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A number of isotope e6ects can be seen in some hydrogen-bonded crystals as deuterium atoms are

substituted for hydrogen atoms. In KH2PO4-type crystals in particular, a rise in the ferroelectric transi-

tion temperature, an increase in spontaneous polarization, and an expansion of the hydrogen-bonded dis-

tance can be seen. The mechanism behind these isotope effects is explained theoretically by introducing

a relation form between the hydrogen-bonded distance and distortions of PO4 ions without reference to
proton tunneling.

I. INTRODUCTION

In some hydrogen-bonded crystals such as tetragonal
KH2P04-type crystals (hereafter referred to as KDP-type
crystals}, remarkable isotope efFects are exhibited on the
ferroelectric transition temperature Tz, the spontaneous
polarization Pz, and the pressure dependence of Tc
(dTc IdP) by substituting hydrogen atoms for deuterium
atoms. '

Recently, Ichikawa and co-workers proposed some
empirical relations after analyzing some recent data from
x-ray and neutron-diffraction experiments of KDP-type
crystals. These relations can be outlined as follows:

(i) There exists a correlation, known as the geometric
isotope efFect, between R H and b,R ( =R D

—R H ), where

RH denotes the 0-0 distance of the hydrogen bond (0-
H-0) and RD that of deuterium bond (0-D-0). The ex-

pansion of AR upon deuteration is about 2.44-2.64 A for
RH with a maximum value of 0.027 A.

(ii) There exists a strong correlation

Tc =2290 X(R —2.428),
0

between 0-0 distance R (in units of A} and the ferroelec-
tric transition temperature Tc (in units of K). This rela-
tionship holds irrespective of whether the crystals are hy-
drogenated or deuterated. Nelmes' has recently im-
proved the relation (1) a little by analyzing the data more
accurately.

From a judgment based on these empirical relations,
Ichikawa has pointed out that the appearance of the re-
markable isotope effects concerning Tc, I'z, and the like
originates not in the proton tunneling motion but in the
geometric isotope effect.

Recently, Sugimoto and Ikeda" have calculated ener-
gies and wave functions for a proton in KDP (or a deu-
teron in DKDP). In this model, as a potential acting on
the proton, an asymmetric potential I'; -d induced by dis-
tortions of PO4 ions has been considered in addition to a
potential (double-Morse potential) between two oxygens
and a proton. It has been shown that the ground-state
wave function is localized on one of the two potential
minima when I',. d = l.5 eV and a saturated polarization
in DKDP crystals, which is calculated by using the ob-

served value of that in KDP crystals, agrees well with the
observed value by Samara. ' Furthermore, Sugimoto
et a/. have estimated the ferroelectric transition tempera-
ture Tc for DKDP in order to examine the geometric
isotope effect and obtained TC =458 K at the 0-0 dis-
tance d=2. 52 A and Tc =275 K at d =2.5 A (the ob-
served value for DKDP is T& =213 K). Sugimoto et al.
have concluded that the geometric isotope efFect gives an
important contribution to a change in Tc and is caused
by a difference in the zero-point energies of proton and
deuteron.

In a previous paper, ' we noticed the geometric isotope
effect and explained the mechanism behind it. Anhar-
monic vibrations of proton [or deuteron, hereafter re-
ferred to as the H(D) ion] in a one-dimensional
hydrogen-bonded crystal have been studied on the basis
of the quantum-mechanical self-consistent Einstein model
without reference to the proton tunneling motions. The
cause of the geometric isotope effect has been shown to be
the difference in anharmonic fluctuations (zero-point vi-
brations} of proton and deuteron under double-minima
potential conditions. This agrees, in principle, with the
conclusion of Sugimoto and Ikeda. " The mechanism
behind this geometric isotope effect is described by the
following phenomena:

(i} When the potential acting on a H(D} ion is of the
double-minima type, the density of H(D} ion near the
center of the hydrogen bond [or deuterium bond, hereaf-
ter referred to as the H(D) bond] attracts both oxygen
atoms strongly, thus resulting in a shortening of the 0-0
distance. This shortened O-O distance yields a lower po-
tential barrier and increases the density near the center.

