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The effect of hydrostatic as well as uniaxial pressure upon proper ferroelastic (martensitic)
phase transitions in cubic crystals is considered. The volumetric strain is considered to be the
secondary order parameter conjugated to the symmetrized shear strain that governs the reduction
of point symmetry to a tetragonal one. Corresponding terms in the Ginzburg-I andau expansion of
the Gibbs free energy are analyzed for transitions of the first as well as of the second order. The
pressure effect on the transition temperature as well as on the anomalies of isothermal compressibility
and the linear thermal-expansion coefBcient are studied and recent experimental data on thermal
expansion anomalies in V3Si, In-T1, and Ni-Al are discussed. The nonlinearity of thermal expansion
is found to imply a special relation between the shear strain and volume change that can lead to
the transformation from a fcc lattice to a bcc one, as observed in the iron alloys.

I. INTRODUCTION

There is a growing attention in recent years to the
physics of martensitic phase transformations in metal
alloys, '2 though these phenomena were known by mate-
rials scientists for many years as diffusionless transforma-
tions characterized by specific transformation kineticss
not described by the classical nucleation theory. 4 Two
different kinds of martensitic transformations are known,
i.e. , athermal and isothermal ones. In the athermal case
the transformation begins at some start temperature M„
but the parent phase still exists until the temperature
goes down to MI, a martensite finish point. In the
isothermal case the transformation proceeds in time at a
constant temperature and, generally speaking, could be
completed in some finite time, which might be very long
and depends in turn on the temperature. There is a par-
ticular subclass of so-called "thermoelastic" martensite
within this class of transformation, which is characterized
by the reversibility of a structure change —the alloy re-
gains its high-temperature structure upon heating Rom a
martensitic low-temperature state through the transition
point. This means that the lattice of the product phase
is coherent with respect to the parent one. This phe-
nomenon gives ground for the "shape-memory effect" 5

and is, thus, of a great practical importance.
Due to a spontaneous strain release during the trans-

formation, some elastic distortions appear in the matrix
of the parent phase surrounding the martensite nuclei.
The minimization of elastic long-range energy determines
the shape of new phase precipitates and provides an equi-
librium state that has a complicated heterogeneous struc-
ture which involves multiple twin bands for deeper relax-
ation of the elastic strain. Thus, a real development of
transformation takes place in complicated conditions of
a priori unknown external pressure &om the lattice of
the parent phase upon the regions under transformation.
Thus, the heterogeneity of the system makes it di%cult

to analyze the thermodynamic of the phase transition,
and idealized single-crystal systems should be considered
in order to study the equilibrium structure of the marten-
site phase as well as the equilibrium development of the
transformation.

The reversibility of the transformation means that a
phase transition between equilibrium phases takes place
and the structure coherence as well as the symmetry
breaking at a critical temperature implies that the transi-
tion can be analyzed within the frame of Landau theory.
In this approach the difference in free energy between
the parent and product phases is considered as a func-
tion of some order parameter which is equal to zero in a
high-temperature symmetrical phase and becomes non-

vanishing below the critical temperature. The funda-
mental di8'erence of the structure of a martensitic phase
with respect to the parent lattice is well known to be
spontaneous strain, and so this phase transition belongs
to the class of proper ferroelastics. It means that the
structure change takes place through the elastic instabil-
ity of the crystalline lattice of a parent high-temperature
phase with respect to a spontaneous homogeneous strain
of a special kind. In other words, some combination of
the elastic modulii vanishes at the critical temperature.

It gives rise to the drastic lowering of the frequency of a
corresponding mode of the acoustic vibration, leading to
a central peak of the inelastic neutron scattering, and
this is the reason why this sort of phase transition is of-

ten referred to as a "soft-mode" one. Though the modes
never become completely softened and a finite (albeit
small) jump of the order parameter is usually observed,
the martensitic phase transition still may be treated as
weakly discontinuous and considered in the frame of the
Landau theory of a continuous phase transition. A corre-
sponding Ginzburg-Landau expansion of the Bee energy
in series of the symmetrized strain components has been
developed and the heterogeneous fluctuations, nu-

cleation of the martensite phase around the defects, and
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some other phenomena were studied in such a formal-
ism.

In the present paper the role of hydrostatic strain in the
martensitic phase transitions is considered for the case
of a cubic lattice of a high-temperature phase. A cubic
point symmetry leads to a coupling between the shear
strain and volume change in the elastic energy expansion
near the critical temperature, and the volume change can
be considered as an additional order parameter not re-
lated with the symmetry breaking. The coupling is shown
to lead to a transition anomaly in the thermal expansion
coefBcient as well as in the isothermal compressibility.
For the case of a first-order transition some effect is found
to occur in the low-temperature phase even at the tem-
perature region outside fluctuation-induced singularities.

The hydrostatic strain or volume change can be cou-
pled with the order parameter in various physical sys-
tems undergoing phase transitions. For example, the
macroscopical parameter for ordering transition from fcc
lattice to a structure with Pa3 symmetry in crystalline
fullerenes Ceo has the same quadratic coupling with the
volume change. ~s The results of the present study are,
hence, valid in this case and the shift of the transition
temperature by applied hydrostatic pressure as well as
the transition anomalies of the thermal-expansion coefB-
cient and isothermal compressibility have the same form.

The effect of the uniaxial pressure, which preserves
the symmetry of the low-temperature tetragonal phase,
is studied. It is an external field conjugated to the or-
der parameter which is known7 to suppress the continu-
ous (second-order) phase transition for an arbitrary small
field value; however, the weakly discontinuous transition
is preserved under a field that is lower than the critical
one. The dependence of the transition temperature on
the external uniaxial as well as hydrostatic pressure is
derived and the critical pressure is found.

A nonlinear analysis of the volume change shows that
the elastic energy minimization can provide the fcc struc-
ture of the low-temperature phase for the bcc parent lat-
tice through the special relationship between the shear
strain and volume change. Hence, nonlinear elastic ef-
fects might be responsible for the challenging fcc-bcc
martensitic transformation in pure iron and some ferrous
alloys.

