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We investigate the small-polaron mechanism as a possible explanation of electrical-conduction and
electrical-noise properties of the linear chain material Mo283. Experimental conductivity and noise data
obtained in earlier papers [Phys. Rev. B 3$, 3973 (1988); Phys. Rev. B 39, 5139 (1989)] are analyzed in

terms of a small-polaron mechanism and a double-well potential model. We interpret the observed elec-
tronic properties in terms of kinetic equations describing the interaction of free carriers with fluctuations
of density of the lattice. Appropriate kinetics equations to describe this interaction, which leads to
small-polaron formation, are derived. These equations are found to explain quantitatively both the
nonequilibrium electronic properties and electrical noise in Mo2S3.

I. INTRODUCmrON

Mo2S3 is a conducting linear chain compound that un-

dergoes phase transitions below room temperature to in-
commensurately distorted structures. ' First-order
phase transitions at 182 and 145 K show considerable
hysteresis, and resistivity measurements show that these
transitions involve a loss of Fermi surface. In two pre-
vious papers, Fagerquist, Kirby, and Pearlstein carried
out resistivity, thermopower, nonequilibrium pulsed con-
ductivity, and electrical-noise measurements of Mo2S3 at
temperatures below the phase transitions. ' They were
able to interpret their results at temperatures below the
145-K phase transition in terms of a phenomenological
model in which the carries could exist in either a weakly
conducting ground state or in a relatively highly conduct-
ing metastable state. Their results suggested that the
behavior of the carriers could be well described by a
double-well potential model, a schematic representation
of which is shown in Fig. 1.

Figure 1 indicates the potential energy U(q) of the
charge carrier as a function of a configuration coordinate
q. Possible physical interpretation of q will be discussed

"
u(q)

nL

below. The well on the right-hand side of Fig. 1 corre-
sponds to a weakly conducting ground state, while the
well on the left-hand side corresponds to a relatively
highly conducting metastable state. Fagerquist, Kirby,
and Pearlstein' found the energy barrier W between the
two states to be 0.254 eV and estimated the energy
difFerence E between wells to be 10—20 meV. They also
discussed three possible physical interpretations of the
double-well potential, which we now summarize.

A. The carrier trapping model

In this simple physical model, the carriers are trapped
at impurity or other defect sites. To be consistent with
experimental results, the defects would obviously have to
produce a trapping site (potential-energy minimum)
separated from the free-carrier state by a rather large po-
tential barrier. In this case, the double-well potential
would be a potential in real space, with the configuration
coordinate q being a spatial coordinate. This model was
ruled out for two reasons. First, no specific. defects or im-
purities could be identified which could be responsible for
the double-well potential. Second, while this model could
produce the correct frequency dependence of the
electrical-noise power observed by Fagerquist, Kirby, and
Pearlstein, the calculated magnitude of the noise power
was three orders of magnitude too small. The electrical
noise in this model arises from random fluctuations of
charge carriers between the two wells of the double-well
potential. For this model to produce the correct magni-
tude of the noise, either the carriers would have to have a
mobility of 4 X 10 cm /V s (a very large value for
transition-metal compounds), or 1000 carriers would
have to cooperatively move from one well to the other.

FIG. 1. Double-well potential model for carriers in Mo2S3.
q-configuration coordinate. The carriers could be either in a
low-conductivity ground state (right-hand side) or in a relatively
high-conductivity metastable state (left-hand side).

B. The carrier-density wave model

In view of its linear-chain structure and presence of
phase transitions to incommensurate distorted states, it
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seems possible that Mo2S3 is a charge-density system
similar to NbSe3 or TaS3." ' Conduction in a charge-
density wave system may involve cooperative motion of a
large number of carriers. However, the properties of
Mo2S3 are quite different from those observed in NbSe3 or
TaS3 MO2S3 does not show nonlinear conductivity at ex-
perimentally accessible electric fields. In NbS3 for exam-

ple, nonlinear conductivity is observed for applied elec-
tric field above a critical electric field. This additional
conductivity is associated with coherent motion of large
segments of the charge-density wave which have been
depinned. Electrical noise associated with the depinning
process is also observed in NbSe3 for applied fields above
the critical field.

