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A general formalism is developed for describing nuclear-spin-lattice relaxation for quadrupolar per-
turbed nuclear magnetic resonance (NMR) in structurally incommensurately (IC) modulated crystals in

terms of the elementary excitations of these systems. Our discussion deviates from previous ones as re-

gards the identification of the amplitudon and phason induced relaxation rates 1/T» and 1/T, &
in the

plane wave limit as well as the temperature dependence of Tl& in the soliton limit. Measurements are re-

ported for the spin-lattice relaxation of the "Rb satellite transitions in the normal, incommensurate, and

commensurate phases of the prototype incommensurate system Rb2znC14. At ambient temperature the
variation of the nuclear magnetic relaxation rate is measured over the incommensurately broadened dis-

tribution of resonance frequencies for two crystal orientations. The Tl model developed is applied to
these data, making use of the Fourier series of the static electric field gradient determined from the
NMR satellite spectra in the IC phase. A strict agreement is found. The temperature dependence of T,
is determined in that crystal orientation where a well-defined assignment of T» and T&& can be given.

In the low-temperature part of the incommensurate phase, our data reflect the local softening of phase
fluctuations in the discommensurations or the flattening out of the corresponding acoustic branch what

is in accordance with our theoretical prediction and in contrast to previous results. The relevance of
phason gaps previously derived from NMR data is discussed.

I. INTRODUCTION

In incommensurately (IC) modulated structures the
translational symmetry of the lattice is broken by a
modulation, the period of which is not a rational multiple
of a basic lattice vector. As a consequence, the phase of
the modulation relative to the basic lattice is arbitrary or,
equivalently, the IC structure is continuously degenerat-
ed with respect to a phase shift. ' Thus, special low-

energy excitations are to be expected in incommensurate
systems.

Though direct experimental attempts to detect these
soft phase modes by usual methods as Raman and neu-
tron scattering failed in most cases due to the relaxatory
character or overdamping of these modes, their existence
is revealed quite unambiguously by the unusua1 short
spin-lattice relaxation in NMR and NQR experi-
ments. ' '

Here we are dealing with quadrupolar perturbed Rb
NMR studies of the IC prototype system rubidium tetra-
chlorozincate (RbzZnC14, abbreviated as RZC). In this
method the local probe consists in the interaction of the
nuclear quadrupole moment of the nucleus under investi-
gation with the electric-field gradient (EFG) at its lattice
site. Because of its high NMR sensitivity and its big

quadrupole moment the Rb nucleus (I =
—,
'

) is very suit-

able for these measurements.
RZC belongs to the large A28X4 family and is one of

the most extensively studied IC substances. The IC
phase of RZC extends over a very large temperature
range limited by a normal (N) phase at T, =30'C and a
commensurate (C) phase at T, = —80'C. The structure
of the N phase (which defines the basic structure of the
IC phase) is orthorhombic and belongs to the space group
Pcrrtn (in this notation a )c )b holds for the lattice con-
stants). Below T;, this basic structure is modulated along
the z direction with an incommensurate periodicity close
to 3c. At T, the modulation wave vector locks in at the
commensurate value c'/3 corresponding to a tripling of
the unit cell along the z direction.

The dynamics in RZC has been investigated by means
of Rb NMR (Refs. 2, 3, 6, and 7) and Cl NQR. Un-
til now, these NMR studies have been restricted to the

Rb m = —
—,'~+ —,

' central transition ' or to the X
phase. In Sec. III we present measurements of the spin-
lattice relaxation time T, of the m =+—,

' +—,
' Rb satel-

lite transitions in the X, IC, and a small part of the C
phase of RZC.

The satellite transition frequencies are mainly deter-
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mined by first-order quadrupolar perturbation terms,
while the central transition frequency is only affected by
terms of higher order. Thus, frequency shifts are much
higher and formulas much simpler for the satellites than
for the central transition. In preceding works ' it was
shown that the statics of IC systems can be investigated
with high accuracy by measuring satellite frequencies.
At first sight, these advantages of satellite transition stud-
ies seem not to be important for the dynamics, since the
spin-lattice relaxation is, of course, induced by the same
off-diagonal elements of the quadrupolar perturbation
Hamiltonian for both transitions. For a more detailed in-
terpretation of the T, data, however, one has to attribute
the 1/T, modulation to the frequency modulation which
both originate from the IC modulation of the crystal. So
again the simple functional relationship between EFG
and frequencies in the case of the satellite transitions is
advantageous. Moreover, the phase relations between the
components of the (static) EFG Fourier series needed for
the interpretation of T, data can practically be deter-
mined only by investigating the satellite transitions.

Because of the above-mentioned disadvantages of cen-
tral transition studies, in earlier NMR works an
oversimplified so-called "local" model postulating simple
phase relations for the EFG Fourier components in the
IC phase was used and seemed to be sufficient for describ-
ing the EFG modulation. The correct treatment of the
EFG in the IC phase as a complex quantity with Fourier
components differing in phase, however, has important
consequences for the interpretation of the spectra '" and,
as will be shown in Sec. II.B, also of the T, data. So far,
this property of the EFG has not been taken into account
adequately, though a so-called "nonlocal" model was al-
ready presented. Further essential refinements of previ-
ous theoretical descriptions of the spin-lattice relaxation
in IC systems are necessary for the "soliton limit" too, as
discussed in Sec. II C.

The experimental results to be presented in Sec. III
will be discussed in relation to the theoretical models
developed in Sec. II. In particular, the existence of soft
phase fluctuations in the entire IC phase is demonstrated
by our experiments. Moreover, the T& data presented
here reflect the local softening of the phase fluctuations in
the discommensurations or the flattening out of the cor-
responding "acoustic" branch near the IC-C phase transi-
tion.

II. THEORY

A. Basics

The basic theoretical description of T, in IC phases
widely used is given in Refs. 3, 6, 14, and 15. As will be
shown below, however, this formalism needs some
corrections. As far as the procedure is similar to that of
these works we shall omit details and try to focus on the
essential points.

In the case of Rb NMR experiments the dominant
perturbation 8& of the Zeeman Hamiltonian is due to the
interaction of the EFG V with the nuclear quadrupole
moment Q„„„which can be treated by perturbation

of the quadrupole perturbation, which is simply propor-
tional to the element V of the EFG tensor given in the
laboratory frame (x,y, z) with z parallel to the external
static magnetic field Bo. ' In contrast, the frequency of
the m =+—,'~—

—,
' central transition is to be calculated as

a more complicated quadratic form in the EFG elements
according to second-order perturbation theory.

The spin-lattice relaxation is given by the return of the
nuclear-spin magnetization M, (t) back to its thermal
equilibrium value after a preceding radio frequency exci-
tation. ' In particular, one obtains for the relaxation of a
satellite line after a preceding 90' radio frequency pulse
(with no further lines excited) (Ref. 17)

M, (t) =M, (t = oo )[1—,'(e (2)

where W stands for the probability of a quantum transi-
IJ

tion hm =p, , p, =1,2 induced by fluctuations of P&(t}.
Note that W„=0 for p & 2. For a nucleus with spin I=—,'
as 87Rb jt js found14, 16, 18

Wi/C=J(V„;coL )+J(V,;coL ), (3a)

Wi/C =J [—,'( V„„—V );2toL ]+J( V;2cot ), (3b)

where

J(VJ;Ittot )=I (5V; (0)5V; (t)}e ~ dt (4)

is the spectral density of the EFG fluctuations 5V~ at the
frequencies prot (p= 1,2) and C =eiQ„„,/(12k ). Here
(x,y, z) again denotes the laboratory frame defined by
zf[BO.