The paper is organized as follows. A brief description
of a weakly first-order transition within Landau theory
is the content of the Sec. II. The Landau theory of a
proper ferroelastic (martensitic) transformation is ana-
lyzed in Sec. III. The volume change due to such a phase
transition is considered in Sec. IV. Nonlinear thermal ex-
pansion and its possible contribution to the martensitic
phase transition are studied in Sec. V.

posed, if the symmetry group of the low-symmetry phase
Gq is a subgroup of the symmetry group Gs of the high-
symmetry one, then there is some variable g, called an
"order parameter, " which is invariant under all the trans-
formations &om Gq whereas some transformations &om
Go change it. The thermodynamic potential —the Gibbs
&ee energy —could be expanded as a power series in g
near the critical temperature. As the thermodynamic
potential should not change under the symmetry trans-
formations which do not change the structure, the q in
the high-temperature phase should vanish.

The general expression for the (Ginzburg-Landau) ex-
pansion of the difference in the Gibbs free energy between
the phases has the form7

Ag = (T ——T.)g + —g
a 2 C 4
2 4

(2 1)

where T is the critical temperature and the coefBcients
o. and C should be positive. The equilibrium value of g
is determined by the minimization of Eg with respect to

M,g
and

8'g

826.g
8 'g

(2.2)

The solutions are the high-symmetry phase with g = 0,
stable for T )T„and low-temperature phase with g2 =
n(T, T)/C, w—hich is stable for T & T, . The dependence
of g on T is continuous in the critical point T, ; hence this
model describes the second-order phase transition. The
Gibbs free energy

Ck

bg = — (T —T,)2,
4C (2 3)

(2 4)

Inhomogeneous fluctuations appear to be crucial in many
cases; however, for the purposes of present study they can
be neglected due to the long-range nature of the elastic
interactions in solids.

as well as the entropy, changes continuously through the
transition temperature T, but the specific heat manifests
discontinuity. 7

The vanishing of the coeKcient of second degree in
the Ginzburg-Landau expansion (2.1) when the temper-
ature approaches T, leads to critical fluctuations of the
order parameter. The mean square of the homogeneous
order parameter fluctuations is given by the well-known
expression

II. LANDAU THEORY'
OF THE FIRST-ORDER PHASE TRANSITION

A. Continuous phase transition

Let us recall briefly the main ideas of the Landau the-
ory of continuous phase transitions. As Landau sup-

B. External fl.eld efFect

Let us consider the effect of the external field E conju-
gated to the physical variable of the order parameter. In
what follows it is an external pressure conjugated to the
symmetrized spontaneous strain. The Ginzburg-Landau
expansion takes the form
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= a(T —T )rI + Crl' —E = 0,

b,g = (—T —T,)g + —rI —Erj,
C 4

2 4
(2 5)

and the minimization of Ag with respect to rI leads to
the cubic equation

M,g
(2.fi)

07/

with discriminant

It is seen that for any value of the external 6eld E the
high-symmetry phase with q = 0 no longer provides the
stable solution of Eq. (2.2). Instead, we get rl g 0 for
any temperature. It is known that the cubic equation
has one solution in real numbers for Q ) 0 and three for
the case of Q & 0. It means that for temperatures below
some critical one that now depends on E,

. 6

0.2 0. 4

oi——0.1

cr~= 0.05

o,= 0.0l

FIG. 2. The order parameter dependence on the temper-
ature in various fields for the case of the second-order phase
transition. The dashed line corresponds to the absence of an
external field, cr = 0.

in a different way, because the Geld variation may lead
to a phase change but the temperature one may not.

The external 6eld suppress the transition; however,
some decrease in

cia Ag
(T, E) = cx(T —T,) + 3Crj (T, E)

19/

leads to enhanced Buctuations of the order parameter
around T, with a smooth peak instead of a divergence

[Eq. (2.4)j shown in Fig. 3. So some transition anomalies
are preserved in suKciently sma11 external Belds E.

C. Weakly discontinuous phase transition
in the Landau theory

A Grst-order phase transition arises in the Lan-
dau theory when the symmetry of the system allows

nonvanishing third-degree invariant composed of the
order-parameter component. ' The corresponding term
should be taken into account in the Ginzburg-landau
expansion:

i AG

T.(E) = T. ——(2CE')', (2.8)
2cx

the additional minimum of the Gibbs &ee energy appears,
which corresponds to a new phase. However, the initial
phase described by the high-temperature solution of (2.6)
provides the minimum with a lower value of the &ee en-

ergy and is, thus, stable. The &ee energy behavior as
well as the order parameter dependences on the temper-
ature for different values of the external field are shown
in Figs. 1 and 2.

It is seen from Fig. 1 and it might be proved rigorously
that different minima of the Ag(q) curve have different
energies for any temperature T & To. Thus, the high-
temperature state remains stable throughout all the re-
gion of the phase coexistence. Only the condition E = 0
leads to a degeneracy with respect to the sign of rl that
implies equal energies of different minima. It leads to a
phase transition of the first order under the variation of
the external field at constant temperature T & T, In.
other words, the variation of temperature and external
field act on the systems described by the expression (2.5)

6

4.
arb. un. ~,

P2-
(Zl = 0.05

a~ = 0.025

cr = 0.04
xo = —0.221

-0. 02 .

-0.04

FIG. 1. The dependence of the Gibbs energy on the order
parameter g under the applied field for diferent temperatures
7 I ) Tg ) 7o ) T3 in the case of the second-order phase
transition.

—0.2 —0. 1 0 0. 1 0. 2 0. 3 0. 4 0. 5

FIG. 3. Mean square of the homogeneous order parameter
Huctuations around T (r = 0) under difFerent external fields.
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Eg = —(T —T.)g + —g + —g —ErI.
a 2 B3 C4
2 3 4

(2.9)
2. Select of the external field

on the weakly discontinuous phase trensition

Choosing the case of B & 0, which gives a positive g in
the low-temperature phase, we can write the &ee energy
expansion in the form

Substituting ( = ( + s into the Ginzburg-Landau
expansion (2.10), we get with the third-order term
excluded 22

with

C3 & (3 q4bg= Qg= —( ——+ ——o(,B4 2 3 4
(2.10)

where

4
&g = —( + ——o(+&go,

2 4
(2.14)

B nC Q'2

(T —T,), and o = — E. 1
7 = 7

b,go

7 2+=0 ——+—
3 27'
cr 1

18 3 108
(2.i5)

i Fi.rst orde-r transition in the ahsence of an eaternal
field

Bb,g
BT/

= C-C'+C'=0. (2.1i)

For 7 ) 7s ——
4 there is only a minimum at ( = 0

corresponding to a high-temperature undistorted phase.
The second minimum at ( =

z (1+gl —4v) or

For the 0 = 0 case minimization of the Gibbs Bee
energy (2.10) with respect to ( implies the equation

This is equivalent to the free energy expansion (2.5)
for the second orde-r phase transition under the external
field, the only difference consisting of the term b,go that
is independent of (. It appears because the free energy
is counted with respect to the (( = 0) or (( = —s) state,
which implies b go ——Eg(( = 0) g 0.