(ii) When the 0-0 distance is sufficiently large, the vi-
bration levels of the H(D) ion drop below the potential
barrier, and the density becomes low at the center of the
H(D) bond. Consequently, the H(D) ion near the center
does not attract the oxygens very much. At a suitable
O-O distance, the lowest level of proton approaches the
top of the potential barrier, but that of deuteron still lies
below this barrier. As a result, the proton density near
the center becomes remarkably high compared to that of
deuteron. Consequently, the O-O distance of the hydro-
gen bond becomes shorter than that of the deuterium
bond, and the geometric isotope effect is exhibited re-
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markably.
As a second step, it should be possible to reveal a rela-

tionship between the geometric isotope effect and the re-
markable isotope effects concerning Tc, I'z, and the like.
The purpose of this paper is, theoretically, to clarify the
mechanism behind the relationship of the base of the idea
in the previous paper. In order to reveal this relation-
ship, we introduce a model in Sec. II, where we will pro-
pose a relation form between the O-O distance and the
distortions of PO4 ions accompanied with the dipole mo-
ments of K-PO4. In Sec. III, the theoretical results
developed in Sec. II are analyzed numerically and graph-
ically.

II. MODEL

In order to reveal the relationship, it is important to
consider an interaction form between the O-O distance
and dipole of K-PO4. Sugimoto et al. , as mentioned
above, have proposed an asymmetric potential F; d as
this interaction form. To date, however, a mechanism of
this interaction has not yet been made clear. Then, we
consider the mechanism as follows: (i) At a suitable
hydrogen-bonded distance, the deuterium-bonded dis-
tance expands by substituting hydrogen atoms for deu-
terium atoms. This fact has been already shown in the
previous paper. (ii) An expansion of the O-O distance
causes larger distortions of two tetrahedral PO4 ions at
both ends of H(D} bond. An appearance of dipole mo-
ment of K-PO4 originates in the distortion in the PO4 ion.
(iii) Consequently, by this substitution, the distortions of
PO4 iona (or dipole moments of K-PO4) in deuterium-
bonded crystals becomes larger than that of hydrogen-
bonded crystals. As the result, it is expected that the fer-
roelectric transition temperature Tc and the spontaneous
polarization Pz rises on deuteration and remarkable iso-

tope effects appear.
We assume that the distortion of a tetrahedral PO4 ion

takes only two states 0 =1 and —1 and the interaction
form between the O-O distance and the distortions of
PO4 ions at both ends is represented as follows:

RJ J +p
=R 0 +C0 J0 J +p

(2)

where 0 denotes the state of the distortion of jth PO4
ion, then it also gives the state of the dipole moment of
jth K PO4 Rjj+p

is the O-O distance between neighbor-

ing jth and (j+p)th PO4 ions (p= 1 4). When a sys-

tem is in the paraelectric phase (that is, when thermal-
averaged value (o ) is equal to zero), the O-O distance
comes to Ro. We assume the parameter C to be positive.
This means the O-O distance expands when the system is
in the ferroelectric phase ( ( o )Wo).

The O-O distance can also be closely related with the
interaction energy between a H(D) ion and two oxygen
atoms at both ends on the H(D) bond. In a previous pa-
per, ' this interaction energy was given by double
Morse-type potentials. In this paper, instead of the dou-
ble Morse-type potentials, we introduce the following
simple type potential:

2 4V J +p
a{Rjj +p

R c }xj 1 +—p +bxj j+

as a potential acting on a H(D} ion along the H(D) bond
between neighboring jth and (j+p)th PO4 ions. The

xj j+p denotes the position of the H(D) ion from the
center of the H(D) bond between jth and (j +p)th PO4
ions. We call it H(D)'s position hereafter. We assume
the parameters a and b to be positive. The potential

Vj j+p
is of a double-minima type when R + is 1arger

than a critical length R &. On the contrary, when
Rj j +p & Rc, the potential is of a single-minimum type.