In the relaxation process considered here, per quantum
transition the energy of the spin system is directly
transferred to a single mode of the lattice fluctuations.
This direct one-phonon process is dominant, if an over-
damped or relaxatory soft mode is present' contributing
to the spectral density J( V~;@cot ) at the comparatively
low Larmor frequency vL = 100 MHz, and thus applies to
our investigations on RZC. ' ' The alternative relaxa-
tion process, the two-phonon (Raman) process, can be
relevant for the noncritical background relaxation. '

As there is a dominant linear coupling of the EFG to
the order parameter (see Sec. IIB), the corresponding
spectral densities are simply proportional. Thus, the
spin-lattice relaxation is determined by the spectral densi-
ties J(co,T} of the local fluctuations at the I.armor fre-
quency co=coL, where T defines the unit cell of the basic
lattice. Considering norinal modes Qi, (T, t)
='Pi, (T)a (k, t}separated into space-dependent eigenfunc-
tions Vi,(T) and time-dependent normal coordinates
a (k, t} (Refs. 1, 21, and 22}and defining

theory. As a result, the frequency shift of the
m =k —,'~k —,

' satellite transitions with respect to the I.ar-
mor frequency vt =cot /(2n) is predominantly deter-
mined by the first-order term

eQnuc
1
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J, (co, k)= f (a(k, O)a*(k, t))e ' 'dt,

the spectral density J&(co,T), i.e., the Fourier transform
of the correlation function, of Qi, (T, t) can be written as

J, (co, k) is related to the imaginary part of the normal
mode susceptibility y,"(co,k) by the (classical)
fluctuation-dissipation theorem as'

y,"(co,k)
J, (co,k) =2k& T

I,
=2k~ T

[co (k) —co ] +I' co

g, (co=0,k)~, (k )
=2k~ T

1+co H(k)

(7a)

(7b)

J,(co=0,k}~ I', co, (k}=y,(co=0,k)~, (k)

reminding the reader that y, (co=0,k) =co, (k) and

~, (k) can be formally identified with I,co, (k). To be

more precise: T, decreases for softening fluctuations, as

long as the fast motion condition coL « co, (k) or

coL v, (k) «1 holds for all k. '

B. Plane-wave limit

In the upper part of the IC phase the order parameter
(OP) represents the first harmonic of the modulation
(plane-wave limit, PWL):

uo(T) =eiQoe ' +c.c. , Qo=poe (9)

Here uo(T) is the "displacement" of the ath atom in the
unit cell of the basic lattice defined by T, and e; is the po-
larization vector of the primary modulation with the
modulation wave vector q;. The quotation marks indi-
cate that this variable can be interpreted as well as a
pseudospin of an order-disorder mechanism. The Taylor
expansion of the static EFG in terms of these displace-
ments results in a Fourier series, ' reflecting the fact that

for the damped oscillator (a) or the relaxator model (b).
While J, (co,k } contains the dispersion relation of the
respective branch,

~ %z(T) ~
determines the spatial distri-

bution of the corresponding modes. The local spectral
density J(co,T) relevant for the spin-lattice relaxation is
given by the mean value

J(co,T}=— g Ji, (co, T)
1

71

taken over the respective Brillouin zone. Notice that the
factor lin originates from the equipartition theorem

making J(co,T) independent of the crystal volume. Usu-

ally this factor is "hidden" in the normalization of +i,(T),
but here it is taken out of %z(T) for illustrative reasons.

As the Larmor frequency is low compared to usual

modes frequencies (see above), 1/T, ~ J(co,T}probes lo-

cally the softness (the susceptibility} of the present fluc-

tuations. To see the essential point, notice that according
to (7)

the EFG must adapt, as a local quantity, to the periodici-
ty of the lattice modulation. Restricting to the first har-
monic and omitting the homogeneous, nonmodulated
part, the EFG modulation is given by

5u'(T, t) =e;5Q (T, t)e ' +c.c. ,

where (5Q(T, t ) —=0 by definition. Again one has, now
assuming A i (q, +k) = A;(q, )

= A;, an analogous ex-
pression for the fluctuating part of the EFG:

5V'(T, t)= A;5Q(T, t)e ' +c.c. (12)

Equation (12} can be derived easily from the Taylor ex-
pansion of the EFG in terms of the atomic displacements
as given, e.g., in Ref. 8, but we refrain from details here,
since (12) is the simple variation of the static case ex-
pressed by (10) for fluctuations of Qo. We just note that
the assumed wave-vector independence of A', is based
upon the wave-vector independence of the polarization
vector ei and the assumption 5Q(T', t)=5Q(T, t) for
fluctuations in the unit cells T' contributing significantly
to 5 V'(T, t) in the unit cell T.

Comparing (10) and (12) it is found that the complex
tensor A

&
coupling the EFG to the OP is the same for

both the static and the dynamic part. Thus, the phase re-
lations determined for the Fourier components of the
static EFG in the IC phase can be used for the interpreta-
tion of the T, data. This will be demonstrated in Sec. III.
In previous works ' the (approximate) equality of atomic
masses was supposed to be necessary for deriving this re-
sult.

It is useful to transform the complex OP Q(T, t) into
the coordinates Pi(T, t), P2(T, t) defined by

(13)

which represent the real and imaginary parts of the order
parameter rotated in the complex OP plane by —4p ol,
in other words, the longitudinal and transverse part of
the OP. ' ' Accordingly, one has (Pi ) =po and
(P2) =0 for the static parts of P, and P2 reminding

Qo —= ( Q ) =poexp(i C 0). As the static OP situated in a
circle-symmetric potential defines a mirror axis along I',
in the complex OP space, (P,P2) = —(P,P2) =0, i.e.,
P, and P2 decouple in the PWL. (This decoupling also
results from the usual Landau theory. i'~ ' )

In a linear approximation for fluctuations of
Q =p exp(i4), 5Pi and 5P2 correspond to fluctuations of
the amplitude (5p) and phase (p054) of the OP; therefore

V'(T)= V;e ' +c.c. , V; = A;Qo .

The analogy between (9) and (10) is obvious. In this
sense, the tensor A; may be termed the "polarization ten-
sor" of the EFG first harmonic. Notice that A &, as well
as e&, is a complex quantity containing the different
phases of the different tensor components V„with
respect to the OP phase.

