threshold p, (the
clusters being defined by a first-neighbor distance cri-
terion on the chosen lattice). The analytical mean-field
treatment can only yield an approximate value of the
threshold, which turns out to be simply related to a
characteristic of the transport mechanism:

where fo is the self-diffusion correlation factor by the va-
cancy mechanism. It is worth noticing that the resulting
value is reasonably close to the exact (and well-known}
value on several lattices (Table I). The 3D lattice with
coordinance 8 mentioned in the table is the object of the
present study: In this lattice, the self-diffusion correla-
tion factor has already been determined. It can be
checked that the mean-field approximation overestimates
the percolation threshold for 3D lattices and underesti-
mates it in 20, the agreement being closer with an in-
creasing coordination number.

The object of the present paper is the evaluation of a
percolation threshold in the case where the point defect is
of dumbbell interstitial type and migrates on a sublattice
of the parent fcc lattice. The first part recalls the physi-
cal origin of the problem, the nature of the critical
threshold arising in the diffusion problem, and the condi-
tions under which it can be identified with a percolation
threshold evaluated on a suitable lattice. The second part
is devoted to the calculation of the percolation threshold
by the usual series method together with the critical ex-
ponents P (associated with the percolation probability)
and y (associated with the mean size of the clusters). The
last part compares the present result with a former evalu-
ation based on a mean-field formulation of the dumbbell
diffusion in concentrated alloys.

TABLE I. Comparison of the site percolation threshold p,'
and the self-diffusion correlation factor fo for the vacancy
mechanism on several lattices. The 3D lattice of coordinance 8
is the object of the present study and the corresponding value of
p,' is being determined.

II. MIGRATION OF THE DUMBBELL DEFECT
IN A BINARY fcc ALLOY

A. Atomistic migration mechanism

In a fcc lattice the interstitial defect, when sufficiently
undersized, consists in an extra atom which sits at the
center of a regular octahedral cage, the vertices of which
are occupied by atoms on substitutional sites. The case
of the self-interstitial (produced by irradiation, for in-
stance) does not fit this picture, since the extra atom,
which is now of the same size as the surrounding ones, is
too big to content itself with the interstitial location of
octahedral type. Diffuse x-ray experiments together with
numerical simulations agree that this extra atom prefers
to share a substitutional lattice site with a neighbor and
make up an anisotropic dumbbell-shaped point defect at
the expense of a rather large deformation of the sur-
rounding lattice. This dumbbell is dissociated along a
( 100) direction and will be denoted by I„„;the dissocia-
tion distance between the two-constituting atoms, denot-
ed by 2A, , is roughly 0.4so, where so stands for the first-
neighbor distance at rest.

The migration mechanism consists of a translation to a
nearest-neighbor site together with a m/2 rotation of the
dissociation axis, in such a way as an x dumbbell (dissoci-
ated along (100) ) on the origin will form a y dumbbell
(dissociated along (010) ) at (6, 1,+1,0), or a z dumbbell
(dissociated along (001)) at (61,0, +1) with a spacing
between (100}planes equal to unity. As shown in Fig. 1,
the rear part of the defect (atom 1) comes back on a sub-
stitutional site, whereas the front part (atom 2) kicks a
neighbor (atom 3) out of its site to build up the new de-
fect. During such a jump, three atoms are moving simul-
taneously.

It is easy to check that a defect starting from the origin
with a given dissociation axis will visit only three of the
four simple cubic (sc} sublattices which make up the ini-
tial fcc lattice; the last one will be called the forbidden
sublattice. The whole set of available sites can be viewed
as the vertices of a sc array of octahedra, as depicted in
Fig. 2, with a coordinance equal to 8. %'ith such a jump
mechanism, a given site is always visited by a defect hav-
ing the same dissociation axis: As a consequence, a site
on which the defect is dissociated along Ox (Oy or Oz)
will be called an x (y or z) site, respectively. In the same
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FIG. 1. Atomic mechanism for the migration of the
dumbbell interstitial in a fcc lattice. The defect cannot reach
any of the four neighbors which are located in its mirror sym-
metry plane.
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In order to reduce the number of unknown parameters,
the differences EA A EBB d E AB EBB whenever
non-null, will take only two opposite values +DE and
—AE, which are also assumed not to depend on the local
configuration of the alloy. As a consequence, each jurnp
frequency which brings no composition change for the
defect, or which leads the latter into a configuration of
lower energy, will be equated to the more rapid frequency
8'z. Conversely, each detrapping frequency which

brings the defect to a configuration of higher energy mill

be equated to 8'L smaller than 8'z according to

W=W/8 (3)

FIG. 2. Lattice available to a defect starting on site labeled X
with a dissociation axis along O„(theshort straight line running
through each site recalls the dissociation axis of the defect on
this site).

way, it can be checked that all the x sites belong to one sc
sublattice and that an x site has only y and z neighbors.

In order to describe the migration of such a defect in a
binary random alloy ( A, B) (atomic concentration
C„,Cs), we must foresee all possible events occurring
during the displacements, namely, the formation of I„B
and IBB type of interstitials, which will unavoidably form
as soon as the concentration CB is no longer negligible.
For that purpose, we assume that the jump of a I; defect
toward an atom of type k (i,j,k = A or B) will result in
the formation of a new interstitial I~k, according to the
displacements pictured above, the new configuration of
the defect being energetically more or less favorable than
the preceding one. Knowledge of all the frequencies

WJ&k (i,j,k = A or B) is sufficient to pin down the rules
which master the migration in the alloy. In order to keep
the number of arbitrary parameters to a minimum, we
make the two simplifying assumptions which follow.

(i) In the actual alloy, the dissociation distance of the
I„Band IBB defects will probably differ from its value for
IAA, since the local deformations around the defect will

not be identical. The defect will therefore migrate on a
distorted lattice. We assume that the connectivity of the
lattice together with the propagation rule for the defect
will remain unaltered over the whole concentration range
of the solid solution, which is the most important point.
The defect jump frequency is further assumed to depend
only on the possible variation of the chemical composi-
tion of the defect, but not on the atomic local
configuration of the alloy.

(ii) Denoting by E, the formation energ"y of an I, de-"
fect, the jump frequency 8',-

&& is given by

W, &k
= Wz min( I, exp [ (E," Ek )Ik T] ) . —
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FIG. 3. Schematic 1D picture of the energy barriers to be
overcome by a dumbbell interstitial in a binary alloy. Five pos-
sible variants of a two frequency model are pictured (DT for
double trapping, ST for single trapping, SST for single sym-

metric trapping, SAT for single antitrapping, and SDT for sin-

gle delayed trapping).

with

8=exp(~bE~)lkT .