The condition (2.2) leads to cubic equation (2.6) with
the efFective temperature v and field o instead of the real
ones. The sign of the discriminant

Q=
~

—
~

+
~

—
~

oc4o+27o —18o7 —~ +47
(7.1i' (ol '

2 2 3

&3) 0»
1+

I

1—,(T —T,'
B ( 4aC

(2.12)
(2.i6)

appears at To and corresponds to a low-temperature dis-
torted phase which initially has higher free energy. The
phase energies become equal at 7, = 9, though the su-
percooling of the high-temperature state as well as super-
heating of the low-temperature one is possible. It means
that the first-order phase transition takes place at the
temperature T, As in the .second-order case, the high-
symmetry phase becomes unstable at 7 = 0.

At the temperature of the first-order transition T, the
order parameter jumps from q = 0 to g = —

3 &, over-

coming the activation energy barrier b,gs =
s&4 ggg

. The
entropy now has a 6nite change at the transition temper-
ature corresponding to a nonzero value of the latent heat
of the transition.

In order for the weakly 6rst-order transition to be prop-
erly identi6ed and clearly separated &om the background
of critical fluctuations around T, [Eq. (2.4)], the transi-
tion jump of the order parameter should be greater than
its mean Quctuation. In other words, the energy scale of
the problem should be larger than the thermal Buctua-
tion energy k~T. It implies the condition for the value
of the third-order coef6cient in the Ginzburg-Landau ex-
pansion

of this equation indicates whether it has one root or three
roots in real numbers. The latter case corresponds to
the appearance of different minima on b,g ((), the second
minima of the free energy appearing when Q(~, o) ( 0.

Hence, (2.14) can be considered as the Ginzburg-
Landau expansion for the phase transition between the
states, related with different minima of the Gibbs free
energy. The minima have nonzero values of the order pa-
rameter, because the symmetry is broken already by the
applied field for any temperature. As there is no synirne-
try breaking, it is not a true phase transition, described
by Landau theory; however, the undistorted phase with

( = 0 can be treated as an analog of ideal high-symmetry
"praphase" that would allow the symmetry reduction
to both of the phases which provide minixna of the free
energy. It is interesting to note that the first-order phase
transition in the absence of an external Geld appears to
be equivalent to the second-order one under the action
of an "effective" external 6eld; the only feature of this
situation is the zero value of g for one of two minima of
&g(0.

The phase diagram in (7., o) plane is shown in Fig. 4.
An additional minimum of the free energy appears for
crq & 0. & cr2 with

B & (C'h~r. ) '. (2.i3)
2 s 7

oi p
————1 + (1 —3+)' + —,

27 3' (2.i7)

If this condition is not satis6ed, the phase transition is
"too weak" to be Grst order and will be seen in the ex-
periments as a continuous one.

which leads to hysteresis with respect to the external 6eld
b,o = ~~~ (1 —3r)*.

According to an analogy with the second-order phase
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III. PROPER
FERROEI ASTIC PHASE TRANSITION

FIG. 4. The region of the phase coexistence. The dashed
line corresponds to points of the 6rst-order phase transition.
It terminates in the critical point (~ = 1j3,o, = 1/27).

transition described by (2.5), the different minima of the
AQ(t,') have equal energy only at o' = 0. This is the
condition of the first-order phase transition between cor-
responding phases and it determines the effect of the ap-
plied Geld on the transition temperature 7;:

2
~, (o) = 3a+ —.

9
(2.18)

For cr = 0 we get naturally r, (0) = @. Equation
(2.18) corresponds to the straight line on the (r, 0) plane
(Fig. 4). For 7 ) s on this line the equilibrium phase
has ( = s. This state is an analog of undistorted high-
symmetry phase of Landau theory without an external
field which is unstable for 7 ( s and becomes a maxi-

mum of AQ, i.e., the energy barrier with a height of

9 2 u 1
E'g ———o. ——+

4 6 324'

for the Grst-order transition between two different min-
ima with (q 2 ——6v —v, separated by the order parameter
discontinuity

(2.19)

As this line of the first-order transition in the phase
diagram at (7, 0 ) plane separates states without a
symmetry-breaking relationship, it terminates in a crit-
ical point (v, = s, o, = 27). The discontinuity in the
order parameter as well as the potential barrier separat-
ing difkrent minima of the free energy vanishes when
approaching this critical point. There is no transition for
0. ) o. or ~ ) w„which means suppressing the weakly
erst-order phase transition under the fields greater than
the critical one. In contrast with the second-order case
where an arbitrary small external field destroys the phase
transition, here we find that fields lower than e preserve
the transition. The critical point is an analog of the
continuous phase transition from the state with g = 0
corresponding to the breaking of symmetry with respect
to the change of the ( sign.

A phase transition characterized by the appearance
of a spontaneous strain at the transition temperature
is called ferroelastic. When this spontaneous strain de-
scribes the symmetry breaking at the transition, and is,
thus, an order parameter, the proper ferroelastic transi-
tion takes place. For the case of improper ferroelastics
the spontaneous strain is a complimentary order param-
eter, coupled with the primary one.

The &ee energy difference between the parent and
product phases for the case of a proper ferroelastic tran-
sition is due to the elastic strain and corresponds to the
Ginzburg-Landau expansion of the elastic energy in se-
ries of the strain components. The second-order term
in the Ginzburg-Landau expansion is a linear combina-
tion of the second-order elastic constants that vanish
at the critical temperature. It is the eigenvalue of the
lattice stiffness matrix corresponding to the relevant ir-
reducible representation of the symmetry group of the
high-temperature phase. 7 The strain tensor components
transforming with respect to this representation form the
order parameter and the phase transition belongs to the
so-called "soft-mode" class, because it is accompanied
by a noticeable softening of the corresponding acoustic
mode of atomic vibrations, visible as a central peak of
the inelastic neutron scattering.