Disregarding the wave-vector dependence of the polar-
ization vector, i.e., e', (q;+k) =e;(q, ) =e;, and thus con-
centrating on the long-wavelength fluctuations of the OP,
the fluctuating part of u'(T) can be written as
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+E„[J, —Jz ]cos[2(v +40+y„}],
where v =q; T, J&=Jtt(—@cot.), P=1,2, and

D =IA., I'+IA „I',
Dz=-,'[A &„„—A&„, /z+/A &„,/z,

(A,„,} +(A,y, }'=E,e
2l g2

1 A lyy } + A
1

(14}

they are often termed "amplitudon" and "phason, "
which subsequently will be indicated by the indices A

and P, respectively.
Combining (12) and (13), 5 V' can be described in terms

of 5P, and 5P2. Thus, the transition probabilities 8'„,
p, =1,2, given in Eqs. (3a) and (3b) can be related to the
spectral densities J& and Jz of 5P& and 5Pz, respectively,
defined analogously to (4) according to

W„(v)/C =D„[J,+Jz]

with D„AE„ in the general case. [Considering for in-

stance W, (v), the special case D„=E„is only realized, if
the phases of A&„, and A, „i.e., the phases of the first
harmonics of V„,(v) and V, (v), are equal or shifted by
~.] Therefore, in general, the "phason" and "amplitu-
don" contributions are mixed in the extrema of W&(v}.
Notice that W„ is not modulated at all if E„=O. [This
case occurs, e.g., for E, if A,„,=+t'A

&y, .]
Evidently, because of Jz&&J, for bigger T,. —T, the

influence of Jz on the minimum of W„(v) is considerably
higher than vice versa that of J, on the maximum. Ac-
cordingly, the use of equations such as (16) may have lead
to "amplitudon" contributions 1/T, „~J, which are too
high since "contaminated" by the large "phason" spec-
tral density. Indeed, there are some indications for too
high "amplitudon" contributions I/T&„given in previ-
ous publications. %'e shall come back to this point in
Sec. III.

C. Soliton limit

The index a specifying the atom or nucleus is dropped for
simplicity. Note that the spatial dependence of W„(v) in

(14) does not originate from J& and Jz, which are spatial-
ly independent according to (6) and (8) as the eigenfunc-
tions %&(T) are simple harmonic plane waves of the form
exp(ik T}. The variable v reduced to the interval [0,2n )

is a continuous one because of the incommensurability of
q; with respect to the basic lattice. ' A more detailed
derivation of (14) including the explicit definition of J,
and Jz is given in the Appendix.

In the N phase, the P, and P2 coordinates degenerate
as transverse and longitudinal coordinates are not
defined, and (14) applies with J& =Jz. Consequently the
modulated term disappears. Below T; this term rapidly
grows: the P, fluctuations harden like the OP fluctua-
tions for a usual commensurate lower symmetry phase,
while the Pz fluctuations retain the soft-mode susceptibil-
ity at T, ."' ' Thus, J, decreases while Jz is expected
to be nearly temperature independent, i.e., proportional
to the absolute temperature T according to the
fluctuation-dissipation theorem [cf. Eq. (7)]. Notice the
unusual softness of the Pz (phase) fluctuations, which is a
direct consequence of the incommensurate structure re-
sulting in the arbitrariness of the phase 40 of the static
OP. '

For D„=E„,Eq. (14) can be rewritten as

W„(v)/C =2D„[J,cos (v +4o+q&„)

In the lower part of the IC phase the so-called soliton
limit (SL} holds, where the primary modulation can no
longer be described by a simple harmonic plane wave and
thus by the OP Q =—Q(q; ) used above. Rather it is useful
to introduce an OP Q (T) expressing the modulation with
respect to the commensurate modulation exp(iq, T) of
the commensurate phase. The displacement of the atom
a is then written as

uo(T)+5u'(T, t}=e',[Qv(T)+5Q(T, t}]e ' +c.c.

(18)

As usual, we introduce polar coordinates (p, e}in the OP
space by

Qo(T)+ 5Q (T, t) = [po(T)+5p(T, t) ]e

(19)

In the PWL the relation Qo(T)=QO exp(i5 T) with.

S=q, —q, holds, where the spatially independent OP
used in Sec. II A was labeled explicitly. On approaching
T„ this linear relationship between the T component in
modulation direction (for RZC the z direction using
Pcynn notation) and the OP phase eo is deformed to a
periodic function of increasing steplike charac-
ter 6, is, z3, 2s, 26 where strongly T-dependent regions
separate regions with weak T dependence. As the OP
Q(T} now expresses the modulation with respect to the
commensurate phase (see above), the latter correspond to
nearly commensurate regions (C regions) while the form-
er are called discommensurations (DC's) or solitons. Be-
cause of the regular periodic arrangement the resulting
structure is called the soliton lattice. For systems with a
small anisotropy parameter in the Landau expansion
(such as RZC) as reflected by a large temperature range
of the IC phase, the OP amplitude po can be assumed to
be only weakly modulated for T~T, with a smaller
value in the DC's as in the C regions.

On approaching T, (phase) fluctuations soften locally

+Jzsin (v+40+qr„)] . (16)

This special case corresponds to the result given in previ-
ous works [e.g., Eq. (39) in Ref. 3 or Eq. (3.82) in Ref. 6],
though the general case was assumed explicitly by the au-
thors. According to equations such as (16) used previous-
ly, J, and J2 are directly given by the minimum and max-
imum, respectively, of W„(v ) reminding J, (Jz. Howev-
er, from (14) one derives

max[ W„(v)/C]=(D„—E„)J,+(D„+E )Jz,
min[W„(v)IC]=(D„+E„)J,+(D„E„)J,, —(17)
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+E„(J Je }—cos [2[81(v)+ p„]I, (20)

where 8I(v)=80(T)+q, T as well as the modulation
variable U are appropriately reduced to the interval

[0,2n ). The coefficients E„and D„were defined in (15).
The amplitude fluctuations may be assumed to be only

weakly affected by the soliton structure for the weak an-
isotropy system under consideration (on the analogy of
the statics) and, moreover, to be comparatively hard and
therefore of minor relevance for the spin-lattice relaxa-
tion. Just the opposite is true for the phase fluctuations:
they are soft —yielding relevant contributions to J(co,T)
at the Larmor frequency —and strongly influenced by the
IC-C phase transition and the soliton structure. So we
will focus on these phase fluctuations in the following.

In the PWL, eigenfunctions Vi,(T) are simple harmon-

ic plane waves of the form exp(ik T) resulting in spatial-

ly independent spectral densities Jk(co, T) according to
(6). This, of course, no longer holds in the SL. There,
eigenfunctions are given by more complicated Bloch
functions adapted to the periodicity I. of the soliton lat-
tice: The eigenfunctions and eigenfrequencies obey an

equation corresponding to the Schrodinger equation of a
particle moving in a periodic potential. ' ' ' Under
the influence of the periodic potential (defined by the soli-
ton lattice), essentially the phase fluctuations split into
two branches separated by a large gap at the boundary of
the Brillouin zone of the soliton lattice (k, =n /L =@5/2,
p =6 for RZC), as shown in Fig. 1. The soft, lower-
frequency ("acoustic") branch represents phase fluctua-
tions concentrated in the DC's. These phase fluctuations
correspond to oscillations (or relaxations) of the DC's in
the modulation (q, ) directionand t,he dynamics is that
of a linear chain with a next-neighbor DC interaction de-
creasing as exp( aL) with increasi—ng soliton distance
L. ' ' This branch vanishes as the soliton lattice periodi-
city disappears at the transition into the C phase. In an
ideal incommensurate crystal, the nonmodulated (k=O)
mode of this branch is completely soft or gapless in anal-

ogy to the phase fluctuations in the P%L. Lattice defects

in the DC s reflecting the beginning instability or soften-
ing of the soliton lattice, whereas fluctuations harden lo-
cally in the C regions reflecting the approach to the com-
mensurate structure for which the softness of the phase
fluctuations disappears. As T, locally probes the softness
of the present fluctuations getting shorter with increasing
softness (see Sec. II A), Ti can be expected to decrease lo-
cally in the DC's and to increase locally in the C regions.
Essentially this is the whole story. However, previous
works ' ' ' came to a different result predicting an in-
crease of T, for the DC's. So we feel obliged to explain
the qualitative argument just given more extensively.