Additionally, at this point, we introduce a term
Joo. o. + which represents an ordinary dipole-dipole in-

teraction of the order-disorder type between dipole mo-
ments of neighboring jth and (j+p)th K-PO~, where J„
is a magnitude of the dipole-dipole interaction.

The total Hamiltonian H of the system constituted
with N molecules of KH(D)2PO4 can be expressed as

H=H +H (4)

where

N 4

H = ——g QJ(a o'++h, o
j=1 p=l

and

1
N 4 2

j=1 p=1

and by placing Eq. (2) into Eq. (3), one obtains

V + = —a(RO+Co o + Rc)x, + +bx, +

(5)

(6)

(7)

The parameter h, represents the external electric field ap-
plied to the dipole moment of jth K-PO4 and p and m are
the momentum and mass of the H(D) ion, respectively.
Equation (7) includes an interaction between the H(D)
ion and the distortions of two neighboring PO4 ions.
This is significant for an appearance of the isotope effects.

Let us analyze the Hamiltonian of Eq. (4) with Eqs. (5),
(6), and (7) systematically and approximately by the use
of a variational principle method. In order to execute
this method, we define a trial Hamiltonian Ho.

2N l N 4 P. . + m 2

j=1 j=1p=1

where 5x + is the vibrational displacement, along the
H(D) bond between jth and (j +p)th PO4 ions, about the
equilibrium H(D) 's position ( x, , + ) = ( x ), namely,

bx,-,-+,=x, , +,—(x ),
and the bracket ( ) represents the thermal average
defined by

Tr I
. exp( PHO }I—

( )=
Tr I exp( PHO )I—

The parameters K and ro in Eq. (8) are the trial mean-field
exerted on the PO4 ion and the trial Einstein frequency of
the H(D) ion, respectively. These trial parameters are
determined by minimizing the trial free energy:

F, = (H ) —(Ho) —P '1n[TrIexp( PHD) I ] (—11)
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and

Z =4( ) IZ, + C(( )'+(5 ') ) j+b, (12)

2

2
= —a(R, —R, )+6b(&x &'+(5x') )—ac(~)',

(13)

with respect to E and co. The result yields two following
self-consistent equations:

R
0 2b 0

Rc 4QRc
and Q)0—

4b
'

m

and furthermore, reduced parameters:

in addition, we discuss the case of the zero external field

Ii, =0.
In order to perform numerical analyses in the next sec-

tion, we introduce the following parameters:

where (o ) is nothing less than an order parameter of the
ferroelectric transition and (5x ) gives the mean-square
vibrational amplitude of the H(D) ion. These are
specifically represented in terms of E and co as follows:

(ir ) =tanh(PK)

%coo Ro —Rc
, Q=, g =,S=&~&, a=

Peo 2so Rc
'

Rc

and

Joy=
o

(20)

and

(5xz) = coth
fico

2' co 2

By the use of self-consistent Eqs. (12} and (13) with
Eqs. (14) and (15), the parameters K, co, (5xi), and (o )
can be expressed as functions of (x ) and temperature T.
Next, by placing the parameters E, co, (5xi), and (o ),
represented in terms of variables (x ) and T, into F, [Eq.
(11)], one can obtain a free energy F=F((x),T). We
consider a case of zero-pressure hereafter. The thermal-
averaged H(D}'s position (x ) at zero-pressure can be
determined to make the free energy F((x ),T} minimum
with respect to (x ). The minimization

p =0
B(x )

The H(D)'s potential of the double-minima type in a
paraelectric phase, expressed by replacing R .+ with R 0

in Eq. (3), has a minimum value —ei = —ego at positions

x, =+so+go as is clear from the relation:

—a(Ro —Rc)x +bx =e, [
—2(x/x, ) +(x/x, ) j

when Ro&Rc. Then, the relation mcooxo=8co holds

among xo, co, and coo, where coo gives harmonic vibration-
al frequency about the position x, .