In Mo2S3 electrical noise is observed for all applied
fields; there is no critical field for the onset of the noise.
The difference suggests that if Mo2S3 is a charge-density
wave system, it must be quite different in character from
NbSe3 and TaS3. Fagerquist, Kirby, and Pearlstein sug-

gested a physical picture in which the charge-density
wave was pinned by solitonlike kinks and antikinks. The
destruction of kinks by thermal fluctuations would allow
the segment to conduct. In that case, the double-well po-
tential would be associated with kinds and antikinks,
rather than with the individual free carriers. If the
charge-density wave segment contained —1000 carriers,
this picture could explain the magnitude of the electrical
noise. While this type of model is a promising candidate
for explaining the electronic properties of MozS3 in quali-

tative level, existing theories of charge-density wave for-
mation are not well-enough developed to derive estimates
of the values of 8' and E or justify the carrier-density
wave model.

C. The acoustic polaron model

Fagerquist, Kirby, and Pearlstein also considered that
the double-well potential could arise from an acoustic po-
laron model. In this theoretically well-investigated mod-

el, an electron (or hole) can interact with a deformable
lattice, and through this interaction the charge carrier
can become localized in the lattice or "self-trapped. "'
It is important to stress, that along with the acoustic po-
laron ground state, a metastable state is also produced in
which the charge carrier is untrapped, with an adiabatic
potential barrier separating the trapped and delocalized
states.

It was mentioned that the small-polaron model does
have two important points in its favor. First, it can give
rise to a double-we11 potential of the type needed to ex-
plain the experimental results, if calculated values of 8'
and E are happened to be similar to those experimentally
determined. Second, the acoustic polaron model holds
promise in its ability to explain the presence of the phase
transitions. However, Fagerquist, Kirby, and Pearlstein
pointed out that this model is essentially a single-carrier
model and it could not explain the magnitude of the elec-
tric noise if we accept the simple mechanism of the noise
due to fluctuations of number of carriers in double-well
potential. '

Nevertheless, the present paper proposes the acoustic

polaron model in more detail, taking into account both
the real adiabatic potential and the kinetics of small-
polaron formation in MozS3. We will see that the kinetics
of small-polaron formation lead to a much larger
electrical-noise amplitude comparable with experimental
data.

Our model has the advantage of lack of adjustable pa-
rameters and it is based on adiabatic potential derived
from experimentally justified values of the Fermi energy
Ez and the effective carrier mass m*. ' Then the acous-
tic polaron model developed here can explain quantita-
tively both the nonequilibrium electronic properties and
electrical noise in Mo2S3 at 100 K. We will discuss in de-
tail the problem of existence of small polarons in Mo2S3
(small-polaron formation), approach to equilibrium of en-
semble of carriers, and the noise power spectra. In con-
trast with Ref. 10, a large magnitude of electrical noise is
explained in our model as a result of fluctuations of the
number of fluctuations of density of lattice, rather than in
terms of fluctuations of number of carriers in "frozen"
double-well potential, ' which gives the amplitude of
electric noise three orders of magnitude less than in ex-
periment.