As in the PWL, in the SL one can distinguish between
the spectral densities of the amplitude (longitudinal) fluc-
tuations J and the phase (transversal) fluctuations Je
corresponding to J& and J2 in the PWL. Restricting to
terms coupling linearly to the OP, the transition proba-
bility 8'„of the spin-lattice relaxation can be represented
on the complete analogy of (14) as the modulation

W„(v)/C =D„(J +J&)

'0 2 4 6

k, (a.u. )

I

10

FIG. 1. Schematic plot of the dispersion co( k, )
' 2(k, ) ~~ ' (k, ) along the modulation direction of the

"acoustic" (lower) branch and the "optic" (upper) branch of the
phase fluctuations in the soliton limit given in the cases a, b, c for
three different temperatures on approaching T, from above.
The line indicated by d represents the corresponding dispersion
remaining in the commensurate phase below T, . The gap be-
tween both branches appears at the wave vector k, =m/L (Bril-
louin zone boundary of the soliton lattice) decreasing for T~ T,
as L increases. According to Ref. 25.

as well as a (high} commensurability of the basic and the
soliton lattice can pin the soliton lattice in the real crystal
thus producing a gap for k=O. The second branch
represents comparatively hard, high-frequency ("optic")
phase fluctuations concentrated in the C regions. Ac-
cordingly, this is the branch persisting in the C phase.

Now, according to the general arguments given in Sec.
II A in context with Eqs. (5)-(8), a local softening means
that the mean value of J, (co,k) which is to be taken over
the dispersion of the respective branch becomes higher at
small frequencies such as the Larmor frequency. Corre-
sponding, on approaching T, the phase fluctuations
soften locally in the DC's as the slope of the "acoustic"
branch decreases, reflecting the decreasing DC interac-
tion mentioned above and so simply the softening of the
soliton lattice itself. This is also revealed experimentally
for RZC by dielectric measurements, which can be de-

scribed, in a good approximation, by a simple mono-
dispersive Debye relaxator ' (apart from a small tem-

perature range b, T(0.5 K close to T, }. These measure-

ments, coupling to the fluctuations of the "acoustic"
branch at the boundary k, =m/L of the Brillouin zone of
the soliton lattice, show a decrease of the relaxation
rate 1/[2m'(k, =m /L) ] from about 2500 MHz at
T —T, =19 K down to about 100 MHz at T= T, . ' ' lt
is well known, however, that crystal quality is important
in this context. As demonstrated by other dielectric con-
stant studies on RZC, the decrease of the relaxation
rates on approaching T, is diminished for poor quality
crystals and the deviations from monodispersive relaxa-
tion behavior increase.

On the other hand, the hardening of phase fluctuations
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in the C regions is to be attributed to the gap of the "op-
tic" branch reflecting the approach to commensurability
of these regions. The corresponding eigenfunctions
%z(T} concentrate the respective behavior locally to the
DC's for the "acoustic" branch and to the C regions for
the "optic" branch.

Reminding the reader that 1/Ti ~ J(co,T), we con-
clude that the "phason"-induced T, is expected to de-
crease for nuclei 1ocated in the DC's and to increase for
nuclei located in the C regions on passing from the PWL
to the SL (i.e., on approaching T, ). As already men-
tioned after Eq.(8) for the general case, the decrease of
the T, of nuclei located in the DC's would come to an
end, if coL »co, (k) or coL r, (k) »1 for all k of the acous-
tic branch. But this is a theoretical case.

In contrast, previous publications ' ' ' predicted an
increase of the T, in the DC's on approaching T, from
above proportional to the soliton distance L ~ 1/N, with

N, denoting the number of solitons or DC's. However, as
far as we see it, therein the local spectral density
J(co,T}~ 1/T, was taken as the sum of Jz(co, T) over the
"acoustic" branch and not as the mean ualue as expressed
by (8). As a consequence, a factor L is overseen which
cancels the 1/L behavior of 1/T, predicted in the works
cited. %'e remind that the "acoustic" branch represents
the oscillation or relaxation of the DC's. Consequently,
for these modes, the reference lattice is the soliton lattice
with the lattice constant L (in the z direction) and thus
n =N„N N, in Eq. (8), while for the normal modes in the
PWL n =N„N„N, =N [cf. Eq. (A5)] referring to the basic
lattice, where N„gives the number of basic lattice cells in
the x direction, etc. The same result is obtained by the
correct normalization of the corresponding eigenfunc-
tions %z(T). Applying the argument given in previous
works to a usual lattice (no soliton lattice) would mean
that 1/T, would decrease with a decreasing number of
unit cells, what cannot be true. The (local) DC fluctua-
tions and thus the corresponding spin-lattice relaxation
depend on N, or L only in that sense that the DC interac-
tion decreases with increasing L resulting in a softening
of the DC fluctuations and thus in a decrease of the cor-
responding T, . Of course, a decreasing number of soli-
tons N, ~1/L results in a decrease of the intensity of
those parts representing the DC's in the NMR spectrum.

In addition, in the works cited the gap co, (k=0) of the
eigenfrequencies of the "acoustic" branch is assumed to
be so large that the whole dispersion co, (k) is practically
constant even for klq„ i.e., perpendicular to the modula-
tion direction. Of course, on this condition, any flatten-
ing out of the branch along q, becomes irrelevant. The
mentioned assumption presupposes an extreme hardening
in particular for the k=0 mode and consequently for the
whole "acoustic" branch and thus conflicts with the
dielectric measurements on RZC mentioned above.
Moreover, it could be asked, if, under this condition, the
"acoustic" branch mould give any detectable contribution
to the direct process of the spin-lattice relaxation at all.

III. EXPERIMENTAL RESULTS AND DISCUSSIGN
The spin-lattice relaxation of the upper-frequency sa-

tellite line of Rb in RZC was measured for Rb(1} (as

defined in Ref. 9) in the crystal orientations b~~Bo and
c~~Bo using a Bruker CXP 300 NMR spectrometer
operating at a frequency vL =98.2 MHz. In general the
standard (90')„—r —(90')„pulse sequence was applied.
When detecting the whole IC spectrum and not only its
singularities, however, a (90')„—r—(90')„—5—(90')
pulse sequence with an echo pulse distance 5=250 ps and
an alternating pulse phase a=+x (suppression of stimu-
lated echoes) was used. The samples investigated were
cut from the same crystal grown from aqueous solution
of RbC1 and ZnClz with a molar ratio of 2:1. Further ex-
perimental details were already described in Refs. 9, 10,
and 13.

The temperature dependence of the Rb(1) satellite
spectrum in the N, IC, and C phase of RZC is shown ex-
emplarily in Fig. 2 for the crystal orientation b~~Bo. The
frequencies of the discrete NMR lines in the X and C
phases and those of the edge singularities in the IC phase
were measured 3 for both satellites (m=+ 3~+—,

' and

m = ——32~—
—,
'

) on stepwise heating above T= 1 1 'C and

stepwise cooling below this temperature.
Because of crystal symmetry, in the orientations b~~Bo

and c~~Bo investigated one obtains per each Rb kind
Rb(1,2) and satellite transition one discrete line in the N
phase and three discrete lines in the C phase reflecting
the tripling of the unit cell. s On passing from the N into
the IC phase, the discrete line of the N phase splits into a
frequency distribution limited by two edge singularities.
The width of this distribution (i.e., the edge singularity
distance) increases on lowering the temperature as the
amplitude of the modulation increases.