It is easy to check that these rules comply with the re-

quirements of the detailed balance. All the above as-

sumptions are recorded in a lD picture (Fig. 3), which
synthesizes all the possible variants of a unique underly-

ing model resting on two jump frequencies only: The first
three variants are trapping models in which the defect

I» is trapped by the solute B, since EAB is lower than
E»., the only difference lies in the value for EBB which is

lower than, equal to, or higher than EAB, and which

yields a double trapping (DT), a single trapping (ST), and
a single symmetric trapping model (SST), respectively.
The fourth variant is a single antitrapping model (SAT),
in which EAB is higher than EA„and EBB. The last vari-

ant is a single delayed trapping model (SDT), in which
the pinning of the defect is performed only after it has in-

corporated two B atoms.
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Like the vacancy case, the assumption that the jump
frequency does not depend on the local configuration of
the surroundings can be shown to keep the short-range-
order parameter to zero: This means that the jurnp model
is consistent with the random assumption for the alloy.

In all the following, we restrict ourselves to the long-
time behavior of the defect, which implies that it will use
under the form I», I», and IBB the proportions of time
dictated by the detailed balance equations. Assuming
that the total interstitial defect concentration CI is main-
tained at a constant value much smaller than the concen-
trations CA and CB, and denoting by P; the proportion
of dumbbell I, , the "detailed balance equations are

with

PAA CB 8'AA]B —PBA CA WBA~A

PABCB NAB/'B PBBCA SBB/ A

(4a)

(4b)

A A AB +PBA +PBB (4c)

The above three equations can easily be solved forP„„,P„B=PB„,PBB as functions of 8=WB/Wt and
W; &I, . The four frequencies in Eqs. (4) are equal to W„
or 8'L, depending on the variant which is chosen accord-
ing to Fig. 3. The proportions P„Band PB„,although
numerically equal, are written differently for a possible
asymmetry of the model: The jump frequency 8'BA&A
can differ from W„B&„(whichis by definition always tak-
en equal to W„).

B. Onset of the percolative behavior

The onset of the percolative behavior manifests itself
when the ratio 8= WB /WL tends to infinity. In this lim-
it, only the interstitials with nonzero proportion will sur-
vive, namely, IBB for variants 1 and 5 (PBB=1),I„Band

IBB for variant 2 [P„B=PB„=C„CB/(2C„CB+CB),
PBB =CB /(2C„CB+CB ) ], I„B for variant 3
(PAB PB4 p

) aild IA 2 and IBB f«variant 4
[P„„=C„/(C„+CB ), PBB=CB/(C„+CB )] The
behaviors of these variants are markedly different from
one another and are briefly reviewed in the following.

I. Models with only one type ofsurviving defect

For variants 1 and 5, the necessary and sufficient con-
dition for the defect IBB to migrate is to have a B atom as
a first neighbor. Its long-range diffusivity will be non-null
only if there exists an infinite cluster of B atoms spanning
through the entire alloy. The critical threshold p, &

( =p, 5) to be determined in this case is clearly the site
percolation threshold p, of the lattice depicted in Fig. 2.
The value obtained by the mean-field approximation is
p =0.280.

For variant 3, the surviving defect I„Bis polarized:
The jump is possible toward a first neighbor 8 if the de-
fect is in the IB„stateand toward A if the defect is in the
I„Bstate. But this condition is expressed as a function of
the defect composition, which can change at each step,
and is not an independent characteristic of the lattice

alone. It can be checked that the problem does not
reduce to a standard site percolation problem. We could
not reduce our problem to a site-correlated problem
(similar to "antipercolation" as defined in Ref. 10) or to a
polychromatic bond percolation one in the spirit of Ref.
30. The main difficulty is illustrated in Fig. 4 (which is
drawn in 2D for sake of simplicity) and resides in the fact
that the defect can migrate through a bond in two
different ways. The first one changes the site occupancy,
and the optimum configuration is a mixed one [Fig. 4(a)];
the second does not, and the optimum configuration is
one colored [Fig. 4(b)]. Hence a conflict arises about the
condition under which the bond can be declared conduct-
ing or not.

It can be understood at this stage why the case of the
vacancy mechanism and of variant 1 or 5 of the present
interstitial mechanism are so easily reducible to a site
percolation problem: In both cases, only one chemical
species (8) is mobile and mass transport alters neither the
occupancies of the lattice sites nor the shape of the per-
colating cluster since the only effect of the defect migra-
tion is to replace a B atom by another one. As a conse-
quence, difficulties will show up whenever the shape of
the percolating cluster can be modified by the defect mi-
gration: In our problem, it will happen whenever I„Bis
the (or one of the) surviving type(s) of defect.

The Monte Carlo simulations of the diffusion for
higher values of 8 (10 ) suggest that p, 3&p„, and the
mean-field approximation of the diffusion problem yields
a critical threshold p,3=0.076.

2. Models with two types of surviving defects

AB ()
C ~,

,
OA

2

(b)

1AB OA

C +OA
2

FICs. 4. Two ways of migrating through a bond for the mixed
defect I» of variant 3: (a) jump with occupancy change of site
labeled 1 and (b) jump without occupancy change.

For variant 2, the remaining defects IAB and IBB can
convert into one another. Both species are mobile as
soon as CB&p,2. We could not identify the critical
threshold with that of a standard percolation problem for
the same reason as above.

Simulations results suggest that p,2&p,3, and the
mean-field approximation yields p,2=0.065. The fact
that p,2&p, 3 can be intuitively justified by the observa-
tion that variant 2 can be seen as a superposition of vari-
ants 1 and 3. Indeed, the defect can propagate under the
form IAB, like variant 3, but has the additional possibility
to propagate also long piths which are permeable to IBB,
which was not allowed in variant 3: hence, a lower value
for p, .

For variant 4, two types of interstitial dumbbells coex-
ist, but cannot convert into one another unlike the case of
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variant 2. Each type of defect migrates on a different
subset of lattice sites: The long-range migration for I~~
(Iss) defect takes place in A (8) clusters and is submit-
ted to the condition C„(Cs)&p„=p,', respectively.
Whereas the model predicts the existence of a critical
threshold for each alloy component, the interstitial popu-
lation, considered as a whole, keeps a non-null mobility
over the entire composition range: This last point is
confirmed by simulations.

The main conclusion of Sec. IIB is that the critical
threshold p„is the only one which can be easily
identified with that of a standard site percolation one and
therefore can be calculated by standard methods as de-
scribed hereafter. The other thresholds pertain to a new
type of percolation problem.