A. Spontaneous strain in a cubic lattice

In what follows the case of cubic symmetry of a high-
temperature phase will be considered, which describes
the martensitic transformations in the A15 compound2
as well as in some metallic alloys. The spontaneous
strain tensor has only diagonal components and the or-
der parameter is composed of their symmetrized linear
combinations,

1
91 ( ex+ eyy + 2ezz) 'I

6
(3.1)

1
(e —~yy) .

2
(3.2)

The gq corresponds to the extension along the z axis
without a volume change and g2 describes the strain
nontetragonality in the XY plane. The critical acoustic
mode is transverse phonons distributing in (110) direc-
tions.

The elastic &ee energy expansion can be written in the
Ginzburg-Landau form

ag = —(q,
' + q,') + q, (q,

' —3q, q,') +——(q,
' + q,')',

(3.3)

with the following combination of the elastic constants
as the coeKcients:
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A n 1
(T T ) (Cll C12)

2 2
'

2
1

(Cll 1 3C112 + 2C123)
6

1C (C1111+ 6C1112 3C1122 8C1123)
48

Substituting

gq
——gsin8 and g2

——gcos8,

we get the Ginzburg-Landau expansion in the form

Ag = (T ——T,) g ——g sin(38) + —g .B C 4

2 3 4

The minimization with respect to 8,

Bb,g ct2b, g
Bg co—s(38) = 0 and ) 0,

(3.4)

(3.5)

(3.6)

(3 7)

to the second-order phase transformation considered in
Sec. II A.

B. Effect of external stress on the transition

An applied pressure gives rise the "external" stress ten-
sor E corresponding to the linear term —e E in the free
energy expression. The symmetry-breaking strain com-
ponents are sensitive only to diagonal components of E;
hence, relevant external stress is a superposition of the
hydrostatic pressure P = Tr(E)/1/3 with ones applied
(uniaxially) along the z axis,

E1 ——( E ——E„„+2E„)/~6,

and within XY plane,

implies sin(38) = +1 depending on the sign of B. In the
case of B ( 0 we get three solutions

~3 l ( 1 ~3 ~
(g, 0), ~

——g, g, and
2

'
2

'
( 2

' 2

(3 8)

corresponding to the low-symmetry tetragonal phases ob-
tained by the extension of the parent cubic lattice along
three coordinate axes. The free energy dependence on

g for these minima is the single-component Ginzburg-
Landau expansion (2.9) for the weakly discontinuous
phase transition. As the solutions are related through
the symmetry transformation from the cubic point sym-
metry group and, thus, are completely equivalent, we can
consider further only one of them, e.g. , (g, 0), without
loss of generality. Hence, we can use Landau theory for
the case of a single-component order parameter.

Cubic symmetry allows the third-order term in the
Ginzburg-Landau expansion to appear; hence, Landau
theory says that the phase transition should be of first
order. Indeed, for the case of Ni-Al and some other sys-
tems partial mode softening takes place and a finite strain
appears at the transition, though the shear modulus de-
creases considerably near the phase transition tempera-
ture. Some other so-called "pretransformation" phenom-
ena were found in a number of alloys. This case .cor-
responds to the weakly first-order transition mentioned
in Sec. IIC.

However, this third-degree term appears to be very
small in In-Tl, V3Si, and some other alloys where the
critical mode becomes almost completely softened; i.e.,
the shear modulus (C11 —C12) vanishes as temperature
goes to T . The central peak of the inelastic neutron scat-
tering as well as other critical phenomena appears and
the order parameter undergoes a very small change at the
critical temperature T . So the transition is very weakly
discontinuous, being sometimes of second order within
experimental accuracy. The considerable enhancement
in the acoustic wave magnitude occurs in the vicinity of
the critical temperature T, . Hence, this case corresponds

1
E2 = (E —E„„).

2

Hence, E~ and E2 are external fields, conjugated to the
primary order parameter components gq and g2, respec-
tively, whereas the hydrostatic pressure will be shown
below to affect the ferroelastic phase transition through
the volume change 1lo related to the order parameter by
the coupling term proportional to go(g1 + gz).

The applied nonhydrostatic pressure E1 2 breaks the
symmetry of the undistorted phase, moving out the cor-
responding minimum of b,g(gr, g2) from the origin and
lifts the degeneracy between three low-symmetry phases
[Eq. (3.8)]. The pressure which is coaligned with the
spontaneous strain corresponding to one of these solu-
tions, e.g. , (g1, 0), preserves the tetragonal syxnmetry of
the distorted phase and the pressure value Ej is an ex-
ternal field conjugated to the value of the symmetrized
strain gq as a single-component order parameter, consid-
ered in Sec. II C 2. Otherwise the stable low-temperature
state of the system has a rhombohedral lattice with three
different lattice parameters, which is characterized by the
pressure-dependent g1 and q2. In what follows the ef-
fect of the uniaxial pressure Eq conjugated to gq, which
preserves the tetragonal symmetry of low-temperature
phase, is analyzed.

In agreement with the analysis of Sec. II B the uniaxial
pressure was found33 to suppress the ferroelastic phase
transition &om a cubic to tetragonal lattice in the V3Si
compound, where the third-order term is very small and
the transition is of second order. For the Ni-Al alloy,
where the first-order phase transition takes place, the
uniaxial pressure appears to shift the transition tern-
perature linearly in complete agreement with Eq. (2.18).
It should be noted that though this alloy exhibits a
martensitic transition where spontaneous homogeneous
strain is accompanied by a so-called shu8ie related to
the q g 0 critical mode, the central peak of the inelastic
neutron scattering as well as a noticeable softening of the
Cqq —Cq2 elastic constant appears well above the transi-
tion temperature. Hence, this case can also be analyzed
in the kame of the Landau theory of ferroelastic phase
transitions.
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IV. VOLUME CHANGE
IN THE ELASTIC ENERGY EXPANSION

able (we also put the volume of the whole system equal
to 1 for convenience).

A. Linear energy of the thermal expansion

In the linear elasticity theory the trace of a strain
tensor is a measure of the volume change, the corre-
sponding symmetrized linear combination of the strain
components having the form

Tr(e) 1
'9p = = (&xx + &yy + &zz).