It should be noted that a parameter Q, which
represents quantum-effect magnitude of the H(D} ion,
originates not in the tunneling motion of the H(D} ion
but in the quantum vibration (such as zero-point energy
ftcoo/2) of the H(D) ion. The formulas above [Eqs.
(12)—(18}]are finally summarized as follows:

(i) O-O distance:

yields

(x ) =0 or [a(Ro —Rc)+aC(o ) —6b(5x ) j/2b .

(16)

From Eqs. (12)-(16), finally, the mean field E, the fre-
quency co, the mean-square amplitude (5x2), the order
parameter (cr ), and the equilibrium H(D) s position (x )
are determined as a function of temperature T. The equi-
librium O-O distance (R ) is also determined by

o+aS' .
Rc

(ii) H(D}'s position:

=0 or go
—3A, +aS

xo

(21)

(22)

where 5 is defined as the distance between the two equi-
librium sites of a H(D) ion on the H(D) bond.

(iii) Fluctuation of H(D) ion:

&R &=R,+C&a&'.

Additionally, a Gibbs free energy G ( T), which is
equivalent to F((x ),T) at zero pressure, is also written
as

G(T)/N=2[J +aC(&x & +2(5x &)j(g )2

+2b(x ) —2a(R —R )(x ) —6b(5x2)'

(5x ) Q coth(Q8'/t)

(iv) Frequency of H(D) ion:

co, 3(5'+4k, ) ko aS2

coo 8 2 2

(v) Order parameter:

(23)

(24}

—P 'in[2 cosh(PK) j

+2P 'In{2 sinh(Pirico/2) j .
(a )—:S=tanh(4i)2S/r),

(18)
where

(25)

Now, we assume the potential acting on the H(D} ion
[H(D)'s potential] to be the double-minima type even if
the system is in a paraelectric phase ((o ) =()) namely
considering the case of Ro & Rc [see Eq. ('7)]. Hereafter,

+ a(5 +4k. )
7l =7+ (26)

The second term of right-hand side in Eq. (26) represents
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an indirect dipole-dipole interaction added to the direct
one y and is due to an effect of the vibrational motion of
the H(D) ion upon the distortions of two neighboring
PO4 ions. Then, the value of r)S( =—p, ) means an averaged
magnitude of the dipole moment of K-PO4 at zero exter-
nal Geld.

(vi) Gibbs free energy:

G(T) —=g
Xeo

=2I y+a(5 +4k, )/2]S +5 /8 —
go5

—6A,

t ln I
—2 cosh(4vIS /t) ]I

+2t In I 2 sinh(QW/t) I .

(27)

0.03

~ 0.02Io

II

0.01

=0;S=O )

{8=0;S&0 j

Equation (22) shows that there are two types of H(D) po-
sitions. One is 5=0, which means a peak of H(D) ion dis-
tribution to be on the center of H(D) bond, hereafter,
called a symmetric phase. Another is 5 & 0, which means
the peak to be displaced from the center of H(D) bond,
hereafter, called an asymmetric phase. Additionally, as is
clear in Eq. (25), there exist two types of solutions:
paraelectric phase S =0 and ferroelectric phase S&0.
Therefore, the system is divided into four phases:

(a) 5=0;S=O, (b) 5=0;S&0, (c) 5&0;S=O,

(d) 5&0;S&0.

From Eq. (27), then, we can get four "Gibbs energies:"

(a) g(5=0;S=O), (b) g(5=0;S &0),

(c}g(5 &0;S=0}, (d) g(5 &0;S& 0)

corresponding to the four phases above, respectively.
Consequently, the phase which has the most minimal
"Gibbs energy" among the four gives the final state of the
system. In the next section, the theoretical results
developed in this section are analyzed numerically and

graphically.