II. SMALL-POLARON FORMATION

The main assumption in this paper is that small pola-
rons are responsible for the unique electronic properties
of Mo2S3, and we will propose appropriate kinetic equa-
tions to describe the formation and decay of self-trapped
carriers. In particular, we will discuss the time- and
temperature-dependent fluctuations in the local lattice
density which are ultimately responsible for small-

polaron formation. '

First let us discuss the possibility of the existence of
small polarons in MozS3 on the basis of the general
theoretical approach of Mott and Stoneham, ' Sumi and
Toyozawa, ' and Toyozawa. ' There is a hint that small
polarons might exist in materials like Mo2S3 given by
Mott. The experiments ' indicate that Mo2S3 has a
narrow energy gap EG=0. 1 eV and low Fermi energy
E~-EG. According to Mott in such materials elec-
trons in narrow conduction bands are probably small po-
larons with enhanced mass m* —10m, . The experimen-
tal value m *=7m, is near to this value and that fact is a

strong argument for existence of small polarons in Mo2S3.
Nevertheless, we made an additional estimate belo~ to
check threshold requirements for polarons. It may be
pointed out here that there are two kinds of coupling be-
tween electrons and phonons, which are responsible for
two kinds of polarons, respectively:

(I) Frohlich interaction of electrons with optical pho-
nons which may result in dielectric polaron. '

(2) Interaction of electrons with acoustic phonons,
which may allo~ small-polaron formation. According to
Deblieck, Mo2S3 is a metallike material with metal-metal

bonding between Mo atoms in quasi-one-dimensional
chains and for that reason it seems unlikely that dielec-
tric polarons can exist in this compound. Apart from
that, the adiabatic potential U(b, ) (b, is a dilation of lat-
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b, (r)=b, (r &R),
6(r)=0 (r &R) . (2)

This dilation is considered as nothing but a three-
dimensional square-well potential for the electron, which
has a bound state if the depth of the well is sufficiently
large, that is

tice for polarons) as was shown by Toyozawa, ' has no
potential barrier $V between a ground polaron state and
metastable conducting state. But this is in contradiction
with experiments, ' which indicate that no@zero value
8'=0.25 eV is principally important parameter to ex-
plain the electrical properties of MozS& in the framework
of double-well potential model. In other words, dielectric
polarons (even if they exist in MozS&) are unlikely to be
responsible for electric properties and for that reason
they are not of our interest. The only difference between
large acoustic and small acoustic polarons are their sizes
and energies, but large polarons with size I &R (R is
atomic parameter} have a tendency to shrink to small po-
larons with I —=R.'

In spite of the fact that small polarons are very promis-
ing candidates to explain electric properties of MozS3,
there are two important threshold requirements for them
to exist. ' We shall discuss these requirements in detail
and estimate the thresholds for their existence to demon-
strate that small polarons can be found in MozS3.

The first necessary threshold requirement was formu-
lated by Toyozawa' for a three-dimensional model. He
considered interaction of carriers with acoustic mode us-
ing the concept of adiabatic potential U(b, ), which is due
to the spherical volume dilation of radius R.

The dilation is assumed to be constant inside the
sphere and zero outside it:

a reasonable critical dilation 5„=0.13&6,r, (material
meets the first requirement). It should be noted that b,„
might be even smaller because of the effect of dimen-
sionality of electron subsystem in MozS&. It was shown
that the bounding condition of Toyozawa is valid only for
the three-dimensional problem. In contrast with the
three-dimensional problem, the bounding is always possi-
ble for the one-dimensional model, as was shown by Hol-
stein, ' and there is no barrier Wbetween stable (polaron)
and metastable (free-carrier) state. Unfortunately, the
effective dimensionality (d) of MozS& is not known with
any certainty and it seems that the electron subsystem is,
rigorously speaking, neither one (d =1}nor three dimen-
sional (d =3). Indeed, some authors suggest quasi-one-
dimensional approximation to describe Mo2S&. In Ref.
21 the temperature dependence of the anomalous part of
the magnetic susceptibility g, was used to elucidate the
problem of dimensionality in Mo2S&. It was shown exper-
imentally that at 12 K the coherent length for the elec-
trons L;„,=QfiD, /kb T (D, is the diffusion coefficient of
the conducting electrons) is compared to the transverse
dimensions of the quasi-one-dimensional filament. The
authors concluded for that reason, that the quasi-one-
dimensional approximation breaks down above T = 12 K.
The temperature of our experiment is T =100 K and one
might think that the behavior of the electron subsystem is
something between behaviors for one- and three-
dimensional model. In other words, there is a serious
reason to think that the real bounding condition is softer
than (2) and 5„&0.13. Let us check the second thresh-
old requirement which, in fact, means the strong-
coupling energy of a small polaron: U(b, & b,„}& 0.