In the vicinity of the IC-C phase transition, the Rb
satellite spectra were measured for the upper-frequency
satellite on stepwise heating. The spectra obtained are
shown in Fig. 3. The marked changes in line shape and
amplitude between T = —78. 1'C and —77.6'C reflect
the IC-C phase transition. From our measurements the
difFerence hT, for T, obtained on heating and cooling

I.0—

5.8—

5.6—

5.0—
gO

4.8—
~

i
~ I ~ I

[
~ I lj ~ i

-50 0 T, 50
T ('C)

FIG. 2. Temperature dependence of the quadrupolar split-
tings hv of the edge singularities (IC phase) and discrete lines
(X and C phase) of the Rb satellite spectrum of Rb(1) in RZC
in the crystal orientation 1~~8o. Disregarding second-order
elects, the corresponding frequencies v~ of the upper and lower
frequency satellite transition are given by v~=vL +hv/2 with

vL =98.2 MHz.
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FIG. 3. Spectra of the upper frequency ' Rb satellite transi-
tion of Rb(1) in RZC obtained in the crystal orientation b~~Bo
near T, = —78'C by stepwise heating. The numbers give the
amplitude (height) of the respective line or singularity when
normalizing the spectra relative to each other. The frequency
increases from right to left. Phase distortions are eliminated by
"magnitude calculation" leading to a broadening of the lines by
a factor of about 1.7 compared to the absorption spectra.

was determined to be hT, 1 K. The smallness of this
value as well as the sharpness of the Rb satellite lines
and singularities demonstrate the high quality of the sam-
ples investigated. Note that the linewidths of the spectra
presented in Fig. 3 are even broadened compared to the
absorption spectra by use of "magnitude calculation" (cf.
caption of Fig. 3). We shall come back to Fig. 3 later on.

A); =0 or V); =0 (21)

for the components ij =aa, bb, cc, and ac of the tensors
defined by (10) and (12) now given in the orthorhombic
crystal frame (a, b, c) Restricting, . according to Sec. II,
to the dominant EFG fluctuations coupling linear to the
OP, thus the only EFG spectral densities left are those of
V,~ and V&, . Equation (3) transformed from the labora-
tory frame (z)~Bp) to the crystal frame (b((Bp) reduces to

W, /C —J(V,q, coL )+J(V~, ;cot ), W2=0 . (22)

According to (2), Eq. (22) means that the time depen-
dence of the magnetization recovery is single exponential
and thus the relaxation time T, is well defined by
1/T) =28'). The corresponding magnetization recovery
obtained in the N phase is shown in Fig. 4.

Let g„;J denote the phase of the complex A„,, and thus

the phase of the nth harmonic of the EFG component
ij. ' Relations between these phases can be determined

A. Variations of transition probabilities along frequency

Crystal orientation b]]Be

For the description of the experimental results, the for-
malism described in Sec. II is to be applied to the special
case considered here: For Rb in RZC symmetry im-

poses [cf., e.g. , Eqs. (2)—(4) in Ref. 9]

FIG. 4. Magnetization recovery of the upper frequency "Rb
satellite transition of Rb(1) in RZC measured in the X phase at
T =34'C (i.e., T —T, =3 K) in the crystal orientation b~~BO.

+(J& —J2)cos[2(v +Op+/„& )]], (23)

b/~=I&t. gI'+ I&)~, I', J, 2=J& 2(tot ). Thus
we obtain in this special case (to a good approximation) a
transition probability modulation of the special type of
(16). In view of the discussion in Sec. II B it has to be
noted that this is a consequence of the symmetry condi-
tion (21) and the phase relation f&,&=/», determined
for Rb(l). Considering Rb(2) instead of Rb(1) would be
sufficient to make this type of W(v) inapplicable.

According to (1), the frequency modulation v(v) of the
Rb upper-frequency satellite in the IC phase is deter-

mined for b~~Bp by the modulation of U&z
——Vz&eg„„,/h

and thus given by '

v(U) —v&+ —,
' U2&icos(2v +24 p+1(t2gg )

as the first harmonic vanishes by the symmetry condition
(21). The resulting NMR frequency distribution typical
for IC systems is characterized by two edge singularities
occurring for d v(U)/du =0, i.e., at the frequencies
v(U, 2.» ) =v~+ —,

' Uz» at the edges of this distribution. '

Comparing (23) and (24) and using the relation
gzl, &

—2g„& =+183'=180' determined previously it is
found that the modulations of W, (U) and v(v) are equal
in period and phase (J2 & J&). Thus, the combination of
these two equations leads to a linear relation describing
the 8

&
variation over the frequencies v of the IC spec-

trum

W)(v)=&g (J)+J~)+(J2—J, )
2 Uzbb

The variation of the spin-lattice relaxation rate
1/T, (v) over the distribution of frequencies v was mea-
sured in the upper part of the IC phase at T =15 C in

from the orientational dependences of the satellite IC
spectra. " For the phases appearing in (22) we ob-
tained ~g„~ —g», ~

~ 5'. To calculate from (14) and (15)
the modulation W, (U) corresponding to (22) we put
p, =

1( „t,=f», resulting in

W, (u) =IC~ I (J, +J~ )
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the crystal orientation discussed here. The obtained

1/T, values are presented in Fig. 5. The linear variation

of W, (v} predicted by (25) is actually found here. As also

observed in the N phase' (Fig. 4) and as predicted, the
relaxation behavior is single exponential over the whole

IC spectrum (inset of Fig. 5} within the limits of experi-

mental accuracy.

1
0.8
0.6

II

0.4

0.2

2. Crystal orientation c[)Se

Proceeding as in the case bllBp now yields for the tran-

sition probabilities determining the spin-lattice relaxation
in the crystal orientation cllBp

0.1—
0.08 I I I I ~ I I I I I I I I L I I I I ~ I I I a i i, l

0 10 20 30 0 10 20 0 5 10
t (ms) ( (ms) t (ms)

Wl(v}/C =
I
~ lb, I'[(Jl+J2}+(Jl—J2)

Xcos[2(v+4p+gib }]]
W2(v}/C I

~ lab I [(Jl +J2 }+(Jl J2 }

Xcos[2( v +4p+ lt „b ) ] ] .

(26a}

(26b)

FIG. 6. Magnetization recovery measured for different parts
of the frequency distribution belonging to the upper frequency
' Rb satellite transition of Rb(1) in RZC in the crystal orienta-
tion cllB&& in the IC phase at T= 15'C: edge singu1arities (~, A )

with single-exponential relaxation, center of the frequency dis-

tribution (~) with double-exponential relaxation (the straight
line here gives the initial slope).

From the measurements referred to in front of (23),
we know g„b =f», and I A..b I'/I a», I'=1 34 .No. te
that now W2(v)%0. Consequently, according to (2}, a
double-exponential relaxation of the magnetization with
the rates 2( W, + W2 ) and 2W, is expected.

However, as shown in Fig. 6, no distinct deviation
from a single-exponential behavior of the magnetization
was found for the singularities of the Rb satellite fre-
quency distribution of Rb(1) in the upper IC phase at
T =15'C. On the other hand, the corresponding plot for
the center of the frequency distribution also presented in
Fig. 6 exhibits a curvature expected for double-
exponential relaxation.