+

Vs

V8

III, DETERMINATION OF p i BY THE
SERIES METHOD

The concentration Cz is renamed p and the threshold

p,
' is denoted by p, hereafter.
The determination of p, rests on the knowledge of the

cluster density n (s) evaluated per lattice site, as a func-
tion of the size s of the isolated B cluster, that is, entirely
surrounded by A atoms:

n (s) =p'D, (q),

with

(5a)

max

D, (q) = g d (s,i)q' .
min

(5b)

d (s,i) is the number of clusters of sizes s with a perimeter
of i sites; c;„(s)and c,„(s)are the number of lattice
sites in the perimeter of the most compact and less dense
cluster, respectively. It will be established later that in
our case c;„(s)is not a monotonous increasing function
of s (Fig. 5), unlike c,„(s)which is equal to 4(s + 1 ).

We give in Appendix A the polynomial perimeters for
all the clusters of size less than or equal to 14. An au-
tomatic counting routine ' reviews all the possible clus-
ters with the correct multiplicity, thanks to a labeling of
the available lattice sites in a strictly ascending order.
The presence of three different types of sites requires
three independent ca1culations starting with the first
atom of the cluster on an x (y or z) site, respectively: The
average over the three orientations is performed in a sub-
sequent step. Although some rewriting of the program
has been performed to speed it up, each calculation re-
quired roughly 1300 h CPU time on a HP-730 worksta-
tion. The same algorithm, after deleting that part devot-
ed to the analysis of the perimeter, is noticeably faster.
We have been ab1e then to count the total number of
clusters made of 16 atoms, performing once more three

q=1 —p .

The term p' stands for the presence probability of s atoms
on the s sites of the cluster; the polynomial perimeter
D, (q) can be written as

independent runs for the x, y, and z types of the origin:
Each run required 3500 H CPU time of a HP-730
workstation. It is well known that this last enumeration
yields one more term in the power-series expansion of the
average size S(p), avoiding direct enumeration of the
polynomial perimeters for clusters of size s,, „=15
atoms. In the present problem, we observed that obtain-
ing one more term in the series expansion of S(p) would
have required. 8.6 times more computation. We report in
Table II the number of clusters containing up to 16 sites.
After this work had been started, a new and more power-
ful algorithm was published: " The detailed comparison
presented in Appendix 8 shows that we could have
gained one more term in the series S(p) with roughly the
same computational effort.

The probability that a randomly chosen lattice site is
occupied by a B atom is of course equal to p; it is made
up of two terms pz„and p„,which stand, respectively,
for the concentration of B atoms belonging to finite and
infinite clusters, respectively:

p =prn+p

with

(6a)

p =0 for p(p, .

Last, the concentration of pz„is nothing but the propor-
tion of lattice sites which are occupied by B atoms in-
volved in finite clusters:

maxp„„=g sn(s) .
0

{6b)

The threshold is evaluated in two different ways, accord-
ing to whether p tends to p, by higher or lower values.

FIG. 5. The perimeter for the most compact cluster made of
11 sites is larger than the perimeter for the corresponding one

made of 12 sites. The sites labeled V5, V8, V9, Vl, are first neigh-

bors of sites 5,8,9,11, respectively, and all of them are first

neighbors of the vacant site. Adding the 12th atom on this site
occupies a location which was on the perimeter of the preceding
cluster, but introduces no new perimeter sites.
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TABLE II. Total number of clusters up to 16 sites {the root of the cluster being on an x, y, or z site).

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

Origin x

1

4
22

140
971

7101
53 869

420 162
3 349 242

27 165 995
223 497 229

1 860608 738
15 645 140 550

132 684 077 789
1 133629 985 864
9 748 315489 721

Origin y

1

4
22

140
972

7117
54035

421 662
3 362 182

27 276 130
224 431 081

1 868 524 962
15 712 362 940

133256 578 887
1 138 522 789 711
9 790287 997 333

Origin z

1

4
24

158
1111
8199

62 706
492 492

3 948 719
32 188 395

265 955 617
2 222 256 250

18 745 545 959
159415 759 942

1 365 285 138418
11 765 031 921 861

P(p)=p /p =I ps /p (7)

tends to unity together with p and vanishes at p, with a
critical exponent P:

A. Examining the yercolation probability I' (p)
in the high-density domain (p &p, )

In this domain, the probability of having an infinite
cluster is unity; the percolation probability is that a frac-
tion P(p) of the solute B, which belongs to the infinite
cluster and is defined by

consequence, the series P(q) must be formally derived to
yield P (q), which is then divided term by term by P(q)
to obtain the desired D log series.

The term of highest order available in P (q) is equal to
the smallest possible number of sites in the perimeter of
the cluster with s,„atoms, provided that all the higher-

TABLE III. Coefficients of the series developments for the
percolation probability P{q) and for the average cluster size

S{p).

Term of order Coefficients for P{q) Coefficients for S{p)

P(p»)=Bi(p p, )' p p, +-
or, with respect to the variable q =1—p,

P(q) =B,(q, —q)~, q~q, —,

(Sa)

(Sb)

with q, = 1 —p, . The percolation probability is calculated
as a series development in ascending powers of q, after an
expansion of p' of relation (5a) as a polynomial with
respect to q =1—p.

The corresponding coefficients are gathered in the
second column of Table III. Apart from the constant
term, the order of the first nonvanishing coefficient is
equal to the number of first neighbors in the studied lat-
tice, as expected.

The magnitude and sign of the coeScients exhibit an
oscillatory behavior with a period of 3. The ratio method
applied to each subset of coefficients (a„3/a„)yields too
erratic results to deduce anything reasonable about the
value of the threshold.

The analysis by the D log Pade approximant (I,m ) con-
sists in reproducing the first terms of P(q) by dividing a
polynomial QI of degree 1 by a polynomial Q of degree
m with I+m less than or equal to the degree of P(q):
Then the smallest real positive root q, of Q is looked for
and identified with 1 —p, .

Since the ratio of two polynomials cannot approximate
the noninteger divergence of P(q), we are forced to work
on the logarithmic derivative P'(q)/P(q) which has a
simple pole at q, together with a residue equal to P. As a

0
1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1

0
0
0
0
0
0
0

—1

0
0
0

—8

8

0
—32

24
52

—196
80

566
—1406

252
5264

—13090
8756

31 010
—107 232

131 822
98 314

1

8

40
168
720

2886
11 684
46 536

181 328
699036

2 750 526
10404028
39 801 856

152 038 466
576 712 002

2 161 825 978
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order clusters will have a minimum perimeter strictly
larger than that of s,„.It is shown in Appendix A that
this condition is not always fulfilled, but it can be reason-
ably assumed that this kind of irregularity will occur only
when a cluster (or some part of it) will close up the shell
around a forbidden site of the parent fcc lattice, which is
not the case for the cluster with s „=16 sites.