In an attempt to design the adiabatic potential U(b )

we shall follow the approach of Toyozawa' who suggest-
ed that

—2m*R2E b,1

2

2

(3) U(b)= —C R 6 E,(h 6„) f—or b, &b—,„, (4)

E I and m ' are the deformation potential and the
effective carrier mass, respectively. This threshold re-
quirement allows us to calculate the critical dilation
5=h„which has the sense of a minimum dilation for a
small polaron to form. If the critical dilation calculated
from (3) happens to be greater than a typical fracture lim-
it: 6„&5&,-0.2-0.4, it should mean that small pola-
rons cannot exist. Otherwise, if the critical dilation
b„~A&„one can conclude that there is a bound state for
the carrier and the material meets the first requirement
(which is not enough for existence of small polarons).

The second requirement of Mott and Stoneham insists
that this bound state is a real small polaron and self-
trapping occurs only if its adiabatic energy is negative:
U(b & 6„)&0. This is an important necessary threshold
requirement and we should check both of them to be sure
of the existence of small polarons in Mo2S~. To estimate
the thresholds requirements, we used the following pa-
rameters taken from experiments: ' EI =2'/3-0. 06
eV, m'=7m„where m, is the mass of electron and
E~=0. 1 eV is the Fermi energy in Mo2S& measured from
the band edge. The estimation based on the Eq. (3) gives

U(b, )=—C R b, for b, &b,
1 4m

2 3 cr '

Obviously, this potential is valid only for a small dilation
6 ((0.1 when elastic energy represented by first terms in
the right parts of (4) and (5) can be expressed by Hook's
law. This approximation is not true for Mo2S&, where
6 & 6„=0.1 and we must substitute the whole elastic po-
tential U„(b,} into the expression for the adiabatic poten-
tial:

U(h) = U,((b, ) —EI(h —hc, )

—P(h„—b) for b, r, &h&b,„,
U(b, )=U„(b,) for 0&6&6,„,
U(b, )= Ud(h) Er for 6 & hq, . —

The last term in the right part of (6) reflects that the elec-
tron associated with the polaron suffers energy near to
the Fermi energy E~ for 6~h&, . In this scheme, from
analogy with linear polymers, we used the Morse poten-
tial to model the elastic part U„(b, ) of the adiabatic po-
tential:
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FIG. 2. Adiabatic potential for polarons. Deformation po-
tential E& =0. 1 eV, critical deformation 6„=0.13, effective bar-
rier 8'=0. 134 eV, depth of the wall E=—0. 1 eV, T=100 K.
Potential U(h) is given in eV, 6 is dimensionless deformation
of Mo-Mo bond.

U,](h)=D —2D Exp[ —yb, ]+D Exp[ —2yb ], (9)

III. KINETICS EQUATIONS

where parameters D =0.14 eV and y =12.1 were calcu-
lated to correspond to the experimental elastic modulus
C =2X10' dyn/cm and the barrier of the double-well
potential W. ' The appropriate adiabatic potential cal-
culated from (6}—(9) is shown in Fig. 2 and one can see
that the requirement U ( 6 & b „}(0 is satisfied for
b, &0.145. Moreover, the adiabatic potential U(b ) has
an effective barrier 8'=0. 13 eV, that is not far from ex-
perirnental data. In conclusion, our estimate shows that
Mo2S3 meets the small-polaron threshold requirements of
Toyozawa, Mott and Stoneham, Sumi, and Toyozawa'
(which are just a consequence of the requirements of
Refs. 14 and 19}.