3 3
(4.1)

Due to thermal strain as well as external pressure, the
expansion of the elastic energy in a series of gp should
start with the linear terms

Agp(gp) = rpAp(T ——TR)qp + qo + Prlp, (4.2)
2

where TR is some reference temperature for the vol-
ume change, Kp and Ap are the volume thermal ex-
pansion coeKcient and bulk modulus, respectively, and
P is the applied external pressure. The bulk modulus
Ap ——~(Cqq + 2Cq2) is always positive.

The minimization of Ago(gp) with respect to qp implies
equilibrium values of gp(T) and Agp(T, P):

P
go ——r.o (T —TR)—

Ap
' (4.3)

.(T-T ) — + .P(T T). (4.4)-Ap P2
0 2A0

It is easy to see that usual thermodynamical expres-
sions for the isothermal compressibility P~ and thermal
expansion coeKcient,

If the phase transition is sensitive to an applied exter-
nal hydrostatic pressure, then there is a di8'erence in the
volume of the elementary cell of the parent and product
phases. The volume change, indeed, takes place in some
cases and it was shown that a virtual volumetric strain
could reduce the potential barrier for the system to over-
come in the phase transition development. In order to
analyze the volume change one needs to include corre-
sponding terms into the Ginzburg-Landau expansion of
the Gibbs free energy. Then the equilibrium state of the
system should provide the minimum of the &ee energy
with respect to both shear and volumetric strains.

B. EfFect of the volume change
on the ferroelastic phase transition

The lowest-order term of coupling between the shear
strains gq 2 and volume change gp for the case of a cubic
symmetry of the high-temperature phase is

&Ant = Drip(qg + n2)) (4.7)

where D = ~ (Cqqq —Cq2s). Substituting this term into

the expansion of the elastic energy in a power series of
the volume change, we get the expression (4.3) for the
equilibrium value of gp in the form

go ——Ko(T —TR) — — (ni + n2) .
Ap Ap

(4.8)

The coupling term does not induce any anisotropy in
the (gq, q2) plane; hence, three equivalent minima of the
Gibbs free energy at low temperature have a form (3.8).
We consider one particular solution of the form (gq, 0).
The uniaxial pressure Eq applied along the Z axis does
not break the tetragonal symmetry of the corresponding
low-temperature phase. Thus, it is an external 6eld con-

jugated to the gq order parameter and we can use the re-
sults of Sec. II C 2 to study its in8uence on the phase tran-
sition. The volume change gp as well as its derivatives-
the thermal expansion coefBcient e and isothermal com-
pressibility Pz —does not depend directly on Eq, but only
follows the dependence of the symmetrized shear strain

gq through Eq. (4.8).
The general expression for the free energy has the form

Ag = &go+ &gx + &g. t, (4.9)

b,gg —— (T —T,)rI,—+ g, + —g, —Equi . (4.10)Ay B~ 3 C'~ 4

Substituting (4.8) with p2
——0 into Eq. (4.9) and taking

T as a reference temperature TR for the volume change,
we get the following renormalized Ginzburg-Landau ex-

pansion of Eg in the power series of gz
..

where Agq is the Ginzburg-Landau expansion (2.9) with
respect to gq as the single-component order parameter
with the included e6'ect of applied uniaxial pressure Eq

Ãq (39)I:

0'ago
OP2

0'gp

BP
1

Ap
' (4.5)

Ag(T, P, gg) = Ago + A'(T, P)

+ &x + Iz @~"I» (4.11)

~ +gp ~'go

BPBT BT
(4.6)

are satis6ed for such an expression of the Gibbs free en-

ergy if one bears in mind that P is opposite of the pres-
sure inside the system, which is a thermodynamical vari-

with the coefBcients

A'(T, P) = o.'(T —T,')

=
~

(a, + 2rpD)(T —T,)—
Ap

(4.12)
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2D~
O' = B1 and t

' = C1-
Ap

(4.i3)
C. Transition anomalies of isothermal

compressibility, thermal expansion coeRcient,
and speci6c heat

2DP
Ao(ni+ 2rpD)

(4.14)

is shifted by the applied hydrostatic pressure

Here Ego (T,P) is the energy of a high-symmetry phase
with qi ——0, given by (4.4). The critical temperature The isothermal compressibility and thermal expansion

coefficient are expressed by Eqs. (4.5) and (4.6), respec-
tively, along with the specific heat through the second
derivatives of Eg(T, P, ih) with respect to the tempera-
ture and hydrostatic pressure for an equilibrium value of
gi given by the condition (2.2) in the form

dTc

dP
2D

Ap(ni + 2~pD)
' (4.15) X(A, i1i) = A rh + Bi rli y C' rli —Ei ——0 . (4.19)

= &1+ 2KPD . (4.16)

in agreement with experimental studies, e.g. , in In-Tl
alloys. ss The new stiffness is given by the formula

For the first derivative we have the formula

8 8b,g 8A' M,g 8gi
8T

("- ')= 8~ 8T' 8q, 8T (4.20)

In order for Eq. (4.11) to be considered as an analog of
Eq. (2.9), n' and C' should be positive.

The inequality C' (Ci corresponds to the smoothen-
ing of the potential relief when additional degrees of
freedom appear, which allows the system to relax eas-
ily. It should be noted that the inclusion of the terms
corresponding to the possible volume change into the
Ginzburg-Landau expansion (4.10) does not afFect the
third-order term Bi, hence, the order of the phase tran-
sition could not be changed by the applied hydrostatic
pressure.

As the hydrostatic pressure changes the transition tem-
perature according to Eq. (4.15), the line (2.18) of the
first-order phase transition becomes a surface in the
three-dimensional (3D) (T, P, Ei) phase diagram given
by the formula

T,'(P, Ei) = T, +, , +, P —, Ei . (4.17)

The second term in this expression vanishes for the equi-
librium rli given by Eq. (2.2) and taking into account
Eq. (4.12) we get the formula

8 I ~1
BT

(b,g —b,gp) = n —,
2

' (4.21)

82
AC~ = T8T2 (A—g —Ago) = —n T gi . (4.22)

For the isothermal compressibility and thermal expansion
coeKcient we get analogous expressions:

82 4D2 8rli
AP2 = — (b,g —b,gP) = —

2 gi, , (4.23)
0

8 2Dn' 8rli

Ao 8A'(6g —Agp) =—

which leads to the following expression for the transition
anomaly of the specific heat:

The transition can be induced by a variation of the hy-
drostatic pressure under fixed values of temperature T
and uniaxial pressure E1 at the point