0.1 Qc

Q =htoo/2s o

0.2

FIG. 1. The phase diagram of t vs Q at (o=0.25, a=0.01,
and y =0.001. In the middle narrow region of Q, the ferroelec-
tric transition of the Grst order appears between the phases
I5&0;S&0) and I5=0;S=0).

increases as shown in Fig. 1 (or the O-O distance Ro for
the paraelectric phase shortens as shown in Fig. 2) and
finally comes up to zero at a certain value Q=Q& (or a
certain length R o

=R oc, corresponding to go
= foe ).

Especially, as is seen in Fig. 2, a linear relation holds be-
tween T&& and Ro except for neighborhood of Roy ~ This
fact, by the extrapolation from the previous paper' (in

which the geometric isotope effect has been discussed for
double-Morse potential at absolute zero temperature),
may be explained as follows.

If Q is small enough (or R o is sufficiently large} and the
temperature is sufBciently low compared with Tc&, name-

ly, the system is in the asymmetric phase (5 & 0), then the

III. NUMERICAL ANALYSES

A. Phase diagrams of t vs Q and t vs go

In order to study upon what conditions each phase
mentioned above appears, at first, it is convenient to con-
sider phase diagrams of t vs Q and t vs go; these are
shown in Figs. 1 and 2, respectively. The solid line
represents the first-order transition curve (the transition
temperature is defined by Tcs), which produces two re-
gions corresponding to the symmetric phase (5=0) and
the asymmetric phase (5 & 0). Hereafter this transition is
referred to as a symmetric transition. Furthermore, each
phase is divided into the ferroelectric phase (S &0) and
the paraelectric phase (S=0) by the broken line,
representing the second-order transition curve (the tran-
sition temperature is defined by Tcs). Hereafter this
transition is referred to as a ferroelectrie transition.

0.04—

o
VJ

w 0.03-
Il

0.02-

'0.1 0.2

~ o =(Ro —Rc)/Rc

0.01 =-=======-==

{&=0;S&O)

0.3

B. Symmetric transition

The symmetric transition temperature Tzs (solid lines)
goes down according as the quantum-effect magnitude Q

FIG. 2. The phase diagrams of t vs $0 at a=0.01 and

y =O.ool. The group of the regions separated by the thick lines
shows the phase diagram for Q =0.090 and the fine lines for

Q =0.1273. If Q for proton is Q„=0.1273, then that of deu-

teron is QD =QH/v'2=0. 090.
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peak of the H(D} ion distribution locates at one of two

equilibrium sites in the double-minima-type potential.
The vibration energy levels of the H(D) ion lie below the
potential barrier, so that the H(D) ion has a small fluctua-
tion as shown in Figs. 3(a) and 3(b} and a high frequency
as shown in Figs. 4(a) and 4(b). Consequently, it is ex-

pected that high Tcs is exhibited for sufficiently small Q
(or for sufficiently large R o ).

Accordingly as Q increases (or Ro grows shorter), the

peak of the H(D) ion distribution approaches the center
of the H(D) bond, the fluctuation becomes large slowly

and the frequency becomes low slowly. The T&z goes
down with the increase in Q (or the shortening of Ro ).

Finally, when the Q reaches the certain value Qc or

0.5

o 04-
3
3
II

& 03-

0.2-

0.10

a ~ W ~ % ~ a ~ a
W

W&%\%WHWWWAe
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0.01

~e I
~a

I

I
1
I

I
I

I
I

I

Q=0.090
) s

I

I
s

I

I
)

I

0.02 0.03

0.6

t=kBTI &()