In other words, it seems that small polarons can exist
in Mo2S3 and we will study how they affect electronic
properties, including electrical noise. In the next section,
we consider this problem in more detail. In particular,
we develop a set of kinetics equations which are then
used to describe the nonequilibrium conductivity and
electrical-noise behavior of Mo2S3.

dnH
n F)nadt

dnL dn~

dt dt

(10)

sume that the sample is homogeneous and that the
thermally induced lattice deformations can be found any-
where in the crystal with the same probability. Then, the
total density of states where deformations can exist is
nd =R . The density of lattice fluctuations nR with
h=b, „(for small polarons to form) is of course expected
to be much smaller than nd.

In what follows, we consider only deformations with
dilation 5=A„. Obviously, fluctuations with 5 &5„are
not of interest as polarons cannot form. Similarly, fluc-
tuations with b, & b,„are not important because of the
large thermal activation energy involved in forming
them.

To begin, we will derive the kinetics equations for the
densities of carriers in the high and low conductivity
states (nH and nr, respectively} and for the density of
fiuctuations of lattice deformations of sufficient size to
form a small polaron (n~). To summarize, three ensem-
bles are used in our model:

(1) The ensemble of carriers in the high-conductivity
metastable state with mean density nH.

(2) The ensemble of quasistable small polarons with
mean density nL =no —nH.

(3) The ensemble of unstable (short-lived) deformations
of the lattice of sufficient size (I -R) and dilation
(b, =b,„) to trap a carrier. These deformations either
disappear with a relaxation time ~d -10 ' s, or they be-
come small polarons after interaction with carrier. The
mean density of these deformations was denoted above as
nFl'

In order to write down the kinetics equations, we as-
sume that the only interaction between these ensembles is
the interaction of carriers in their high-conductivity
(metastable) state with the lattice deformations, and this
interaction is described by the single kinetics constant
E+. In accordance with both the general kinetics ap-
proach and the double-well potential model, the kinet-
ics equations for the various rates of change of density
are expected to be

A. The thermodynamics ensembles

dnF] ng nF] nL

dt ZF&

n& +E nRnH
~d

(12)

To begin, we assume that the double-well potential of
Fagerquist, Kirby, and Pearlstein ' originates from
small-polaron formation as described above, and that the
total density of carriers no is constant. We can then
write no=nL+nH, with no=10 cm, where nl and20 —3

nH are the carrier concentrations in the self-trapped (low
conductivity) and free (high-conductivity) states, respec-
tively. We further assume that penetration of the adia-
batic potential barrier is thermally activated, and that its
kinetics can be described by means of an effective kinetics
constant E+, which is a measure of the rate at which the
carriers interact with lattice deformations. We also as-

Equation (10) above describes the kinetics of the ensem-
ble of carriers in the high-conductivity state. The erst
term of the right side of this equation is responsible for
the increase in the number of carriers in the metastable
state due to the decay of polarons. The rate of increase is
described by the relaxation time ~L, which is thus the
mean lifetime of the polarons. The second term on the
right side of Eq. (10) is the rate of ffow of carriers from
the metastable state to the self-trapped polaron state due
to the interaction of the ensembles of carriers with the
lattice fluctuations. Thus, both nH and nR appear, and
E+ is the relevant rate constant. Equation (11) is just the
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B. Connection with the double-well potential model

The rate equations (10)—(12) will be used to describe
both the electrical-conduction properties and the
electrical-noise properties of Mo2S3. First however, it is
necessary to relate the various relaxation times and rate
constants to those used by Faberquist, Kirby, and Pearl-
stein in their phenomenological double-well model. They
showed that for the double-well potential model, rL and

iH were given by

W+ E/2
iL,oexp

b

(13)

W E/2—
H iHOexP

b

(14}

where kb is Boltzmann's constant and 'TL p and iHp were
measured to be between 10 ' and 10 ' s. Similarly,
Fagerquist, Kirby, and Pearlstein showed the equilibrium
densities nH and nL to be

nH =n p I[1+exp(E Ikb T)], (15)

result of the conservation law for total carrier density,
no =nH+nL.