P.(T, Ei) = (T —T,) — ', + Ei .
O.'Ap A0B1~ 3A00'

(4.is)

The critical point of the end of the transition line (2.18)
is now a line in the (T, P, Ei) phase diagram given by the
uniaxial pressure E, = —Bis/(27C' ) and the critical hy-
drostatic one that depends linearly on the temperature,

It is easy to see that the Keesom-Ehrenfest relationships

Tc
dj (4.25)

are satisfied.
DifFerentiating both sides of Eq. (4.19) we get

8/i 8% (8% t

8A' 8A' l, 8rli)

and resolving (4.19) with respect to A', we can finally
obtain the expression

B2 Bg1 I1
BA' E, + B, ,'+ 2C'g', (4.26)

and vanishes when T goes to T,„=T, + Bi2/(3n'C'). It
means that some values of the hydrostatic pressure sup-
press the transition, caused by the change of the uniaxial
pressure E1. The closer the temperature is to T~, the
smaller the hydrostatic pressure needed for the transition
to disappear.

D. Second-order case

Let us consider the case of the martensitic phase tran-
sition of second order for which B1 ——0. In absence
of uniaxial pressure (4.26) does not depend on gi and,
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hence, neither on temperature nor on hydrostatic pres-
sure:

|9gy
gl

OA

j.
2C'

A low-temperature phase appears at T' with continu-
ous evolution of the order parameter, which gives the vol-
ume difference between the parent and product phases,

a'D
ago ———,(T.' —T),

0
(4.27)

2 (Db 2D2

C qA r' Ac, -2AD (4.28)

and the discontinuities of the isothermal compressibility,
thermal expansion coefficient, and specific heat at the
phase transition take the forms

ture. Besides, the linear model of Eq. (4.2) leads to the
independence of e on the applied hydrostatic pressure.

The second-order phase transition disappears under
the applied external field Eq., hence, C~, PT, and K

manifest continuous behavior near the temperature T,
under an arbitrary small external field. However, from
Eq. (4.26) we get in such a case

Ogi g,
' ( Fg

BA' 2C1 I 2C(+'9&)l

For sufficiently small values E~ of the external uniaxial
pressure the difference in the isothermal compressibility,
thermal expansion coefficient, and specific heat outside
the close vicinity of the transition temperature appears
to be described by Eqs. (4.28)—(4.30). The critical di-

vergences given by Eqs. (4.32) and (4.33) disappear and
smeared peaks around T,' appear instead.

o, ' D (o.g+ 2~pD)D
Ao Aoel —2D

(4.29) E. First-order transition

2. Absence of cate~el +miasmal pmssum

T,' (n'), Ap(o. , + 2KpD)2

2 C' 2(AoC& —2D2)
(4.so)

Thus, to find three independent parameters of the
model, o,', C', and &, we have four measurable values

0
ACJ, b,pT, AK, and

dT, 2D
dp n' Ap' (4.31)

which are related by Eq. (4.25).
As was mentioned above, for the case of the second-

order ferroelastic phase transition considerable critical
Quctuations take place due to the softening of the Cll-
Cl2 shear modulus. The inhomogeneous fIuctuations
qq(x) appear to be relevant only in very close vicinity
of the critical temperature. ~s From Eq. (2.4), which de-
scribes the homogeneous order parameter fiuctuations
taking into account Eq. (4.8), we get the following ex-
pressions for the critical Quctuations of the volume:

If the third-order coefficient in the Ginzburg-Landau
expansion (4.10) has a nonzero value, then Eq. (4.11) in
the absence of external uniaxial pressure describes the
first-order phase transition at the temperature

2 B1 2DP 2 B1
(4.35)

1
DB2 I I

0 1

(4.36)

The shift of the transition temperature by the applied
hydrostatic pressure has the same form (4.14) as for
the second-order transition. The volume difference be-
tween the phases appears to depend on the tempera-
ture through the temperature dependence of gl given by
Eq. (2.12):

D
vyp oc — IT —T.i

Ap
(4.s2)

This leads to a finite volume change at the phase transi-
tion temperature,

and the thermal expansion coefficient

cx iT —TiBAgo D
p

(4.3s)

in the temperature interval around T, where the Huctu-
ations in gl are important.

There are some experimental data available on the
anomalies of the thermal expansion in the single-crystal
specimens near the martensitic phase transition which
are in an agreement with the above results. In most
of the alloys the thermal expansion coefBcient increases
near T, which implies the positiveness of D. Outside the
temperature region of thermal fIuctuations the thermal
expansion coefficient does not depend on the tempera-

4 DB2

9(C) A, ' (4.37)

gl
Bl+2t 'gl

( 4~'C'
2C' g

B21+
i

1 — (T —T')
i

(4.38)

and along with Eq. (4.24) gives the temperature depen-

which can be observed in diffraction as well as dilatomet-
ric studies.

Equation (4.26) takes the form
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(4.39)

The change of the thermal expansion coefficient at the
transition point T,' now has the form

(TI)
4a D

D ay + 2KpD
C' Ap ApCz —2D

(4.40)

The value of b,e decreases to that given by Eq. (4.29) as
T decreases from T,' to T,'.

For the difference in isothermal compressibility be-
tween the low-temperature phase and high-temperature
one we can find similarly

2D2 ( 4a'C'
b,le=, 2 1+~1—

2 (T —T,')
~C'Ap ( B , (4.41)

dence of the difference in the thermal expansion coeffi-
cients between the low- and high-symmetry phases in the
form

Such a situation occurs in the case of Ni-Al and some
other alloys where the shear modulus at T,' is softened
only slightly, by 10—20%, and the experimentally mea-

sured temperature dependence of the shear modulus can
be interpreted as pointing even to negative T . How-

ever, for the In-Tl system where the third-order term
appears to be very small and the shear modulus almost
vanishes at the transition temperature, the volume dis-
continuity is so small that it is hidden by thermal Buc-
tuations [Eq. (4.32)]. A similar efFect occurs with respect
to other discontinuities at the transition temperature T,',
which is very close to T,.

