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Static st ucture factor of dilute solutions of polydlsperse f act l agg egates
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We have calculated the z-average static structure factor [S(q),], z-average radius of gyration (Rz, ),

and the weight average aggregation number (m ) of fractal aggregates with an aggregate number distri-

bution given by N(m) ~ m 'f(m/m ). Here, q is the scattering wave vector and for the cutoff function

f (rn /m ) at a characteristic aggregation number m we have chosen a stretched exponential function.

We derive expressions for the prefactors of the scaling relations m Rg, and S(q), (qRg, ) and

make explicit the conditions for their validity at finite values of m and qRg, . For values of w close to
two these conditions are shown to be very difficult to meet in practice. For the case of aggregates formed

by a percolation process where r=2.2 it is shown that attempts to measure df directly from the slope
of log»(m ) vs loglo(Rg, ) or loglo(S(q), ) vs loglo(q) are biased by the effect of the internal and/or exter-
nal cutoff of the fractal regime.

INTRODUC1'ION

Particle growth by random aggregation often leads to
the formation of broad distributions of self-similar parti-
cles and in some cases the system eventually forms a gel.
Some examples are aggregation of gold colloids, ' silica
colloids or globular proteins; polycondensation of triol
and diisocyanate or epoxy and diamine;s polyaddition of
MMA and EGDMA, or styrene and divinylbenzene.

The aggregation process in dilute solutions has been
studied intensively both theoretically using the Smolu-
chowski equation and by computer simulation. From
this work it was concluded that many aggregation pro-
cesses lead to the formation of self-similar particles with
the following aggregation number distribution:

N(m) ~m 'f(m/m'), m'&&1 .

f (x) is a function decreasing faster than any power law
which cuts ofF the distribution at an aggregation number
m '. Well known examples are difFusion limited (DLCA)
and reaction limited cluster aggregation (RLCA). Aggre-
gates formed by DLCA have a fractal dimension
df =1.8 and the size distribution is characterized by
~=0, while for RLCA df =2. 1 and ~=1.5. For a num-
ber of model systems these results have been experimen-
tally verified. At higher concentrations colhsions be-
tween aggregates can no longer be considered indepen-
dent, and the Smoluchowski equation cannot be applied.
It has been proposed that the growth of aggregates that
fill up the whole space can be described by percolation
theory. Computer simulations of percolation show that
self-similar aggregates are formed with df =2.5 and a
size distribution characterized by v=2. 2. ' A lot of ex-
perimental work which aimed at checking these predic-
tions is reported in the literature, see, e.g., Refs. 4—7 and
11. Few computer simulations have been done covering
intermediate concentrations and little is known about the
structure and size distribution of the aggregates formed
in the transition zone. %'e have recently conducted

Monte-Carlo calculations showing the transition from an
initial growth by DLCA to a percolation process just be-
fore reaching the gel point. '

Experimentally df can be measured using scattering
techniques, while r can be obtained from size exclusion
chromatography or dynamic light scattering. Two in-
dependent relations can be used to determine df:

(2)

or

I(q) ~q ', qR, &&1, and qro &&1 . (3)

Here m~ is the weight average aggregation number, Rg,
is the z-average radius of gyration, ro is the radius of the
elementary unit, and I(q) is the scattered light intensity.

q =(4n/A, )sin(8/2) is the scattering wave vector with A,

the wavelength of the incident beam in the sample and 8
the scattering angle. df' is an apparent fractal dimen-
sion equal to the true fractal dimension if r&2 and
df'=df(3 —r) if 2&v&3. This difFerence can be ex-
ploited to obtain ~ if ~&2 by measuring both the po-
lydisperse sample and a monodisperse fraction. It is not
always trivial, however, to do the measurements under
the right conditions stated in Eqs. (2) and (3) due to the
limited experimentally accessible q range which also lim-
its the maximum R~ that can be measured. It is there-
fore important to establish the deviations from the limit-
ing behavior as a function of m, qro, and qR, . One of
the objects of this study is to determine these deviations
and to evaluate the validity of experimental results re-
ported in literature. It will be shown that for systems
with size distributions characterized by values of ~ close
to two, df can be determined accurately only at very
large values of mz or qR, . Aggregation by percolation,
with ~=2.2, is an important example of such a system
and much attention will be given to this case. We will
show that for most, if not all, experimental determina-
tions of df' which aimed at verifying the percolation
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theory, the conditions for the correct use of Eqs. (2) and
(3) were not fulfilled.