Equation (12) describes the kinetics of the density fluc-
tuations (or deformations) and its right side consists of
three terms. The first term represents the available rate
for new thermally induced lattice deformations. The
numerator of this term is simply the density of "vacant"
lattice sites where new deformations could arise. The pa-
rameter iFi is the characteristic waiting time for a fluc-
tuation in density of the appropriate size to appear, and it
can be estimated from classical statistics as
r~=rpexp(U, ~(b„)lkbT), where'-10 ' —10 ' s is of
the order of the period of thermal vibrations of atoms.
The second term in the right side of Eq. (12) represents
the decay rate of deformations after they have formed,
with the appropriate relaxation time id ip. The last
term on the right side of Eq. (12}describes the formation
of polarons due to the interaction of carriers in the high-
conductivity state with lattice deformations, with the rate
of formation again being determined by the rate constant
ac+.

R [1+exp(E/kb T ) ]E+=
rLp[1+e"p( E/kb T}]

[W+E/2 —U,i(b„)]
Xexp

b

In other words, Eq. (18) provides the necessary connec-
tion between our kinetics approach with the phenomeno-
logical equations from Refs. 9 and 10, and it will be seen
that our model describes all electronic properties of
Mo2S3 studied therein, including the nonequilibrium and
time-dependent conductivity and the time-dependent
thermopower. Taking E =15 meV and T =100 K, it is
seen to be a reasonable approximation that

R [ W E/2 —U,i(b—,„)]K+ = exp
kbT

(19}
iLO

P(t, )=exp( —tlat) . (20)

Fagerquist, Kirby, and Pearlstein found direct experi-
mental evidence for this distribution function in their
pulse conductivity measurements. ' They first passed a
large current through the sample, which caused the sam-
ple temperature to rise a few degrees by Joule heating.
This resulted in a redistribution of the carriers between
the wells. The sample current was then reduced to a
much smaller value, so that sample cooled quickly (a few
ms) to near the original temperature. The conductivity
o(t) of the sample, however, decayed slowly back to its
original value o (0) with the disturbance from equilibrium
5o'(t) =o (t) —o (0) decaying exponentially with time ac-
cording to

IV. APPROACH TO EQUILIBRIUM
AND THE NOISE PO%'ER SPECTRA

Faberquist, Kirby, and Pearlstein' considered the ap-
proach to thermodynamic equilibrium within the frame-
work of the double-well potential model. They assumed
that the carriers transferred between two wells by
thermal activation and that the transfer process was
governed by Poisson statistics. In this approach, the
probability P(t, ) that carriers remain in the metastable
(high-conductivity) state during 0~t & t, is given by the
distribution function with a single relaxation time i:

5o (t}=Bo (0)exp( tie&), — (21)
n~P =n pl[1+exp( Elkb T)] . — (16)

n „,=ndexp[ —U„(b,,)/kb T] . (17)

Substituting the equilibrium densities Eqs. (15)—(17) into
Eq. (4) with dnH Idt =0, we obtain the following expres-
sion for the rate constant E+:

Classical statistics for a weakly interacting collection of
Maxwell-Boltzmann particles (in this case, the lattice de-
formations) suggests that the equilibrium density of lat-
tice deformations of suScient size for small polarons to
form will be given by

where i& is the experimentally measured value.
The conductivity o(t) is related to the density of car-

riers nH(t) by means of the well-known relation

o(t}=
e r, nH(t)

where i, is the carrier scattering time, e is the carrier
charge, and m * is the carrier effective mass. Note that i,
is not in any way related to the carrier relaxation time ii
associated with the approach to equilibrium in the
double-well potential. As can be seen from Eq. (22), the
disturbance of nH from equilibrium, 5nH, is expected to
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have a similar time dependence as the conductivity, so
that