To explain this seeming conflict, we first remind the
reader that, while the final slope of M, (t) logarithmically

scaled is determined by the smaller relaxation rate (2 W, ),
the initial slope is given by the mean value
2$;=28'I+8'2 of the two difFerent relaxation rates.
Thus, the deviation from the single-exponential behavior
essentially depends on the ratio W2/W, . Here we note
that close above T; we found fluctuations with relaxation
frequencies of the order of the Larmor frequency, i.e., a
violation of the fast-motion condition. While the ratio
W2/ W, equals I 2 „b I /I 3», I

= 1.34 in the fast-motion
limit, outside this limit this ratio has to be multiplied by a
factor 1/v'2 reflecting the fact that W2 detects the spec-
tral density of the fluctuations at double the frequency as
8'& does. A more extensive discussion will be given else-
where. 4 Since the phase fluctuations preserve the soft-
ness or susceptibility of the soft mode at T, as predict-—
ed by theory and shown experimentally, e.g., by T, data
presented in Fig. 8—the same argument applies in the IC
phase to the phase fluctuations dominating the spin-
lattice relaxation. Thus, the ratio W2/W, is reduced giv-

ing rise to only a slight curvature in a semilogarithmic
plot of M, (t) which cannot be detected within the limits
of accuracy of our measurement.

In this sense, reminding f„b=g»„we write in analo-

gy to (23) for the experimentally relevant transition prob-
ability 8',

0 I 1 l I 1 I I I I I I I I I I I I I I I I

-20 -10 0 10
u —

ub (kHz)
20

W, (v) =K, [(J, +J2)+(J,—J2)cos[2(v +4p+1(ti, b )]],
(27)

FIG. 5. Variation of the inverse spin-lattice relaxation time

1/Tl =28'I over the frequency distribution of the upper fre-

quency Rb satellite transition of Rb(1) in RZC measured in
the IC phase at T= 15 C in the crystal orientation bIIBO. The
line describes the linear relationship expected from (25). The in-

set demonstrates the single-exponential magnetization recovery
measured at the singularities (8,L ) and in the center of the fre-
quency distribution (0).

where, when applying the above arguments,
K, /C =IX,b, I +—,'IAi, bI /&2. As for the frequency
modulation

v( v ) =v, + —,
' U2„cos(2v +2@p+$2„)

holds analogously to (24), W, is related to the frequency v

by
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W,—(v) =K, [(J,+J2)+(J,—J2)cos(hy, )X(v)

+(J,—J2)sin(by, )[1—X (v)]'

V V
X(v)=, , by, =2/„b —g2„.

(29) 2.5—
T

v

In Ref. 33 a value hy, =140' was determined from the
static EFG Fourier series. Equation (29) describes an el-
lipse and, accordingly, there are two transition probabili-
ties or relaxation rates 28',* for each v of the frequency
distribution except for the edge singularities where
X(v, ) =+1. This explains the different behavior of M, (t)
in Fig. 6 already mentioned, i.e., the (effective) single-
exponential time dependence for the edges with
X ( v, ) =+1 and the double-exponential one for the center
of the frequency distribution with X(v, )=0. The ellipse
degenerates to a straight line, if the phase shift b,y be-
tween the modulation of the transition probability and
that of the frequency equals 0' or 180'. This special case
actually occurs for Rb(1), bIIBo.

The ellipse obtained experimentally for cIIBo is shown
in Fig. 7. The most reliable data, however, are not ob-
tained for the two relaxation rates 8',*but for their mean
value

L

15-

0.5—

0 I t t t l / I s t I I I c f s I

-20 -10 0 10 20
v — ~, (4Hz}

FIG. 7. Variation of the transition probability 2W, [cf. Eq.
(27)] over the frequency distribution of the upper frequency
'Rb satellite transition of Rb(1) in RZC measured in the crystal

orientation cIIBO in the IC phase at T=15'C (~). The open
square data points (2W, ) were deterauned from the initial
slopes of the magnetization recovery (see text) and can be fitted

by a straight line according to (30). The other data points
(2W,*) were derived from a fit of the magnetization recovery
with two time constants 2 W,+ and 2 W, . The fit corresponds to
the ellipse predicted by (29).

W, (v) =K, [(J,+Jz)+(J& —Jz)cos(by, )X(v)] (30) B. Temperature dependence of T&

in the crystal orientation bIIBD
which can be determined directly and accurately from
the initial slope of the magnetization recovery M, (t) in a
semilogarithmic plot. Equations (29) and (30) show, pro-
vided b,y, is given, that all relevant parameters (K,J,
and K,J2} can be derived from this straight line W, (v)
according to (30). The ellipse given in Fig. 7 was calcu-
lated using these parameters.

This result o8'ers the possibility to check the consisten-
cy of our T, study. We use two characteristics of the
linear W, (v) dependence expressed by (30). First, we
take its center value K,(J, +J2) obtained for X(v, )=0
and, second, its slope with respect to X(v), which equals
K, (J, —J2)cos(by, ). Calculating the ratio to the corre-
sponding values obtained in Sec. III A 1 for Rb(1}, bIIBo
[cf. Eq. (25) and Fig. 5], the former yields Ks/K, =1.60
and the latter K&/K, =1.54 demonstrating a nice agree-
ment. Moreover, the ratio Kb /K, can be obtained
theoretically from

Kb I
& tb, I' +

I
~ t.b

I'

I
& o, I'+-,'I & . I'/&2

(31)

yielding Kb/K, =1.59 in accordance with the above re-
sults.

It should be noted that so far the linear W&(v) varia-
tion observed for bIIBo has been attributed to the "local
case" while the elliptic W, (v) variation found for cIIBo in
principle corresponds to the "nonlocal case." Since
these qualitatively different results for W&(v) were ob-
tained here by measurements on the same nucleus

Rb(1), their assignment to "local" or "nonlocal cases" is
not physically adequate. Instead, they can be derived
directly from the model presented here.

In the previous section the consistency of the model
used has been shown. This model predicts, according to
(24) and (25}, Wt(u»)=2K&J& and Wt(u, 2)=2K&Jz with
1/T, =2W, [cf. Eq. (22) ff.] for the edge singularities at
v(u, 2») =vs+ —,

' U2». Consequently, the spectral densi-
ties J, and J2 of the longitudinal (amplitude) and trans-
verse (phase) fluctuations can be inspected by studying
the spin-lattice relaxation of the edge singularities only.
From the experimental point of view this is very advanta-
geous, since the edge singularities naturally provide the
best signal-noise ratio of the frequency distribution.

The T& data obtained for the two edge singularities in
the IC phase as well as those of the corresponding
discrete satellite lines in the N and C phases are given as a
function of temperature in Fig. 8. In the temperature
range between T, and about —70'C the relaxation time
was measured on stepwise heating, after the crystal has
been orientated for practical reasons in the C phase just
below T, . Except from this temperature range, T, was
measured below T= 11'C as a rule on stepwise cooling
and above T=11'C predominantly on stepwise heating.
Thermal hysteresis of T& data was not investigated here.