The whole set of the couples (P,pc) is copius (120
values) and is shown in Fig. 6. It can be seen that the re-
sults gather fairly well around a decreasing curve, as
mentioned very often in the literature. But the nature of
this curve has never been made explicit. It is remarkable
that the whole set of results can be reasonably well
represented by a single exponential over five orders of
magnitude. It is often argued that the higher-order ap-
proximants close to the diagonal ones are the best. Tak-
ing due account of the fact that the first term of
P'(q)/P(q) is of seventh order, we would expect the best
results from the approximants [1=19~16,m =9~12];
a careful inspection of our numerical results shows that
such approximants yield poles which are very often either
complex or wide apart from the expected result, while the
more "exotic" [13,15], [15,13], [21,7], and [22,5] approxi-
mants are the only ones which give results in the range
0.27 &pc (0.28 where the threshold is expected. In the
absence of a practical confirmation of this theoretical re-
cipe, we performed a least-squares fitting of all the results
lying in the range (0.25,0.35) which contains more than
75% of the results and which is marked by the boxed
area. The fitting expression is found to be

P(p) =517.7 exp( —25.755p) .

We know that this route for obtaining the relationship
P(p) is not the best, since it rests on the development of
perimeter polynomials obtained for finite-size clusters
below p„that is, on the counting of large clusters which
are less numerous. It will prove, however, to be useful
when used in conjunction with the values obtained for the
critical exponents associated with the higher-order mo-
ments of n (s).

B. Examining the cluster average size S (p)
in the low-density domain (p &pc)

The method consists in examining the average size
S(p) of finite-size clusters and looking for the concentra-
tion threshold above which it diverges.

Defining the size of a cluster by the number of atoms it
is made up of, the average size is given by

Smax $max

S(p)= g s n(s) gsn(s) . (10a)
s=0 s=0

More generally, defining the kth moment of n (s) by

max

Mk = g s "n (s), (lob)

it is seen that the average size S(p) is nothing but the re-
duced second-order moment m z.

S (p) =m2 =M2/M, .

In the low-density domain, M& is identically equal to the
concentration p. Developing the perimeter polynomials
with respect to p (by using the identity q =1—p), and di-
viding it by p, yields the average size S(p), which can be
written as

—1max

S(p) = g a,p' .
I' =0

The higher-order term corresponds now to s,„—1, i.e.,
15 (because of dividing by M, =p). The 16 coefficients
are gathered in the third column of Table III.

From scaling arguments, it is known that S(p) diverges
at p, with a critical exponent y, according to

S(p)=22(p, —p) r for p~p,
where A z is the amplitude of the divergence and y is sup-

posed to depend only on the space dimensionality and not
on the connectivity of the particular lattice.

The ratio method can be first tried to get a first evalua-

Residue
100 .

10 .—

0.01

FIG. 6. The (pole, residue) pairs for the
Fade approximants to P'(q)/P(q): illustration
of the exponential relationship. Only the poles
belonging to the boxed area (0.25&p &0.35)
will be used to determine the fitting expression
of P(p).

0.001

0.1 0.2 0.3 0.4
Pole

0.5 0.6
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0.3

0.28 -'..

E I

A[n, 1]
0.2734-0.1385 x

A[n, 2] +

0.26

0.24

0.22

FIG. 7. Plot of 3 [n,j]=(a„,/a„)'~' vs

1/n for the series S(p) and of the best linear fit

for j=1,2, 5.

0.2-

0.18
0.1 0.2 0.3 0.4 0.5

1/n

tion of the radius of convergence. Plotting
A [n, 1]=a„,/a„as a function of 1/n shows an irregu-
larly oscillatory behavior (Fig. 7}, which can be roughly
least squared by a straight line giving p, =0.2734. The
oscillations can be damped by plotting instead
& [n,j]=(a„j/a„)"/J',with j larger than unity; the
agreement with a straight line is improved, but the result-
ing value for p, raises continuously from 0.2751 (j=2) to
0.2827 (j =5), which is highly unpleasant. Converting
the divergence of S (p) to a simple pole by raising the ini-
tial series to the power 1/y (with a trial value y =1.80),
we obtain a new series (u„p"). Applying the ratio
method to (u„) and plotting U[n, j]=(u„,/u„)""
shows that the variation with 1/n is nearly suppressed as
expected, but the remaining scattering is still too impor-
tant to deduce an accurate result (Fig. 8}. We tried also
more refined evaluation, but the result is still worse
than with the classical ratio method.

The analysis by D log Pade approximants (l, m) of S(p)
is performed in the same way as for P(q}. All the pairs

y(p)=1.059X10 exp(34. 993p) . (12)

Although this fitting procedure can seem somewhat

(y,p, ) have been plotted in Fig. 9 in the range
0.25 &p, &0.35, which contains almost all the available
points. Although it is less spectacular than for P, it is re-
markable to note that, here too, a simple exponential fit
can represent the results over more than one order of
magnitude. It can be checked that adding one more term
in S(p) produces more and more approximants with a
pole in the expected region, with a (generally) decreasing
scattering around the average curve. In the present case,
however, unlike the case of p (q), the lower-order approx-
imants (5&i+m ~10), which are of lower quality by
construction, give results which depart systematically
and significantly from the values obtained through the
approximants (11~ 1+m ~14). This is the reason why
we excluded them from the fit performed in the restricted
range (0.274,0.279} represented by the boxed area. The
resulting expression is

0.35-

U[n, 3]
U[n, 4]
U[n, 5]

0.3—

0.25

Lelx a
)()t Q g x FIG. 8. Plot of U[n, i]=(u„;/u„')'~',with

i =3,4, 5 for the series S(p) ' '

0.2

0.1
1/n

0.2 0.3
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Residue

FIG. 9. The (pole, residue) pairs for the
Pade approximants to S'(p)/S(p): illustration
of the exponential relationship. The poles of
the lower-order approximants denoted by dia-
monds depart significantly from the others.
Only the poles belonging to the boxed area
{0.274&@ &0.279) will be used to determine
the fitting expression of y(p).