5nH(t) =5nH exp( t—lri ) .

r~ '((E'+nFi, so that the first term of Eq. (31) is expect-
ed to be much smaller than the second term. Thus we ig-
nore the first term in Eq. (31) and it reduces to the follow-
ing relation between 5NH and 5N„i

From the definition of P(t), it follows that the following
equation should be valid:

5NH 5NFI
(32)

5nH(t) =5nItP(t) =5nttexp( t/—r) . (24)

d5nH

dt
1 + o+K nF) 5n~ .

+L
(25)

The solution this equation has the same exponential form
as Eq. (23) with ri given by

1 1
+I()' n~ .+ 0

7] TL
(26)

The substitution of Eqs. (17}and (19) into Eq. (26} yields
the following expression for r=r, :

r,exp( IV/k, T)

exp(E/2kb T)+exp( E/2kb T)— (27)

This equation coincides exactly with Eq. (12) of Ref. 9.
The Poisson distribution [Eq. (20)] of the lifetimes of car-
riers is known to give the following noise power spec-
trum:

4((5V}2).
1+(2~fr)

(28)

where f is the frequency and 5 V is the root-mean-square
voltage fluctuation due to fluctuations in the number of
carriers in the high-conductivity state according to'

Comparison of Eqs. (23) and (24) indicates that the Pois-
son distribution [Eq. (20)] agrees completely with experi-
ment, and further that ~=~,. In other words, the charac-
teristic time ~ associated with the electrical noise is the
same parameter ~, , which determines the relaxation of
conductivity. This result was directly demonstrated in
Ref. 10. r, can be determined from Eq. (10). We assume
that nH is disturbed from equilibrium by an amount 5nH,
set nR =n„,, and use 5nt = 5n—H, we obtain

(M' &r
Si.(f)=4V'

NF, [1+(2~fr) ]
(33)

In other words, Eq. (33) shows clearly that the deriving
force for electrical noise in our small-polaron model is
the fluctuation 5N„, in the number of deformations
which are large enough to form small polarons.

V. NOISE POWER MAGNITUDE

Following Ref. 10 we introduce the coefficient 8:

, (5N'& , (5N' &8 =4V =4V
XH NF)

(34)

which is the measure of the noise power magnitude, and
it is usually called the noise strength parameter. Then
the problem of determination the noise power spectrum is
reduced to calculating (5N~ ) from statistical-
mechanical considerations. As mentioned before, we can
neglect all the fluctuations of density with b, =b,„and the
fluctuations are assumed to be weakly interacting. In
other words, the ensemble of fluctuations with dilations
b =A„or 5=0 is statistically equivalent to the ensemble
of nd particles existing in two states: the state with zero
energy (corresponding to 6=0) and the state with energy
U, ~

(corresponding to b, =b „).Then, the partition func-
tion Z for nd particles distributed between two levels is

Z = [1+exp[—PU,i(b„)]] (35)

where P=(ki, T) '. The average energy ( U„) of the en-

semble is then

From Eqs. (28), (29), and (32) it follows that the noise
power spectrum can be expressed in terms of fluctuations
of density (or deformations) as

NH5V= —V
NII

(29) 8lnZ U i(~ .}"d(U„&=-
BP [1+exp[PU,i(h„)]j

(36)

5nl
K nFI5nH E 5nF]nH =0 . (30)

Here V is the mean (dc) voltage across the sample during
the electrical-noise measurements and NH=nH Vs, &, is

the total numbers of carriers in the high-conductivity
state ( Vs, zi, is the total volume of the sample). We now
return to Eq. (10) and set dnH ldt =0. Then the fluctua-
tions in nl and n~ must satisfy

But since ( U, ~ ) =NFi U, i(b,„),this leads to

N„, =nd /[ I+exp[PU, i(b,„)]]
-=n~exp[ —PU„(A„)] . (37)

It can be shown that for a weakly interacting collection
of Maxwell-Boltzman particles

Substituting (5nL = —5nH) into Eq. (27), we obtain the
following equation in terms of 5n~ and 5nFI ..