0)—
A Q=0.1273

4O

V
II

0.05-
Q=0.10

em&~
W % H % H % W % % H \ W H

1

I
I
I
I
I
I

~ ~ ~

I

1~0.071

I

I Q=0.090

Q=0.090

C&0.071

F

I

I I
I

I
I

o~~%s a ~ a ~ e ~ a ~ e ~ a ~ +

0.2 Q=0.10

0 0.01 0.02 0.03

t =kBT/8 ()

0.1 0.2 0.3

E o =(Ro-Rc)~Rc

V
II

O. i

0.05-

0.1

Q=0.1273

Q=0.090
I

I

I

I

Q=0.071

I
I

I
s

~~
eggy ~

0.2 0.3
F o =(Ro-Rc)/Rc

FIG 4 (a) The temperature dependences of the frequencies
co's of the H(D) ion for various values of Q at go=p. 25, a=p. pl,
and y =0.001. (b) The dependences of the frequencies co's of the
H(D) ion on the Ro for various values of Q at go=0. 25,
a=0.01, and y =0.001.

goes across it (or R o reaches the certain value Roc or be-
comes shorter than it), the peak of the H(D) ion distribu-
tion stands on the center of the H(D) bond. The system
changes from the asymmetric phase (5)0) into the syrn-
metric phase (5=0). The H(D) ion has the large fluctua-
tion and the low frequency [corresponding to the case of
Q =0.1273 in Figs. 3(a} and 4(a)], because the H(D) ion
vibrates about both equilibrium sites in the double-
minima-type potential.

FIG. 3. (a) The temperature dependences of the fluctuations
A,'s of the H(D) ion for various values of Q at go=0. 25, a =0.01,
and y =0.001. When the QH =0.1273 (or =0.10), the

QD =0.090 (or = 0.071). The nonzero values of X's at absolute
zero temperature arise from the zero-point vibrations of the
H(D) ion. The large gap in the curve A, appears at T= Tzq. (b)
The dependences of the Suctuations A.'s of the H(D) ion on the
Ro for the various values of Q at t=p. pl, a=p. pl, and
y=0.001. The large gap in curve A, appears at Rp=Rpc (or
to=toe)

C. Ferroelectric transitions

As is also seen in Figs. 1 and 2, in the symmetric phase
(5=0), the ferroelectric transition temperature Tcs in-
creases accordingly as Q increases (or Ro grows longer).
Contrary to this, in the asymmetric phase (5)0), Tcs de-
creases accordingly as Q increases but increases accord-
ingly as R0 extends. The T&z in the asymmetric phase is
considerably high compared with that in the symmetric
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A

V
II

& 05-

Q

Q=0.071

Q=0.090

Q=0.10

1

I
l

( sI I s I l Il a

0.01

t=kBT/& o

0.02

one. Especially, as is seen in Fig. 2, the result that a
linear relation holds between Tz& and Rp whether the
system is in the symmetric or the asymmetric phase, sug-
gests an appearance of correlation between the O-O dis-
tance and the ferroelectric transition temperature. This
fact is interpreted as follows.

For the symmetric phase (5=0), as is clear from Eq.
(26), parameter t) depends only on the fiuctuation A. (the
parameters 7 and a are fixed) and increases with A, , fur-
thermore A, increases accordingly with an increase in Q

0.08
» ~ » ~ »

~ » » »»»»»» »~~ Q=0.071

~ 0.06-

II

Q=0.090

0.04-

(or an extension to Ro) as shown in Figs. 3(a) and 3(b).
Consequently, the r/ increases accordingly as Q increases
(or Ro extends) in the symmetric phase. An increase in t)
yields a larger distortion of the PO4 ion (or larger dipole
moment of K-PO4).

On the other hand, for the antisymmetric phase
(5)0), the fiuctuation A, is suSciently small, the parame-
ter t) depends remarkably on 5 rather than )(,, and de-
creases with 5. 5 shortens with the increase in Q (or the
shortening of R o ) as is clarified by the fact that the Tcs
goes down accordingly as Q increases. Consequently rt
decreases accordingly as Q increases or Ro shortens.