NUMERICAL CALCULATIONS

To calculate explicitly the dependence of m~ on R,
we have to assume a specific form for the cutoff function
in Eq. (1). Usually one takes an exponential decay which
is also expected theoretically for a number of aggregation
processes. Here, we will use a stretched exponential so
that we can evaluate the effect of a faster or slower decay-
ing cutoff function. The aggregation number distribution
used in the simulations is thus given by
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N(m) ~ m 'exp[ —(m/m')~], m' &&1 . (4)

Since most fractal systems have a fractal dimension
around two, we will first show the results for df =2 and
P= 1 and discuss the influence of changing df and P sub-

sequently. The weight average aggregation number and
the z-average radius of gyration are given by

m N(m)
m=1

m

m N(m)
m=1

(5)

R, =

0.5

m N(m)R
m=1

g m N(m)
m=1

(6a)

with

m =aR+' (6b)

where a is a constant which depends on the structure of
the aggregates see below. As we consider only systems
with m'»1, the deviation of the scaling relations (4)
and (6b) are negligible. Using Eq. (3) in Eq. (5) and as-

suming m *))1 one obtains for m ~
I'[(3—r)/P]
I'[(2—~) /P]
I (1/ )m'

m '=2
P ln(m ')—a.

(i—2) 3
m r m ' ', 2 & r & min(2+P, 3)

with I'(x) the gamma function and x the Euler constant
(a =0.577), R, is related to m * as follows:

dJ /2
I [(3—~)/P]

I [(3+2/df r)/P]—R~I, «3 . (8)

In Fig. 1, m„ is plotted as a function of Rz, for values of
v. between 0 and 2.3. The graph shows that the limiting
slope changes for ~) 2 and is approached very slowly for
values of ~ close to two. The slope,
51ogio(m )/61ogio(R, ), is shown in Fig. 2(a) as a func-
tion of m and the deviation of the final slope is plotted
in Fig. 2(b). It is clear that at a fixed value of m ir the de-

1Q 10 10 10 10
R

gZ

FIG. 1. Double logarithmic plot of the weight average aggre-
gation number versus the z-average radius of gyration of aggre-
gates with df=2, y = 1, and p= 1 at different values of the po-
lydispersity exponent, ~, as indicated in the graph.

viation is largest around ~=2. To illustrate the strong ~
dependence, we have plotted in Fig. 2(c) the value of m

needed to approach the final slope within 5% (m %) as a
function of ~. In real systems, however, a is not a con-
stant for small values of m, but depends on the structure
and the flexibility of the elementary units which means
that in practice the deviation at small m~ is less obvious.

The intensity of the light scattered by a dilute solution
of monodisperse aggregates is related to the static struc-
ture factor [S(q)] of the aggregates: I(q)!C 0- mS(q),
where C is the monomer concentration. For isotropic
systems in three dimensions the structure factor is related
to the pair-correlation function [g(r)] in the following

way

g(r)= r f (r/g), r »rod

4nr "I
0

(10)

where f (r/() is a cutoff function introduced to take into

S(q)= 1+4nfg(r)r . drP(q) 2 sin(qr)
m 0 qr

where P(q) is the form factor of the elementary unit
(monomer) of the aggregates. Here, S(q) is defined, as
usual, such that S(q =0)=1 contrary to the definition
used in Ref. 13 where S (q =0)=m. We will assume that
the number of monomers, N(r), which lie in a sphere of
radius r centered on an arbitrary monomer is given by
N(r)=(r/ro ) for ro «r «g. ro is equal to the
monomer radius only if we ignore the inhuence of short-
range excluded volume interactions. In reality r0 de-