6nH E n~5nH K nH5nR =0 . (31)

1 BNFi n„exp[PU„(b,„)]
(5N'„, ) = ——

P BUe~ [ I+exp[PU i(Q ~)]]

=ndexp[ —PU„(b,„)]. (38)

Using Eqs. (13), (17), and (19), it is seen that
Substituting the expressions for NFi and (5N„, ) into Eq.
(34) gives the strength parameter:
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4V
nd

exp[ U,~(h„)/kb T] . (39)

Another approach has been discussed in Ref. 10 for ex-
plaining the origin of the electric noise. In contrast with
our approach, no concrete model of double potential was
considered and the electric noise was simply assumed to
be the result of fluctuations of number of carriers hN~ in
the "frozen" double-we11 potential. The appropriate
noise power magnitude B

&
calculated in this earlier ap-

proach is given by

4V
(40)exp(E/kb T) .

1
no

But the estimated value of B, was found to be about
three orders of magnitude less than the experimental
value. ' In our opinion, the efl'ect of electric noise turned
out to be more complex than was assumed in Ref. 10. It
is of considerable importance to compare strength pa-
rameter B calculated in the framework of the small-

polaron model with the strength parameter B, from Ref.
10.

B/B, = exp[( U,)(5„) E)/ks T—] .
n„

To estimate the value of this ratio, we choose the follow-
ing experimental data: ' T=100 K, no=10 cm
The value of elastic energy U,&=0. 135 eV was taken
from the adiabatic potential calculations. Using these
values, the magnitude of the electric noise calculated
from (41) B/B, =1.6X10 has the same order as mea-
sured in experiments. ' In other words, the small-
polaron mechanism can give the magnitude of the elec-
tric noise three order larger than in the model of Fager-
quist, Kirby, and Pearlstein. '

VI. CONCLUSION

(41)

The present paper is a continuation of earlier papers
where the results of experimental investigations of elec-
tronic properties and electrical noise in Mo2S3 were re-
ported. ' The most important unresolved issue regard-
ing these results was to find the physical mechanism re-
sponsible which gives rise to the phenomenological

double-well potential. This paper is concerned with the
investigation of the acoustic small-polaron mechanism as
a promising candidate for explaining all electronic prop-
erties of MozS3. We followed the approach of Toyo-
zawa, ' Mott and Stoneharn' who considered small pola-
ron as a localized carrier state accompanied by surround-
ing lattice distortion with the size near to atomic parame-
ter. Kinetics equations were proposed for the derivatives
of density of carriers, polarons, and lattice distortions or
fluctuations of density. The kinetics constant of these
equations was adjusted to the previous phenomenological
approach ' to describe the nonequilibrium electronic
properties and parameters of the double-well potential.

Moreover, the kinetics approach allowed us to explain
in a self-consistent manner the properties of electric noise
and estimate its magnitude B. The estimated magnitude
of the electric noise has the same order as was measured
in experiments' and this fact, perhaps, justifies our pola-
ron model. The previous attempt to calculate the magni-
tude of the electric noise on the base of a "frozen"
double-well potential without taking into account the
kinetics of fluctuations of density gave B three orders
smaller than the experimental value. ' It should be noted
that we used in our theory only known parameters of
MozS3 like the Fermi energy Ez, the effective mass m',
the density of carriers no, and the atomic parameter R.
These parameters were successfully used in the frame-
work of the polaron model to estimate the energy barrier
K=0.13 eV between two states in a double-well poten-
tial model that is not far from experimental data
8'=0.25 eV. ' These results suggest that the small po-
laron model may satisfactorily explain the electronic
properties of Mo2S3.
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