0.24 0.26

Pole

0.28 0.3

S(p)=A&(p, —p) ~[1+Hz)(p, —p) + ) (13)

n = [(I+m)/2]
1+m n —2 n+3 n —2 n+2 n —1 n+2 n —1 n+1 n n+1 n n n+1 n n+1 n —1 n+2 n —1 n+2 n —2 n+3 n —2 Average

artificial for y for such a small interval where the fit is but that the final value of p, should be anyway smaller
very close to a simple linear one, we kept it in for con- than 0.278 18.
sistence with the interpolation procedure for P. Another cause of this difficulty to converge rapidly

Here, again, it can be checked that diagonal approxi- might be the presence of a confluent singularity, which is
mants are not systematically the best ones, at the benefit usually represented by a correction term to formula (11)
of more exotic off-diagonal approximants. with another (noninteger) exponent 6:

We tried also a standard Fade analysis applied to the
series ( u„)=(a„)"~y' with the approximants
1+m =10—15 and ~l

—m~ (5. The values of the poles
are found in a narrower range with average values of where a value significantly different from unity is expect-
0.2784+0.004. A careful inspection of a sequence of di- ed for 5. We give in Appendix C the account of two at-
agonal (or near-diagonal) approximants shows a notice- tempts to determine the possible presence of such a
able drift on the average value of p„which did not yet corrective term. The results are not contradictory with a
reach its asymptotic limit with the higher-order approxi- recent work which shows that a confluent singularity in
mants (1+m =15) presently available (last column of 3D percolation is probably notpresent.
Table IV). This conclusion is not qualitatively altered if At last, in the spirit of previous work, several map-
another reasonable value of y is tried: When y is pings of the variable p/p, onto a new variable y by a
enhanced (or decreased) by 0.015, p, is increased (or de- Euler transformation have been tried in order to move
creased) by 0.0002 only. We conclude that a part of the other singularities as far away from the origin as possible
difficulty to converge toward a stable value is clearly due and let the singularity at y =1 be the closest. But the re-
to the insufficient number of available terms in the series, suits are not better than without any mapping.

TABLE IV. Estimates for p, through the (I,m) Pade approximants to S{p)' ~ with @=1.80. The first column gives t+) m. The next nine

columns give the estimate with
~
I —m

~

(4 and I, m )4. The estimate is considered as unreliable if a nearby pole with positive real part lies within 0.25
of p, (NP) or if the pole is not the closest to the origin (NC). The last column takes the average over reliable values only. The symbol [(I+m)/2]
denotes the integer part of (I +m) /2.

6
7
8
9

10
11

12

13 0 278 57

0.277 87

0.281 05
NC

0.279 12

0.279 73

0.276 74
NP

0.283 12

0.278 83

0.278 22

0.282 63

0.276 84

0.279 02

0.279 11
NC

0.279 53

0.278 73

0.275 07
NP

0.279 12

0.279 29
NC

0.278 89

0.278 25

0.278 39

0.282 63

0.276 840
0.281 325
0.279 290
0.278 816

0.278 130

0.278 28 0.278 467

14
15 0.278 63

NC

0.278 47
0.278 03

0.278 25
0.278 22

0.278 24
0.278 09

0.278 36
0.278 28

0.278 32 0.278 328
0.278 29 0.278 182
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To close this section, in view of the presently available
terms of the series, it cannot be concluded that a correc-
tion term is necessary to describe the divergence of5 (p).

C. Examining the higher-order moments of n {s)
in the low-density domain (p &p, )

A similar D log Pade analysis can be performed on the
higher-order moments of n (s}, thanks to a recent conjec-
ture which states that the kth-order moment diverges at

p, like
M„=A„(p,—p) " for p~p, — (14)

with yk = (k —1)y+ (k —2)P. Although this result
stands for the bond percolation problem, we made the
reasonable assumption that it should hold, too, for the
site problem. The D log Pade approximants are evalu-
ated for moments up to sixth order, beyond which too
few poles are found in the range (0.25,0.30). The residues
are plotted as a function of the poles as before, and it
turns out that the same type of exponential fit can be per-
formed for any of these moments. We have gathered in
Appendix D the (pole, residue) plots for each moment of
kth order together with the expressions of the fitting
functions yk(p).

D. Most yrobable triyiet {p„P,y ) consistent
with the whole body of our results

At this stage, all the previous work performed up to
now is entirely contained in the expressions P(p) and

yk(p) with the convention that y2(p) is the function y(p)
which has been determined in Sec. III B. These results
can be used in three different ways.

(i) Considering the most recent values of P and y
(denoted by Po and yo, respectively) as the best ones, we
determine the percolation threshold for our lattice by
minimizing the sum of the squared deviations from our
results:

o =(Po—P(p))'
6

+ g [(i —1)yo+(i —2)Po—y, (p)] /(2i —3) . (15)

y(p). The argument for this could be that the corre-
sponding curves are fitted on many more data than the
curves corresponding to the yk's with k&2. In the
above summation, it corresponds to the case where the
first two terms are set identically to zero [Po=P(p),
yo=y(p)]. As a consequence, the determination of p,
rests only on the yk's (with k & 2), that is, only on the

quality of the conjecture about the behavior of all the mo-
ments of n (s). The result of the minimization yields

p, =0.2779, P=P(p, ) =0.403, y =y(p, )=1.771 .

(iii) At last, a more severe test consists in looking for
the triplet (Po, yo,p, ) which minimizes the sum. Equating
to zero the three partial derivatives of 0 with respect to
Po, yo, and p, yields three equations. The first two are
linear in Po and yo and can be easily solved to get Po and

yo as functions of p, . The third equation depends then

only on p, and is easily solved by trial and error:

p, =0.2776, P=0.414, y= 1.763 .

The most remarkable result is that the final value ob-
tained for p, is rather insensitive to the minimization pro-
cedure.

As a result, it can be proposed that the threshold
should reasonably belong to the interval

0.2775 &p, &0.2782,

where the upper limit has been chosen according to the
result of the Fade analysis performed on the series raised
to the power 1/y in Sec. III B.

Whereas the classical analysis by D log Pade approxi-
mants to the percolation probability and to the average
cluster size yields only the relationships P(p, } and y(p, ),
respectively, it is concluded from this section that the in-
formation contained in the higher-order moments of the
cluster density function can be used to improve the deter-
mination of the threshold and to propose a rather tight
range for the expected final value. The corresponding
values of P and y are in reasonable agreement with the
best estimates available at the present time.

The denominator (2i —3) is introduced to give the same
weight to any of the determinations of the critical ex-
ponents or any of the linear combinations which appear
in the yk's.

Several possible couples of (Po, yo) have been tried: ei-
ther from Ref. 37 or from the best computer estimate ob-
tained up to now, which lies in the confidence interval
quoted by Ref. 37.

The value of p, which minimizes the above sum de-
pends on the values of Po and yo. In the four cases corre-
sponding to the ends of the confidence intervals for P and

y (Po=0.405+0.025), (yo=1.805+0.020), the resulting
value for p, remains constrained in the narrow range

0.2775 &p, &0.2785 .