In Fig. 5(a), the order parameter S of the ferroelectric
transition is plotted as a function of temperature T, and
in Fig. 5(b), as a function of Ro. In addition, Figs. 6(a)
and 6(b) show the dipole moments p, ( =r/S) of II -PO~ cor-
responding to Figs. 6(a) and 6(b), respectively.

V
II

05-

.1273

0.02-

0 0.01

t=kBT/~ o

l

I

l I

I

0.02

0.1

0
0.1 0.2 0.3

0.08-

~o =(Ro Rc)/Rc

FIG. 5. (a) The temperature dependences of order parameter
S for various values of Q at go=0. 25, a=0.01, and y =0.001.
In the case of Q =0.071 or 0.090, the H(D) bond stands on the
asymmetric (5)0) and the system undergoes the ferroelectric
transition of a second order at T= Tcz lying below Tcz. In the
case of Q =0.10, the system undergoes the ferroelectric transi-
tion of the first order at T= Tcz accompanying the symmetric
transition of the first order. In the case of Q =0.1273, the H(D)
bond is the symmetric (5=0) and the system undergoes the fer-
roelectric transition of the second order at T= Tc& similarly to
the case of Q =0.071 (or 0.090). (b) The dependences of the or-
der parameters S on Ro for various values of Q at t =0.01,
a=0.01, and y=0.001. The order parameter S increases with
Ro. The gap in the curve S appears at the symmetric transition
point between 5=0 and 5)0.

& 0.06-
II

0.04-

0.02-

0
0.1 0.2 0.3

~ o =(Ro —Rc)/Rc

FIG. 6. (a) The temperature dependences of the dipole mo-
ment p( =ttS) of K-PO4 ion for various values of Q at go=0. 25,
a=0.01, and y =0.001. (b) The dependences of the dipole mo-
ment p on Ro for various values of Q at t =0.01, a=0.01, and
r=oM1
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D. Isotope e8ects
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FICx. 7. (a) The expansions bg of the hydrogen-bonded dis-
tance Rn on deuteration for Qn=0. 1273 {QD=0.090) and
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The expansions 65 of 5n on deuteration for Qn=0. 1273
(QD=0.090) and QH=0. 10 (QD=0.071) at t=0.01, a=0.01,
and y =0.001.

Let us define QH as the quantum-effect magnitude of
proton, then that of deuteron QD, given as QH/&2 [see

Eqs. (19) and (20}],is smaller than QH. Now, as an exam-

ple, we consider the case of QH =0.1273 (therefore,

QD =0.090) in Fig. 1, in which the hydrogen bond is the

symmetric (5H=O) but the deuterium bond the asym-

metric (5D &0).
In this case, Fig. 5(a) shows that the ferroelectric tran-

sition temperature T&z rose rapidly by substituting hy-

drogen atoms for deuterium atoms and Fig. 6(a} shows

that the dipole moment p( =qS} at zero temperature in-

creased rapidly on deuteration. This fact suggests that re-

markable isotope effects are exhibited on the ferroelectric
transition temperature and the dipole moment in KDP-
type crystals. The example above (the case of
QH=0. 1273, QD=0.090) displays that the geometric

isotope effect is also exhibited remarkably.
In Fig. 7(a), the expansion of kg[ =(R D

—RH )/Rc] on

deuteration is plotted against RH, the various values of
which give the hydrogen-bonded distances of KDP-type
materials. It is seen in Fig. 7(b) that the difFerence

b,5( =5D —5H) on deuteration also expands remarkably in

the same range of R H that the expansion of hg appears
remarkably, where 6H denotes the distance between the

two equilibrium sites of a proton on the hydrogen bond
and 5D that of a deuteron on the deuterium bond. These
results for the geometric isotope effects agree qualitative-

ly with those obtained in the previous paper.
One can see from Fig 7(.a) [or 7(b)] that a curve hg vs