On approaching T; =31 C the T, values obtained in
the Xphase decrease from about 30 ms down to 2 ms. As
explained in Sec. II A, this behavior rejects the softening
of the critical fluctuations in the X phase near the phase
transition. The spin-lattice relaxation time of the
higher-frequency singularity stays in the whole IC phase
nearly at the value attained at T, , increasing only slightly
on decreasing temperature. In contrast, T, of the other
singularity increases distinctly below T; up to values ap-
proaching those measured in the X phase at higher tem-
peratures. In the lower part of the IC phase, however,
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FIG. 8. Temperature dependence of the spin-lattice relaxa-
tion time T& of the upper frequency Rb satellite transition of
Rb(1) in RZC measured in the crystal orientation b~~BO. In the
X and IC phases, the data points mark T& of the discrete lines
and of the edge singularities, respectively. In the C phase, the
T, values of the three discrete lines belonging to the Rb(1) kind
in the X phase are given, from higher to lower frequencies, by
triangles, squares, and points (cf. Fig. 2). The inset shows the
short T& values of the edge singularity relaxing fast on an en-
larged scale.

the tendencies of these temperature dependences change:
On decreasing temperature T, of the singularity relaxing
fast gets smaller, while T, of the singularity relaxing
slowly bends to higher values and approaches the long re-
laxation times measured below T, .

The temperature dependence of the short T& corre-
sponds, except for the lower temperature range of the IC
phase, essentially to the 1/T behavior resulting from the
fluctuation-dissipation theorem for a temperature-
independent susceptibility [cf. Eq. (7)] identical with that
of the soft mode at T;, which is usually assumed for the
"phason" branch. It reflects the extreme softness of the
IC structure with respect to a phase shift of the modula-
tion wave, i.e., it is a consequence of the special symme-
try of an IC phase. Accordingly, the soft phase fluctua-
tions disappear below the transition into the commensu-
rate phase, and the T, values increase strongly. Thus,
the experimental results are in nice accordance with our
T& model predicting a purely "phason"-induced spin-
lattice relaxation for just this higher-frequency singulari-
ty according to (25). The same model attributes the
longer, temperature-dependent T& of the other singulari-
ty to the longitudinal OP modes ("amplitudon" modes).

It should be emphasized that such a well-defined as-
signrnent of "phason" and "amplitudon" contributions to
the relaxation of the singularities of an IC spectrum re-
quires the use of phase relations of the static EFG
Fourier series obtained experimentally. A correct
determination of these phase relations is only possible by
studying the orientational dependence of the satellite
transitions in the IC phase. '" In previous works, this
methodical necessity has not been taken into account
adequately.

As explained in Sec. II B in context with (17), the "am-
plitudon" induced relaxation rate identified by means of
previous models can be "contaminated" severely by
"phason" contributions. In fact, the ratio of the "ampli-
tudon" and "phason" spin-lattice relaxation times
T&„/T&& determined previously from NMR studies of
the Rb central transition in RZC (Refs. 6 and 35) is
about 1 at 25'C and 1.5 at —40'C and thus significantly
smaller than the corresponding values 5 and 11 resulting
from our data. Nearly the same holds for further T, data
reported in Ref. 6 and for earlier measurements on the

Rb central transition in RZC. Also the "amplitudon"
induced relaxation time T& z determined from K NMR
measurements in K2Se04 previously is presumably
strongly "contaminated" by "phason" contributions,
since T,„ is much shorter than the soft-mode induced T,
above T; for the same temperature distance

~
T T, ~.

—
In a recent work dealing with Rb NMR central line

investigations on RZC, the unusual shortness of the T&

values identified with T,„was attributed to some
nonspecified "cross-relaxation" between those parts of
the spectrum with "amplitudon"- and "phason"-induced
relaxation. Such an eSect, however, should also show up
in our Rb NMR studies on satellite lines. Obviously
this is not the case, as clearly demonstrated both by the
much higher T,„/T» values obtained here compared to
those given in Ref. 2 and by the linear variation of
2W, (v) found here given in Fig. 5.

As already mentioned, in the lower part of the IC
phase marked changes in the temperature dependences of
T& can be observed for both edge singularities. It is
reasonable to relate these changes to the formation of the
soliton lattice in this temperature region.

From the arguments given in Sec. IIC we concluded
that T& can be expected to increase for nuclei located in
the nearly commensurate regions (C regions) and to de-
crease for nuclei located in the discommensurations
(DC's). C regions and DC's can be assigned to certain
parts of the frequency distribution by inspecting the tem-
perature dependences of the satellite spectra near T, as
presented in Fig. 3. For simplicity we call the corre-
sponding intensity maxima of the frequency distribution
C intensities and DC intensities. While the C intensities
merge continuously into the discrete lines obtained below
T, with amplitudes increasing on approaching T„the op-
posite holds for the DC intensities. Consequently, the
low-frequency (right-hand side in Fig. 3) edge singularity
(the outermost intensity maximum), coincides with a C
intensity, whereas the high-frequency edge singularity,
appearing just beside a C intensity, has to be attributed to
the DC's.

Thus, the theoretical prediction of Sec. IIC repeated
above is actually reflected by T, of the two edge singu-
larities measured in the lower part of the IC phase, as T,
of the lower-frequency singularity relaxing slowly in-
creases and T, of the higher-frequency singularity relax-
ing fast decreases on approaching T, . Referring to the
discussion in Sec. IIC, this decrease of the short T& of
the DC intensity reflects the softening of the phase Quc-
tuations [5C&(t)] in the DC's or, equivalently, the flatten-
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ing out of the corresponding branch on approaching T, .
This behavior is in accordance with frequency-dependent
dielectric measurements ' ' discussed already in Sec.
II C. Notice that the increase of the longer T, of the C
intensity has to be put down essentially to the hardening
of phase fluctuations in the C regions on the usual as-
sumption that the fluctuations of the OP amplitude

[5p(t)] are not significantly affected by the formation of
the soliton lattice and the IC-C phase transition (see Sec
IIC}. Reminding the reader that the relaxation of this

edge singularity was attributed to the "amplitudon" in

the PWL, we refer to Sec. IIIC for reasons explaining
this conflict.

In contrast to our result, previous T& data obtained on
RZC by Rb NMR at the central transition ' and by
"Cl NQR (Ref. 5) show in the lower part of the IC phase
an increase of the T& attributed to the "phason" on de-
creasing temperature, though these data are restricted in
most cases to very few points. Provided the above-
mentioned T, results really reflect the spin-lattice relaxa-
tion of nuclei located in the DC's and not that one of nu-
clei located in the C regions for which T, is expected to
increase, then this might indicate an increasing hardening
of the corresponding modes for T~ T, due to a particu-
lar pinning of the soliton lattice as a consequence of a
poor crystal quality.

Discommensurations in the IC phase of RZC have
been observed by TEM studies in a temperature range
between T, and about —50'C. This range agrees fairly
well with the temperature range in which the influence of
the soliton lattice on the spin-lattice relaxation has been
found according to the interpretation given above.

C. Fhason gap and spin-lattice relaxation

In many works ' ' usually a "phason gap"
~&(k=O) is determined from the ratio T, „/T» of "am-
plitudon" and "phason"-induced relaxation times. On
several assumptions, the relation

T i~ co~(k=0)
(32)

has been derived. """Identifying T» and T,&
with

the spin-lattice relaxation time of certain intensities in the
frequency distribution and using the "amplitudon" fre-

quency co„(k=O) determined by Raman or neutron

scattering, ' a "phason gap" co&(k=0) can'be obtained

from (32). Applying this usual procedure to our T, data

taking co~ (k =0)=6 X 10" s ' at T= —45 'C (for higher
temperatures the relevant modes cannot be observed)
(Refs. 39 and 40) yields co&(k=O)=5X10' s ', where

T, ~ is identified with T, of the edge singularity relaxing
slowly in the case of Rb(1), b~~Bo as given in Sec. III B.
However, as will be argued in the following, the relevance
of this value can be doubted. The same holds, in our
opinion, for "phason gaps" given previously.