(ii) A second choice consists in giving an infinite weight
to the "direct" determination of P and y by requiring
that the final values of P and y lie on the curve P(p) and

IV. COMPARISON WITH THE MEAN-FIELD
RESULT AND CONCLUSIONS

The mean-field formulation of the diffusion problem
consists in describing in detail the movement of the
dumbbell defect in a small region of the alloy defined by
the occupancy of the sites and embedding this region in
an average medium characterized by a uniform effective
frequency X. In the present case, the small region in
question is that depicted in Fig. 2 minus the six most out-
ward vertices of the cluster and it contains 30 lattice
sites. The contribution of each region to the totai
diffusivity requires the calculation of correlation effects
and can be expressed as a function of W&, WL, and X.
These contributions are then weighted by the occurrence
probability of the configuration in the alloy and summed
altogether to yield the diffusion coefficients D„ and D
of A * and 8* tracers. The effective frequency I is at last
determined by solving a self-consistency equation
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C~Dq ~+C~D~g =D~g,

in which D + stands for the self-diffusion coefficient of
the average medium and is a function of X only. The
most remarkable feature of this very simple procedure
lies in the fact that, in the limit where 8'z/O'L tends to
infinity, the percolation threshold appears naturally as
that critical concentration below which the solution of
the self-consistency equation is identically zero. This cor-
responds to the physical situation where the defect is
trapped in clusters entirely surrounded by immobile
atoms and where long-range diffusivity is forbidden. It is
remarkable that the value of 0.280 found for the thresh-
old by this mean-field approximation is very close to the
exact one given by the series method.

The general conclusions concerning the diffusion prob-
lem can be summarized as follows.

(i) The models for electrical conductivity cannot be
used straightforwardly for describing the mass transport

in alloys. The existence of point defects and of the corre-
sponding jump mechanism may induce new types of per-
colation.

(ii) The percolative regime of mass transport by a given
atomic mechanism can be reduced to a site percolation
problem whenever the walk of the defect does not alter
the shape of the clusters which are present in the alloy:
This requirement is met by the vacancy mechanism stud-
ied in the past ' as well as by the dumbbell interstitial
mechanism of the present study for some of its variants.

(iii) Whenever condition (ii) is not fulfilled, the diffusion
problem pertains to other, and yet undefined, types of
percolation.
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APPENDIX A: PERIMETER POLYNOMIALS FOR CLUSTERS CONTAINING UP TO 14 ATOMS

1. Origin along Ox

D&„=q, D2, =4q', D3 =10q' +12q', D4 =2q' +35q' +65q' +38q

D =24q 19+7q 20+ 1 1 8q
21 +395q 22+ 3 17q 23+ 1 10q 24

D6 = 19q + 161q + 114q +651q +2048q +2398q + 1388q + 322q

D = 12q 22+ 14q 23+ 242q 24+ 1 127q 25+ 1345q 26+ 3948q 27+ 1 1 33 1q 28+ 16 368q 29

+12931q +5625q '+926q

D8 =38q +239q +343q +2098q +8197q +12 793q +26443q +67 903q '

+ 107 998q + 106 698q +63 500q +21 270q +2642q

D9„=6q +37q +90q +660q +2471q +5062q +18286q +60110q '

+ 109491q + 196969q +430 659q +725 650q +814 576q +611 163q +289 538q

+76 922q +7552q

D =20q 25+ 35q 26+ 94q 2 +578q +2046q 29+ 7704q +24 834q +57 650q 32

+ 161 565q +457 494q +888 440q + 1 531 879q +2 940 700q +4 938 182q

+6088 926q +5 318 749q +3 209 626q '+ 1245 499q +270288q +21 686q

D» = 1q +314q +756q +1694q +8073q '+28 149q +85 639q

+248 214q +582 851q + 1 430 522q +3 589 352q +7 102 336q + 12 120 814q

+21 209 772q +34618 820q '+45 074467q +44036 715q +31464 361q + 15 769 546q

+ 5 133 090q +930037q +61 696q

D&2 =q +200q +358q +3972q '+12026q +28 548q +105 765q +331988q

+913405q +2 396987q +5 597 621q +12 698 587q +28 899 682q +56 686 630q '

+96 543 472q + 159 303 933q +250 529 979q +334 909 921q +354 395 896q

+287 087 247q + 172 795 737q +73 614 817q +20442 704q +3 133 608q '+ 175 654q
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DI3 =18q +191q +2305q '+1824q +9317q +54 540q +166918q

+399026q + 1 252 729q +3 649 121q +9 383 659q +22 983 847q +52 206 242q '

+112421516q +237538661q +455089387q +771991950q +1230481~~Ãq

+1 867 387844q +2517209392q +2 812445 658q +2505 348940q +1730156439q '

+895 463 628q +329 568 615q +79036 271q + 10 392 784q +498 284q

Di4 =17q +178q +261q '+231q +5316q +29008q +51790q +160050q

+699 251q +2056008q + 5 064 144q + 14244 608q +38 546 909q '+94097 686q

+218 693 214q +479 170 173q~+991 355 191q + 1 981 818090q +3 687 848 704q

+6 202 751 007q +9 678 831 556q + 14280798 796q +19201 134455q '+22 231 810067q

+21 264 177 396qs +16332030 595qs +9796281 331q +4424 842014qss+1 424 138 394q

+298 031 522q +33 997 583q + 1 412 244q

2. Origin along Oy

D,„=q,D2„=4q' D&„=10q'+12q' D4„=q' +34q' +67q' +38q

D „=16q'+5q +123q '+383q +335q +110q

D& =11q '+129q +92q +625q +2058q +2428q +1452q +322q

6q22+6q23+ 182q24P939q2s+ 1 151q26+ 3850q27+ 1 1 275q28+ 16 606q29

+13235q +5875q '+910q

D8„=15q + 147q +215q + 1770q +7115q + 11 317q +25 793q +67 591q '

+ 108 680q + 108 870q +65 573q +21 990q +2586q

D& =2q +11q +392q +1827q +3648q +15877q +54 120q '

+99 765q + 190290q +428 947q +727 104q +827 564q +626 989q +299 418q

+78 782q +7416q

4q 2s y 7q 26+ 46q 27+ 280q 28+ 1016q29+ 5572q + 19 620q 31+45 672q 32

+ 142 162q +420 930q +827 058q + 1 476 399q +2 916412q +4 948 510q

+6 154 872q +5 433 623q +3 301 696q '+1 285 625q +275 304q +21 322q

Dll„=q + 106q +244q + 1022q +4947q '+ 17 629q +65 981q +205 182q

+488 719q + 1 277 442q +3 346 148q +6 705 522q + 11 696 118q +20 973 186q

+34 636 794q4I+45 461 751q +44 777 313q +32 247 817q~+ 16 234 698q +5 286066q

+943 759q +60 636q

DI2 =40q +161q +1788q '+5500q +19028q +73 073q +235 443q

+731 858q +2058 731q +4 871 653q + 11489 567q +27 155 722q~+54063 814q

+93 430 992q + 157 157 391q +250 289 936q +337 112847q +359 265 481q

+293033 667q +177396503q +75787 859q +21001754q +3 169780q '+172374q
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D&3 =2q +49q +743q '+680q +5120q +28 865q +94746q +283 870q