pends on the local structure of the aggregates, but is of
the same order of magnitude. In the calculations we have
taken r0 =r0 as the unit length. Using this expression
for N(r), the pair-correlation function of the aggregate
can be written as
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account the Snite size (g) of the fractal. f (r/g) is close
to unity for r & g and decreases faster than any power law
to zero for r & g. We will again assume a stretched ex-
ponential form: f (r/g) =exp[ —(r/g)r] so that by vary-
mg y wecanecan evaluate the influence of the sharpness of
the cutoff function. At small values of r, g(r) is deter-
mined by the local structure of the aggregates. The
influence of local excluded volume efFects modifies the
shape of S(q) for values of qro around unity. '4'5 Here,
we will not consider these effects, but assume that Eq.
(10) is valid down to r =ro N.ormalizing g(r) such that
4'Ig (r)r dr =m —1, one obtains

10 10' 10 10' 10 10
S(q)=,r1+ r I 'exp[ (r/g—)r]

V

~ ~
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(b)
I I I I I l I

sin(qr)
d
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In the special case when y=l, Eq. (10) can be solved
e .13,16analytically for g »ro .

P(q) + 1 df1 (df —1}
qr*) I (1+llq g )'

5%
Xsin[(df —1)tg '(qg}] (12)

In general, for any value of y, in the limit of qg)) 1 we
have

10 1O' 10 1O' 1O' 1011 S(q)=—q, ro «q
m

with (13)

10

10

10

6 1O'

b =r /df Pdf —1)sin (df —1)—0 2

As expected, b in Eq. (13) is independent of the overall
size of the aggregate, i.e., b does not depend on g or y.

Using g (r) as de6ned by Eq. (10) we can calculate the
prefactor a in Eq. (6b). The radius of gyration is given by
R =4m Ig(r)r dr/2m so that

10

10

1 0
I and

' dfr(df/y)
y

m »1 (14)
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FIG. 2. (a) Semilogarithmic plot of the slope of the curves cn

Fig. l as a function of the weight average aggregation number at
different values of the polydispersity exponent, w, as indicated in
the graph. (b) Double logarithmic plot of the percentage devia-
tion of the slope from the limiting value versus the weight aver-
age aggregation number at different values of the polydispersity
exponent, ~, as indicated in the graph. (c) Double logarithmic

lot of the weight average aggregation number where the devia-
tion of the slope from its limiting value is 5% versus the po-
lydispersity exponent at three values of the exponent P, see text.

R2= 21'[(df+2)/1'1 R )) ~R,' g', R, »r, .

Combining Eqs. (14) and (15) we obtain

dfI'(df /y )a=
y~o

2I (df/y)
I [(df +2)/y]

It follows from Eqs. (6b) and (13) that

(15)

S(q)= —(qR ) I, r,* «q '«R, .
a

The prefactor b/a is independent of the local structure of
the aggregate, 1.e., ro.
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If we want to include the effect of polydispersity, we
need to calculate the z-average static structure factor as

S(q), =
g m N(m)S(q)

m=1

m N(m)
m=1

(18)

—0.5

—1.0

S(q), = (qR&, ) f",b
(19)

The parameter b is not influenced by polydispersity, so
that

—1.5

—2.0— rriono. p p 1.5 1.7

2.2
2. 1

2.0
1.9

where a, is the prefactor in relation (2) and is given by
Eqs. (7) and (8).

We consider again first the case df =2, P= 1 and y = 1

and evaluate the influence of these parameters subse-
quently. S(q), is plotted in Fig. 3 for values of r between
0 and 2.3. The graph shows again that the limiting slope
changes for v )2 and is approached very slowly
for values of ~ close to two. The slope,
51og,o(S(q), )/51ogto(qRs, ), is shown in Fig. 4(a) as a
function of qRg, and the deviation of the final slope is
plotted in Fig. 4(b). The value of qRg, needed to ap-

proach the final slope within 5% (qR~,%) are shown in

Fig. 4(c).

Influence of the cutofF function of N(m) at large m
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The infiuence of the shape of the cutoff function of
N(m) can be evaluated by varying P in Eq. (3) keeping
df =2 and y= l. Figures 2(c) and 4(c) show that if the
cutoff is sharper (larger P), the values of R, and qRg,
needed to approach to the final slope are smaller.
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In8uence of the fractal dimension

Varying the fractal dimension keeping P=1 and y= 1

leads, of course, to different final slopes in Fig. 1, but
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FICz. 3. Double logarithmic plot of the z-average structure
factor versus qRz, of aggregates with df =2,y=1 and P=1 at
difFerent values of the polydispersity exponent, ~, as indicated in
the graph.