The temperature dependence of T, of the edge singu-

1arity re1axing slowly significantly divers from the tern-

perature dependence of the frequencies ~„(k=O) as-

signed to the amplitudon mode observed in Raman stud-

ies. ' While the former temperature dependence is
markedly a6'ected by the IC-C phase transition, the latter
is not. Consequently, it is problematic to relate both
quantities as it is done in the "phason gap" determination

[T,„~co„(k=0) according to (32)].
First of all, according to the assessment of Poulet and

Pick, the identification of the "amplitudon" in the case
of Raman studies on RZC is "not unambiguous. " Be-
sides, there is a principal conflict when assigning Raman
frequencies to T, data of a direct relaxation process
presupposed on deriving (32}: The direct T, process gen-
erally is induced by strongly damped modes [cf. Sec. II A
after (4)] which may give no distinct frequencies in a Ra-
man experiment.

Moreover, the NMR/NQR quantity can be severely
disturbed by the influence of phase fluctuations for the
following reasons: As already discussed in Secs. II 8 and
III 8, in general T, ~ cannot be obtained by taking simply
the maximum of the T, variation measured over the IC
frequency distribution —as it has been done in previous
works. Second, higher-order coupling to the OP beside
the linear one considered in our and other models may
also give rise to some "phason contamination" of the pu-
tative T, „especially in the lower part of the IC phase,
where the "phason gap" has to be determined because
Raman data are only available in this temperature range.
According to the discussion by Bruce and Cowley, ' the
influence of gapless phase fluctuations in an ideal IC
structure leads to a gapless dispersion with co~(k) ~ k for
small k for the longitudinal fluctuations. Surprisingly,
this argument was not taken up later on. We remind that
the modes which, in the ideal case, can be separated in
the T, experiment are the longitudinal and transverse OP
fluctuations. Thus, even in the case of a complete separa-
tion of the corresponding contributions the influence of
the soft phase fiuctuations on the longitudinal ("amplitu-
don") fiuctuations has to be taken into consideration. In
fact, assuming that our T, model is appropriate for the

T, ~ assignment at least down to T =O'C or —10'C, the
smallness of the corresponding T» values compared to
the T, values obtained below T, may indicate such an
influence.

Finally, one could ask what is the physical relevance of
a gap frequency co&(k=O) when dealing with relaxatory
or overdamped modes?

IV. CONCLUSIONS

In the present work the nuclear-spin-lattice relaxation
for quadrupolar perturbed NMR in structurally incom-
mensurately (IC) modulated systems was investigated. A
general formalism for describing the spin-lattice relaxa-
tion time T& was developed on the basis of the dynamics
of these systems.

On the usual assumption of dominating contributions
of local and long-wavelength fluctuations, the complex
tensor coupling the complex order parameter linearly to
the electric-field gradient (EFG) tensor is the same for
both the static and the fluctuating part. The presupposi-
tion of equal atomic masses applied in previous works is
not necessary. As a consequence, phase relations
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determined for the Fourier compounds of the static EFG
in the IC phase can be used for the interpretation of the
T

~
data. It has been shown that the identification of

"amplitudon" and "phason" contributions T,„and T&&

assumed in previous works ' is justified only in special
cases. This may explain some too low T, ~ values thus
determined. '

According to our discussion, T&& can be expected to
decrease for nuclei located in the discommensurations
(DC's) reflecting the softening of the soliton lattice or the
Aattening out of the corresponding "acoustic" branch.
This is similar to the well-known decrease of T& in an or-
dinary (nonmodulated) softening lattice with the
difference that in the soliton lattice the e8'ect is locally re-
stricted to the DC s since the softening is locally restrict-
ed to the DC's. In contrast, previous works ' ' ' pre-
dicted an increase of T&& in the soliton regime of the IC
phase on approaching T, .

Measurements were reported for the spin-lattice relax-
ation of the satellite transitions of Rb in Rb2ZnC14. At
ambient temperature the variation of the relaxation rate
was measured over the IC frequency distribution for two
crystal orientations. The T, model developed could be
proved to be consistent with these data. The procedure
requires the knowledge of the Fourier series of the static
EFG which can practically be determined only by inves-
tigating satellite spectra (quadrupole eff'ects of first order).

The temperature dependence of T j was measured in
that crystal orientation specially chosen on the basis of
this model, where T& z and T&& could be assigned to the
lower and upper frequency edge singularity, respectively,
of the satellite frequency distribution. The unusual short
T&& determined this way demonstrates the particular
softness of the phase fluctuations in the IC phase expect-
ed due to the broken translational symmetry of the lat-
tice. In contrast to previous results, ' ' in the lower
part of the IC phase we found a decrease of T&& on ap-
proaching T, for nuclei located in the DC's in accor-
dance with our theoretical prediction.

In previous works~ ' a frequency gap for the
phason modes was determined by comparison of T& and
Raman data. We discuss a number of reasons why we
doubt the relevance of phason gaps obtained by this pro-
cedure.
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=[A);, A)( (5Q(T,O)5Q(T, t))e
+ A„) A', i~ (5Q(T, O)5Q'(T, t) ) ]+c.c. (A 1)

For simplicity the atom index a is dropped here and
below. Introducing the longitudinal and transverse OP
coordinates P, ,P2 according to (13) and taking into ac-
count (P,P2) =0 yields for the EFG correlation func-
tions of (Al):

(5Q(T, O)5Q(T, t) ).
= (5P)(T,O)5P)(T, t})—(5Pq(T, O}5P2(T,t) ),

(A2)

(5Q(T,O)5Q*(T, t) )

=(5P, (T,O)5Pi(T, t))+(5P2(T, O)5P~(T, t)) .

(A3}
Thus, for the spectral densities of the EFG fiuctuations

J(V; V&, to)= f (5V, (T,O)5V&' (T, t))e ' 'dt (A4)

and those of the longitudinal (J, ) and transverse (Jz ) OP
fluctuations

Jtt(to}=2f (5Ptt(T, O)5Pp(T, t) )e '"'dt

=—g f ( 5'( k0) 5'(k, t) )e ' 'dt
k

(P=1,2 or A, P), (A5)

where N denotes the number of unit cells, one obtains
from (Al) with (A2) and (A3)
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APPENDIX
From (12) one obtains for the EFG correlation func-

tion

(5VJ(T,O)5'' (T, t) )

2i (,40+q 'T)
J(V,f Vi, co)=[A„"A» e ' +c.c. j —,'[J&(co) Jz(to)]—+[A„"A&& +c c ] —,'[J, (to).+.J2(co)] . (A6)

IV (u)/C =(a„+c.c. )—,'[J,(pcoL )+J~(p~L, ))

2i (@0++(b„e ' +c.c. )

where

x —,'[J,(pcoL ) J2(p~L )], —(A7)

Consequently, inserting the spectral densities of (A6) into
(3), one finds for the transition probabilities Wt, W2
relevant for the spin-lattice relaxation

a, =
I ~,„,l'+ I

~ „.I',

and where we used the internal coordinate v =qi T
which is reduced to the interval [0,2n ). Note that (A7)
also holds for the X phase where the term modulated by
exp(2iu }is to be canceled due to the degeneracy of P& and
P2 [i.e., J, (co)=J2(co)]. Rewriting (A7) in terms of real
expressions leads to (14) and (15).
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