+943 903q +2 807 530q +7 789 241q +20 186 429q +46 631 648q '+ 103 046 906q

+224 437 939q +436 870 461q +749 731 277q + 1 212 426 717q + 1 862 409 562q

+2 529 758 918q +2 844 177 082q +2 549 168 328q + 1 770 317069q '+920 142 698q

+339 134 894q +80999 311q + 10480 540q +488 412q

D&4 =3q +40q +67q '+81q +204q +12 114q +24062q +96 544q

+430548q +1 358 224q +3 799 832q +11310898q +31 346275q '+80442 753q

+195098 206q4 +435 775 385q~+919 395 582q + 1 881480438q 6+3 555 351 740q

+6042187233q +9535 146122q +14220256662q +19268055753q '+22439669438q

+21 580 542 198q + 16 661 936 725q + 10039 811 013q +4 548 662 064q + 1 464 132 020q

+304684 546qss+34 186 309q +1 383 972q o .

3. Origin along Oz

q', D» =4q ", D» =12q "+12q", D4, =42q "+84q "+32q ",
D, =8q' +6q +173q '+44Qq +4Q4q +80q

q
21 + 106q 22 +82q 23 +749q 24 +2530q 25 +2974q 26 + 1 544q 27 +208q 28

4q 23+ 1 52q 24+ 826q 25+ 1038q 26+ 4346q 27+ 13 964q 28+ 20 930q 29+ 1 5 378q

+5492q 3 l +576q 32

D&, =q 4+58q +150q +1676q +6708q +11020q +28 194q +83 362q '

+ 138 660q + 131 220q +70 703q + 19 140q + 1600q

D~, =216q + 130Qq +2822q + 15 412q +54 922q '+ 101 808q +207 11Sq

+ 525 284q +923 198q + 1 025 322q +717 530q +304 066q +65 360q +4364q

D&o, =28q + 144q +622q +4340q + 16002q '+ 39 508q + 141 713q

+442662q +882274q +1 631 684q +3 518224q +6264114q +7694994q

+6463 956q +3 612 826q '+ 1 245 708q +217 872q + 11 724q

D&&, =84q +200q +620q +3240q '+ 14 750q +S6 688q + 180 750q

+458 166q 3s+ 1 311 181q +3 611 876q +7 374 422q ~+ 13 158 452q +25 120 308q ~

+43 456 510q '+57098 660q +S4 390 984q +36 977 662q +17095 736q +4904 676q

+708 964q +31 668q

D &2, =48q +72q + 1704q '+4869q + 12 360q +56 758q +214 624q

+677 082q + 1 950 872q +4 819 512q + 12093 152q +29 888 494q +60 766 156q

+ 106 947 334q + 187 746 522q +311277 967q +423 202 892q +441 862 516q

+345 877 722q + 196 897 096q +76 936008q + 18 667 958q +2 268 124q '+86408q

D ]3 =4q +48q +984q ' + 160q +3329q +26 200q +84 452q +223 362q

+827 404q +2 693 721q +7 629 168q +20068 260q4 +48 014 894q '+ 110954384q

+250 827 432q +499 035 878q + 870 526 681q + 1 449 488 639q +2 300 112498q"

+3 165 679 140q +3 521 810 180q +3065 290376q +2033 748 184q '+989 803 888q

+332 196493q +69 082 680q +7 179 604q +237 916q
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D14, =4q +82q +8q '+48q + 1932q + 12 866q + 15 012q +76 751q +404 563q

+1283 612q +3 359 068q +10571 496q +31 245 429q '+81 862 214q +201 173 138q

+462 580 807q~+1009983 737q +2 129 956080q +4109529 312q +7093 525 026q '

+ 11 432 339 712q + 17 475 978 914q +24017 440 696q '+27 863 727 773q +26 263 150230q

+ 19 591 556 440q + 11 231 465 215q +4 745 789 274q + 1 385 506 438q +250016088q

+22 555 140q +652 836q

16 399

4. Comments

The minimum perimeter for an s-atom cluster is given
by the smallest power in the q expansion; this minimum is
not a strictly monotonously increasing function of s, since
we can point out several pairs of consecutive polynomials
having the same lowest order (for instance, Ds„and D9„,
D&o„and D&&„,. . . }. It is not even a monotonous func-
tion in the wide sense, as can be seen by comparing D»
and D&2, where the smaller perimeter is obtained for the
bigger cluster. This is a consequence of the existence of
forbidden sites: Figure 5 shows the most compact
configuration of an 11-atom cluser; this cluster is the in-
complete shell around a forbidden site. The addition of
the 12th atom closes the shell by occupying one site of
the previous perimeter without adding any new perimeter
site, since the neighbors of the newly occupied site which
do not belong the cluster ( V5, Vs, V9, V» } were already
countered as neighbors of atoms already present in the
cluster ( V5 is already a first neighbor of 5, etc.). This ex-
plains the decrease by 1 of the smallest order appearing
in the polynomials D» and D,2„.This is very worrying
since the higher-order term available in the power expan-
sion of the percolation probability P(q) stems from the
smallest perimeter of the largest cluster of size s,

„

counted up to now. If clusters of size s,„+1 are added,
their counting might change the last term(s) of P(q).
However, it is reasonable to assume that this irregular
behavior will be observed only when a shell around a for-
bidden site will close up, which happens for 11~12,
19~20 (two neighbor shells sharing four common sites,
etc.). The present calculation with 16 sites should not be
altered by this drawback, and the presently available
coefficients in the series expansion of P (q) should not be
modified if the counting of larger clusters is undertaken.

APPENDIX B: COMPARISON OF THE REDNER'S
AND MERTENS ENUMERATION ALGORITHMS

This appendix compares the algorithm for enumerating
clusters due to Redner, which has been used in our
study, with a more recent one due to Mertens.

Both of them generate all clusters up to a given sizes,
„

in a recursive way: Criven an s cluster, they build all
possible (s+1) clusters by adding a new cluster site. The
choice of this new site is constrained by the requirement
of generating each cluster exactly once in the recursive
tree. Redner's algorithm keeps a list of the forbidden
sites, which implies that each new candidate must be

compared to the list in order to be rejected or accepted:
This selection mechanism is apparently more time con-
suming than Mertens' algorithm, which keeps a list of the
allowed sites only. For sake of space, we refer the reader
to the original papers for the details of each algorithm
and their Fortran translation and describe hereafter only
those modifications we have done to adapt the general
scheme to our particular lattice.