FIG. 4. (a) Semilogarithmic plot of the slope of the curves in

Fig. 3 as a function of qRg, at difFerent values of the polydisper-

sity exponent, ~, as indicated in the graph. (b) Double logarith-
mic plot of the percentage deviation of the slope from the limit-

ing value versus qRg, at difFerent values of the polydispersity ex-

ponent, ~, as indicated in the graph. (c) Double logarithmic plot
of the qRg, value where the deviation of the slope from its limit-

ing value is 5% (qRg, ') versus the polydisperity exponent at
three values of the exponent P, see text.
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FIG. 7. Double logarithmic plot of the structure factor of
monodisperse aggregate with df =2, and y=l for diFerent
form factors of the elementary unit as a function of qro.

fractal slope with increasing qro is less than 5% for qro
smaller than about 0.3. Here we did not take into ac-
count short-range excluded volume interactions. Hasmy
et al. ' have done computer simulations to see the
influence of short-range excluded volume interactions.
They find that, still, for qro & 0.3 the deviation from the
fractal slope becomes small. Of course, in real systems
the elementary unit is not a point scatterer and S(q) is
modified by the static structure factor of the elementary
unit. In Fig. 7 we have plotted S(q) vs qro using for P (q)
the static structure factor of a sphere, rod, and ideal coil
with ro the radius of the sphere, half the rod length, and
the radius of gyration of the coil, respectively. It is clear
that in practice the deviation at qro &0.3 will be less ob-
vious especially if the elementary unit is itself fractal with
a fractal dimension close to that of the aggregate. In
these plots we have ignored the effect of short-range ex-
clude volume eff'ects which modify the shape of S(q)
around qro =1.

spectively, and c, coeScients which depend on the aggre-
gation process. c, is determined by the Guinier expan-
sion and c4 is determined by the prefactor, b/a in Eq.
(17). If we compare these results with Eq. (9) we find a
close agreement if y=2 as shown in Fig. 8. The pair-
correlation function of simulated aggregates formed by
percolation also shows a stretched exponential cutoff with

y =2. ' Whether y =2 and P= 1 are reasonable esti-
mates even in other types of aggregations has to be estab-
lished experimentally. In principle, one could apply the
equations given in the previous section to fit directly
S(q), with df, r, P, and y fioating parameters. In prac-
tice, however, the experimental data are not accurate
enough to make such an analysis useful. A better ap-
proach is to fix some parameters based on prior
knowledge in order to obtain precise values of the float-
ing parameters. For example one could determine df and

y by fitting S(q) of monodisperse fractions and fix these
parameters in the fit of the polydisperse sample. Alterna-
tively, one could measure ~ from size exclusion chroma-
tography or dynamic light scattering. Fitting R~, as a
function of m directly is often complicated by the un-

certainty in the size and molar mass of the elementary
unit. In addition, in many cases the elementary unit is
not monodisperse.

Although one should try to fit S(q), and Rs, directly,
it is of practical interest to establish the conditions for
the application of Eqs. (2) and (3). Unless one uses spe-
cial optical equipment, it is dificult to perform light-
scattering measurements at an angle of observation below
5' so that 25&q '&700 nm. The limits may vary some-
what depending on the wavelength of the incident light
and the refractive index of the solution, but in general the
experimental q range is not much broader. In practice,
for an accurate measurement of the slope one needs to
measure it over at least ha]f a decade which means that

DISCUSSION

4

S(qRs) = 1+ g c, (qRs)
'

s=1

—df l8

(20)

with df equal to 1.8 and 2. 1 for DLCA and RLCA, re-

In order to apply the results of the calculations to real
systems we need to know the values of P and y for the
particular system. For a large number of aggregation
processes described by the Smoluchowski equation such
as, DLCA and RLCA, the cutoff function is close to a
single exponential (P= 1 ), and for the percolating clusters
it can be approximated by a stretched exponential with
P=0.9. ' No theoretical expression of the cutofF func-
tion of g(r) is known. However, Klein et al. ' have cal-
culated the structure factor of simulated aggregates
formed by DLCA and RLCA. The results were well de-
scribed by the empirical relation