R H (or 65 vs RH) produces three regions; the shorter, the
middle, and the longer distances of the hydrogen bond.
In the region of the shorter RH, the contraction of the
hydrogen-bond distance on deuteration appears. In this
region, both hydrogen and deuterium bonds are sym-

metric ones (5H=5D=O), so that the parameter t} in-

creases with Q as mentioned above. As a result, the order
parameter S (the distortion of the PO4 ion} for the hydro-

gen bond becomes larger than that for the deuterium
bond since QH & QD, and the hydrogen-bonded distance
becomes longer than the deuterium-bonded distance in

this region. In the region of the middle RH, in which the
hydrogen bond is the symmetric (5H=0) but the deuteri-

um bond is the asymmetric (5D), the ri (or S) for the deu-

terium bond is much larger than that of the hydrogen
bond. In this region, RD becomes considerably longer
than R„and 5D also become longer than 5H and the

geometric isotope effects are exhibited remarkably on RH
and 5H. In the region of the longer RH, in which both
hydrogen and deuterium bonds are asymmetric ones

(5H & 0, 5D & 0), the geometric isotope effect is hardly
seen.

This fact suggests that for KDP-type materials such
that the remarkable isotope effects concerning Tcz and p
appear, the geometric isotope effects is also exhibited re-
markably in KDP-type materials constructed with a suit-
able distance of the hydrogen bond.

IV. DISCUSSION

The geometric isotope effects on the hydrogen-bonded
distance and the distance between the two equilibrium
sites of proton and the isotope efFects concerning the fer-
roelectric transition temperature and the dipole moment
of K-PO4 have been explained by a theoretical form.
This form is constructed by assuming the relation be-
tween the O-O distance and the distortion of the PO4 ion.
In order to simplify the calculations, we carried out the
simple double-minima-type potential instead of the
double-Morse potential. However, we expect that our re-
sults will not be very different, in principle, from those
obtained by the doub1e-Morse potential.

It is revealed in this paper that the origin of these iso-
tope effects is due to a difference in 5 between the hydro-
gen and deuterium bonds. It should be noted that the
difference arises not from the tunneling motion of proton
(or deuteron) but from the quantum-mechanical fiuctua-
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tions such as the zero-point vibration of proton (or deu-

teron).
Especially, it is noticed these isotope e8ects are exhibit-

ed remarkably on the KDP-type materials in which the

hydrogen-bonded distance is a suitable distance such that
the hydrogen bond stands on the symmetric bond
(5H=0) and the deuterium bond on deuteration stands
on the asymmetric bond (5D) 0).

R. Blinc and B. Zeks, in Soft Modes in Ferroelectrics and Anti

ferroelectrics, edited by E. P. Wohlfarth {North-Holland, Am-

sterdam, 1974).
M. E. Lines and A. M. Grass, in Principles and Applications of

Ferroelectric and Related Materials (Clarendon, Oxford,
1977).

36. A. Samara, Ferroelectrics 20, 87 (1978).
4R. Blinc, B. Zeks, J. F. Sanpaio, A. S. T. Fires, and F. C. Sa-

Bareto, Phys. Rev. 8 20, 1991 (1979).
5M. Ichikawa, Acta Crystallogr. B 34, 2074 (1978).

6M. Ichikawa, Chem. Phys. Lett. 79, S83 (1981).
7M. Ichikawa, N. Motida, and N. Yamada, Phys. Rev. B 36, 874

(1987).
M. Ichikawa, J. Phys. Soc. Jpn. 56, 3748 {1987).
M. Ichikawa and K. Motida, J. Phys. Soc. Jpn. 56, 37SO (1987).
R. J. Nelmes, J. Phys. C 21„L881(1988).

"H. Sugimoto and S. Ikeda, Phys. Rev. Lett. 67, 1306 (1991).
' G. A. Samara, Ferroelectrics 5, 25 (1973).
~S. Tanaka, Phys. Rev. B 42, 10488 (1990).