2. Sect of eaternal nniaaial pressure on the
anonaalies around the first orde-r phase transition

For the case of the first-order phase transition the de-
pendence of the discontinuity in the order parameter on
the uniaxial pressure Eq follows from the general expres-
sion (2.19),

which gives us the phase transition discontinuity in the
form 2Bg 27C' Eq

3C' Bs )
I 8D2

b,pT (T.') =
p

(4.42)
which leads to the following volume change at T, :

It should always be positive according to general ther-
modynamical arguments. 7

The specific heat has the temperature dependence

T a" f 4a'C'
ACp = — 1+ 1 — (T —T,')

~2 C'
g B,' , (4.43)

with the jump at the transition temperature

b.cp(T,') = 2T,' = 2T,' (4 44)*O' ' A C —2D2

The phase transition discontinuities of volume and en-
tropy are related through the Clapeyron-Clausius rela-
tionship with the slope [Eq. (4.15)] of the equilibrium
line at the phase diagram,

dT, Drip(T,') 2D
dP 68 a'Ap

(4.45)

Both the thermal expansion coefficient and isothermal
compressibility of the undistorted phase with g = 0 do
not depend on temperature, and so, expressions (4.39)
and (4.41) describe the temperature dependence of these
quantities in the low-symmetry phase that can be ob-
served experimentally below the transition temperature
T'. It should be noted, however, that e8ects can be seen
for T,', being sufficiently far from T, outside the tem-
perature region where the thermal Quctuations (2.4) are
important, because the Buctuation-induced singularities
of the thermal expansion coefficient as well as the other
quantities become larger in the critical region than the
j»mps in their equilibrium values. Thus, the third-order
coefficient Bq should satisfy condition (2.13).

b,rip(T,') =—
1

(4.46)

where rIq q(T, P) and rIq 2(T, P) correspond to two difFer-

ent minima of the free energy given by the different so-
lutions of Eq. (4.19). Using the dimensionless variables
(2.15) we can write Eq. (4.26) in the form

(~+ s)
BA' C' o —(j+ 1)2+ 2((+ 1)s

At the transition point we have o = 0 and

17= +—Ql —27o—,

which gives the expression

Bg~ (t,'+ s)'
BA' (4.47)

Taking into account that P has the same value 7at the-
transition point for both phases, we can finally obtain

Both parent and product phases have gq g 0 and
b,g g 0 under applied external uniaxial pressure; thus,
the difFerences in the isothermal compressibility, thermal
expansion coeKcient, and specific heat are proportional
to

Bgl ~ Bgl 1 B91 2

BA' ' BA' ' BA' '
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( Ogg) 2
~

= ——(1 —27~) '.
BA') C' (4.48)

From Eqs. (4.22)—(4.24) we get the expressions for
the phase transition discontinuities of the specific heat,
isothermal compressibility, and thermal expansion coef-
ficient as follows:

~O (~Z —1)
2 2+1 (5.2)

get the low-temperature bcc lattice. If we separate the
shear strain &om the volume change by taking the latter
to be equal to zero, then we get a single (and very large)
value of the symmetrized shear strain (3.1),

1

27O"E, &

ACJ (T,') = 2T,', 1+Ol ( +3

1

SD ( 27C' Eg i
ApT (T,') =, , 1+O'Azo( B~~ )

1

4a' D 27C' E,
O' A Bs

(4.49)

(4.50)

(4.51)

Hence, this phase transition is completely difkrent from
the continuous ones, which Landau theory describes,
where the value of the order parameter changes with the
temperature in the low-symmetry phase according to the
minimization of its Gibbs Bee energy (2.2).

However, the coupling with the volume change go
makes it possible to have an gq variation in the low-

temperature phase without breaking its symmetry. In-
deed, the strain tensor (5.1) implies the following expres-
sions for the symmetrized combinations used above as
the order parameter components:

In the limit of small values of external uniaxial pressure
we get Eqs. (4.44), (4.42), and (4.40), derived from their
temperature dependence in Sec. IVE1. When Eq goes
to the value of the critical point E, these discontinuities
diverge as oc ~E, —Eq~

(2~2' 1) a
70

(~2 —1) —,g2 ——0,
a~

(5 3)

(5 4)

and we get a relationship between the shear strain and
volume change in the form

V. TRANSFORMATION FROM A fcc INTO
bcc LATTICE VIA SPONTANEOUS STRAIN 2v 2+1

qo
——— g, —~3.

2 — 2
(5.5)

A. fcc-bcc transformation through the Bain strain

There is the case of a martensitic transformation of
special interest, namely, the fcc-bcc transformation in Fe
and some ferrous alloys. Since there is no group-subgroup
relationship for the symmetry breaking, Landau theory
is, generally speaking, inapplicable to this case. However,
there is an orientational relationship between lattices of
the parent and product phases, and the transition could
be described in terms of a spontaneous strain of the so-
called Bain type. s

The Bain strain is the single-axis shear of the same
kind as an order parameter of the ferroelastic phase tran-
sition from a cubic to tetragonal lattice. It is accompa-
nied by a volume change, which is approximately 1.5'%%uo

in the case of pure Fe, where the transformation from an
austenite fcc p phase to a ferrite bcc cx one takes place at
910'C. If the lattice periods for austenite and marten-
site (ferrite) are a~ and a, respectively, then the strain
tensor components have the form

Hence, the variation in the value of g~ preserves the bcc
structure of the low-temperature phase if qo is changed in
such a way that this relationship is satisfied. It should be
noted that (5.5) is meaningful only in a restricted region
of go and gq. For example, gq

——0 implies an unreal
result a = 0 from (5.4). Thus, (5.5) is justified only in
some vicinity of the transition that is characterized by a
small volume change ~3 go.

Having supposed the fcc-bcc transformation to be a
ferroelastic one, we should get the minimum of the elas-
tic energy for the values of go and gq obeying the con-
dition (5.5). Let us study what the coefficients are in
the expansion which provide such a minimum. With-
out a careful analysis, it should be noted, however, that
the linear approximation used above gives another kind
of relationship [Eq. (4.8)j between the shear strain and
volume change; thus, a nonlinear approximation for the
thermal expansion energy should be used.

r +a= ~» ——g2 ——1 and
a~

e„=——1 . (5.1)
G~

B. Nonlinear elasticity for the volume change

Non-linearity arises naturally when taking into account
a large value of the strain tensor component. The Tr(e)
for the Bain strain in pure iron is approximately 3 times
larger than the real value of the volume change for this
transformation given by direct multiplication of the lat-
tice periods of the low-temperature phase,

The fundamental feature of this case as compared with
the above considered phase transition &om a cubic 1attice
to the tetragonal one is the 6xed value of the spontaneous
strain needed to get the symmetry properties of the low-
temperature phase. In the above considered case for any
nonzero value of the order parameter gq the symmetry
of the lattice was tetragonal, whereas in the case of the
fcc-bcc transformation a peculiar value of qq is needed to

bV
V

= (1 + ~**)(1+ ~»)(1 + ".) —1 (5.6)
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Ap 2 Bp 2Ag = Lpgp+ rip + go +Dr/()»
2 3

Ag 2 Bg 3 t $ 4+ g~ + g~ + q~, (5.8)

where the coefBcients Bp and C1 in highest-order terms
should be positive and we again consider the particular
expression with g2 ——0.