FIG. 8. Double logarithmic plot of the structure factor
versus qR~ of monodisperse aggregates formed by DLCA and
RLCA. The symbols represent the result of simulations by
Klein et al. (Ref. 1) and the solid lines give the calculated re-
sults using Eq. (11) with df =1.8 and y=2 for DLCA and

df =2. 1 and y =2 for RLCA.
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the slope can be measured in the range 45&q '&400
nm. This means that in order to measure the fractal di-
mension within 5% by light scattering, we need

R, &45(qR '). For a dilute solution of aggregates
formed by percolation (P= 1, y =2, r=2. 2, and df =2.0)
we have found qR~, '=65 so that we need R, & 3000ro.
In most real systems ro & 1 nm so that we need Rz, &3
pm. In x-ray- or neutron-scattering experiments the lim-
iting factor for an accurate measurement of the fractal di-
mension is the size of the elementary unit. For a mea-
surement within 5% we need both qRs, &qRz,% and

qro &0.3. For the case of percolation this means that we
need R, &210ro. To apply Eq. (2) we need to measure

Rs, and m„and measure the slope of log, o(m ) versus

log, o(Rs, ) over at least half a decade. For the case of
percolation we have found m %=500 which means that
for a measurement of df within 5% we need m &900.
The corresponding R~, value can be calculated using
m„=a,Rgf' for m »m with a, given by combining
Eqs. (7), (8), and (16). If P= 1, y=2, v=2. 2, and
df =2.0, then a, =2.23 so that m & 900 implies

Rg, )67ro.
A look at the literature shows us that many authors

have applied Eqs. (2) and (3) without proper considera-
tion of the constraints. An example of a reportedly very
polydisperse system is a solution of aggregates formed by
slow aggregation of colloidal silica studied by Martin. '

He reported that for this system the number distribution
can be described by Eq. (1) with ~=1.9 and P= l. The
fractal dimension df =2 05 wa. s measured in the range
30&q '(400 nm. Assuming y=2 we can read from
Fig. 6(b) that qR&,%=140. The size of the elementary
unit is 7 nm so that for an error in df less than 5%, Rg,
must have been larger than 0.15 mm, which is unlikely.
In general, aggregation in dilute conditions leads to much
less polydisperse samples so that Eq. (3) can be applied
without the need of extremely large values of Rg, .

When the aggregates are formed by a percolation pro-
cess, however, the polydispersity is high and from the
previous discussion it is clear that the constraints for the
correct application of Eq. (3) are severe. It is therefore
not surprising that in most if not all such studies either
the condition qRg, &qR,+ or qro &0.3 are not met. In
some cases both these conditions are not met in the q
range over which the slope was measured, which might
lead to compensatory effects. An additional complication
is that it is not always clear what should count as the ele-
mentary unit. The constraints for the application of Eq.
(2) are less stringent provided that rz is not too large, but
still most applications of Eq. (2) to percolating systems
reported in the literature were not unambiguously done
at sufBciently large m and R~.

CONCLUSIONS

The structure and size distribution can be expressed in
terms of four parameters: df, y, ~, and P.

The prefactors occurring in the scaling relations:
m ~ Rf' and S(q), ~ (qR, ) f', can be written in
terms of these four parameters.

We have established that the apparent fractal dimen-
sion of systems with a polydispersity exponent close to
two can, in practice, not be directly obtained from the
slope of log&0[S(q), ] vs logm(qR, ) or log+(m ) vs

log, o(Rs, ). An inspection of the literature showed that
attempts to establish df ' in this way for the case of per-
colating systems were probably biased by the efFect of the
internal and/or external cutofF of the fractal regime.

In order to determine the parameters that characterize
the structure (df and y) and the size distribution (r and
P) of the aggregates it is necessary to fit log~p[S(q), ] vs
log, o(qR, ) or log+(m„) vs log, o(R, ) directly to the
equations given above.
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