1. Mertens' method

For the lattice under consideration, the adjacency vec-
tors are not constant, but vary from site to site: They
must be calculated once for all at the beginning and
stored in a matrix NvoIS(NN, NLATT). Further, since two
sites belonging to the cluster can share the same blocked
site as a first neighbor, the newly blocked sites which are
added to the set of "count" sites by the last new site add-
ed to the cluster must be traced in a matrix
NGQUNT(4, NAMAs) after line 46 of Mertens' algorithm.
They must be released and set back to their original
"block" state, any time the corresponding site cluster is
freed, that is, after a decrease from s to s —1 sites (line
78) or after changing the site which is the starting point
of the next branch in the generation tree (line 76). The
time of computation with Mertens' method amounts to 5,
43, and 352 s for s,„=9,10, and 11, respectively, on a
HP-730 workstation.

2. Redner's method

We used a modified version of Redner's original one, in
which the interrupted loop running over the neighbors
(line 4 in Redner's algorithm) is replaced by a loop with
fixed limits (1-8 in the present case) together with some
rearranging of the subsequent code. We observed a
significant reduction of the computational effort by
roughly 20%%uo for the larger cluster enumeration. The
time of computation with this algorithm amounts then to
3.5, 34, and 273 s for s,„=9,10, and 11, respectively.
But, as noted by Mertens, the counting of the perimeter
is not closely associated to the generation of the clusters
itself; once a cluster is built, its perimeter is calculated
(using the perimeter of the previous cluster containing
s —1 sites as a starting point): The new site replaces one
perimeter site of the previous cluster, but adds in neigh-
bors to the new perimeter provided that these neighbors
neither belong to the cluster nor to the previously defined
perimeter. This restriction mechanism turns out to be
very time consuming: For s,„=10,the time grows up



16 400 J. L. BOCQUET 50

to 900 s. The computational speed is therefore reduced
by a factor of 30. This is the reason why we calculated
the perimeter for clusters up to 14 sites and enumerated
their total number (without the perimeter} up to
s,„=16, which is known to be equivalent to the
knowledge of the perimeters up to s „=15.

lloting at last that counting n+1 clusters requires
roughly 8.6 times more computation for both algorithms,
it can be seen that Mertens* method for n max = 16 would
have required (8.6} times 352 s, that is, 4600 h. This
time is comparable to the time we spent for our own cal-
culation (3500+1300 h). The conclusion is that we
would have obtained one more term in the series S(p)
with Mertens' algorithm using the same amount of com-
putational time.

APPENDIX C:
SEARCH FOR CONFLUENT SINGULARITIES

The two following methods have been usefully em-

ployed to determine such singularity in 2D percolation
problems.

(i) The first method (Ml) consists in transforming the
original series S (p) into a new one according to

&(p)=yS(p) —(p, p)dS—(p)/dp .

This new series has a simple pole at p, with a residue
equal to —y+b, . For a given value of p, (chosen in the
neighborhood of the expected final result), one obtains a
graph of 5 versus the input value y for each Fade ap-
proximant to 8 (p). One then chooses by a trial and error
process the triplet (p„y,b, ) where all the approximants
converge to the same point.

Actually, not all the Pade aprpoximants are used since
the higher-order ones are better of construction. In the
present case, we selected approximants with l +m =13
and 14 and ~1

—
m~ 5. We tried several values for p, in

the range (0.276&p, &0.279). The result is shown for
0.2778 in Fig. 10(a). The overall aspect is not drastically
changed in the range (0.2775,0.2785) and thus cannot be
used as an indication toward some optimum value for p, .
But it deteriorates ifp, is noticeably larger or smaller.
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the D log Fade approximants to the higher-
order moment of the cluster density function
n(s). Note the linear scale on the ordinate
axis.
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The main conclusion is that these approximants are
close to one another in the rather large area boxed in the
Fig. 10(a):

1.68&y&1.73 and 0.3&6&1.1.
The determination of the exponents is not sharp enough
to provide us with a clear conclusion about the existence
of the corrective term to the scaling law for S(p).

(ii) The second method (M2) consists in a mapping of
the variable p/p, onto a new variable y defined by

y =1—(1—p/p, )

Studying the new series B (y) =S(p (y) ), it is easy to show
that its logarithmic derivative has a simple pole at y =1
with a residue equal to —y/h. Here, again choosing a
trial value for p„oneplots the graph of y as a function of

And one looks again for the triplets (p„y,b, ) for
which the selected approxirnants converge to the same
point. We give the result for the same trial p, =0.2778 in

Fig. 10(b).
The Pade approximants overlap in the boxed area of

the Fig. 10(b):

1.75 &y &1.95 and 0.95 &6 &1.05 .

The determination of 6 has been sharpened at the ex-
pense of that of y, which is much larger than above, a
fact which weakens somewhat the pertinence and the in-
terest of our findings. To the most commonly accepted
value for y(1.80) corresponds here a value of b roughly
equal to unity.

The present result can therefore be viewed as con-
sistent with the findings of previous work on other 3D
percolation series stating that there is no noticeable
confluent singularity for 3D percolation, whereas it seems
now established that there is one in 2D.

APPENDIX D: HIGHER-ORDER MOMENTS OF n {s)
AND DETERMINATION OF THE

CORRESPONDING EXPONENT yk(p)

The divergence of the kth moment of the cluster densi-
ty function n (s) (k =3-6) has been analyzed with the
same procedure as that used for S(p) or P(p). Plotting
the residue versus the value of the pole yields a cloud of
data points, which, curiously, is always pinched in the
range (0.25,0.30), in such a way that a single exponential
curve can fairly well account for the results in this re-
stricted range at the expense of a reasonable scattering.

The result of the exponential fit is shown in Fig. 11.
We excluded from the fit the poles given by the lower-
order approximants with 1+m ~10, which yield values
departing systematically from the others.

The resulting expressions are found to be

y3(p) =1.908 X 10 exp(27. 532p),

y4(p)=8. 483 X 10 exp(23. 723p),

y5(p) =2.351 X 10 exp(21. 173p),

y6(p)=1.051X10 'exp(16. 563p) .

The number of available points in this range drops
when the order of the moment increases. For k =7, it
falls down to 6; although the fititng is still possible over
the restricted range, it becomes more and more artificial
in view of the remaining data. Note the linear scale for
the ordinate axis, which enlightens the fairly constant up-
ward shift for the successive curves at the threshold
(roughly positioned at 0.278): The magnitude of the shift
is indeed equal to the gap exponent P+ y.
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