The minimization with respect to gp implies

Bb,g 2 2== Lp + Ap gp + Bp gp + D gy = 0
ct'gp

(5.9)

which leads to the following relationship between gp and
q1 in the distorted phase with g1 g 0:

( Apl Lp

28 828p) Bp

Ap2 D
4B2 (5.10)

It could be expressed through the symmetrized combina-
tions gp, qg, and g2 as follows:

bV = +3 gp + gp +2 ~P I1 + 2
3 3

90 (» + 92) 91 (91 92)
(5 7)

2+3 3+6
For the fcc-bcc transition we have g2 ——0 and proper

account for the volume change should, thus, involve the
terms of higher order in gp and gq. Terms of first and
second order in the volume change gp within a nonlinear
approximation no longer have a simple relation with the
thermal expansion coefficient and isothermal compress-
ibility that was obtained in Sec. IVA. Similarly, other
terms in both Ag1 and b,g; t should be changed. The
general nonlinear elastic energy expansion near the elas-
tic instability with respect to gz now has the form

relations between the coefficients in the elastic energy
expansion (5.8):

Lp ——3Bp, (5.15)

Ap ——2~3 Bp, (5.16)

9+ 4~2
3 —2~2

(5.17)

18+8 2l q'
Ag = v38p+ —A1+ ~38p

815 + 580~2 g1 C1 5.18
116 —41v 2 3 4

which can be considered as a Ginzburg-Landau expansion
for the ferroelastic phase transition. The first term does
not depend on gq, the critical temperature T, is de6ned
by the condition

These relations could be, generally speaking, satisfied
only in isolated points on the phase diagram and the
phenomenological approach used in the present study is
unable to find their origin. It could be done only in some
microscopic theory beyond the scope of the paper. How-
ever, as far as these relations are satis6ed, we can try to
6nd their consequences for the elastic properties of the
system under the phase transition.

Substituting these expressions into the &ee energy
(5.8) and excluding the volume change through Eq. (5.5)
we get a renormalized expansion of the elastic energy
with respect to the symxnetrized strain gq,

For the high-symmetry phase we have

1
Ao ( 48oLo i '

(5.11)

Ag+ &3Bp
18+8~2 =0,
3 —2~2

and the texnperature T, of the first-order transition with
a finite jump in gq and gp is given by the equation

Ap —4LpBp = 0 (5.12)

should be satis6ed. Substituting this expression into
Eq. (5.10), we get

As there are no coexisting high-symmetry equilibrium
states with difFerent values of gp, the condition

9A' —3AB'+ C, B' = 0,
where A and 8 are the expressions in brackets of the
second- and third-degree terms in Eq. (5.18). In order
for some transition line to exist on the phase diagram,
the Bp coefBcient should be temperature and pressure
dependent.

Bp t' Ap )» = —
D I no+ 28D ( 28p)

(5.13)
VI. CONCLUSIONS

In order for the right-hand side of this expression to be
positive the condition D ( 0 must be satisfied, because
of the positiveness of Bp.

Finally, we can get the following expression for the
minimum of the free energy (5.8):

D Ap

Bp 2Bp
(5.14)

and Eq. (5.5) along with (5.12) leads to the following

We have analyzed the volume change effect on ferro-
elastic (martensitic) phase transitions and considered the
case of a cubic lattice of a high-symmetry phase as an
exaxnple. The xninixnization of the elastic energy with re-
spect to the hydrostatic strain as a secondary order pa-
rameter is shown to renormalize the second- and fourth-
order coefficients of the Ginzburg-Landau expansion of
the elastic free energy in powers of the symmetrized shear
strain. The coupling between the shear strain and vol-
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ume change appears to shift the transition temperature
under applied external hydrostatic pressure and lead to
a Gnite volume eKect of the weakly discontinuous ferro-
elastic phase transition.

The isothermal compressibility as well as the thermal
expansion coeKcient is shown to diverge near the crit-
ical temperature of the second-order ferroelastic phase
transition due to homogeneous Huctuations of the order
parameter. The difFerence between their values in the
parent and product phases outside the Buctuation region
appears to be proportional to the coupling coeKcient.
For the case of a 6rst-order transition the isothermal com-
pressibility and thermal expansion coefEcient depend on
the temperature in the low-symmetry phase according to
the square root law.

The uniaxial pressure conjugated to the symmetrized
shear strain is shown to suppress the second-order tran-
sition, leading to a change of the divergences for smeared
peaks in the temperature dependences of the isothermal
compressibility and thermal expansion coeKcient around
the critical temperature. We have found the 6rst-order
transition surface at the phase diagram in coordinates
of the temperature and hydrostatic as well as uniaxial
pressure. This terminates at the line of the critical point
and the uniaxial pressure of a magnitude lower than crit-
ical shifts the transition temperature, but preserves the
transition. The critical hydrostatic pressure that sup-
presses the phase transition has a linear temperature de-

pendence. The order parameter discontinuity and the
volume eKect diverge at the critical line as well as the
difkrence in the isothermal compressibility and thermal
expansion coefBcient between the parent and product
phases.

The coupling between the volume change and shear
strain is shown to lead to a fcc-bcc martensitic transfor-
mation for some special relations between the coefBcients
in the &ee energy expansion. Though some fixed value
of the Bain strain is needed to get the low-temperature
bcc lattice, the volume change as a secondary order pa-
rameter makes it possible to have some temperature vari-
ation of the shear strain preserving the bcc lattice and
changing its period only. The nonlinear expression for
the elastic energy of the thermal expansion is shown to
lead to a proper relation between the shear strain and
volume change for the minima of the elastic energy.
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