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Propagation of elastic waves in semiconductor suyerlattices under the action of a laser field
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Within the framework of the dispersion-equation treatment, the characteristics of the propagation of
elastic waves along one-dimensional superlattices radiated by an infrared laser field are investigated.
The Kubo formalism is generalized to evaluate the conductivity tensor in this system. When the condi-
tion so/b, d

~ Jo(eFd/0)
~
=1 is satisfied (2b, and d are the miniband width and period of superlattice, F

and 0 are amplitude and frequency of the laser field, respectively, and so is the sound velocity in the ab-

sence of interaction), a strong renormalization of the sound velocity is predicted, along with intense ab-

sorption peaks indicating the localization of waves. The spectrum of plasma oscillations propagating
along the superlattice axis is also calculated. The characteristic feature of these plasmons is the absence
of Landau damping. In the dynamic localization regime the plasma oscillations along the superlattice
axis disappear.

I. INTRODUCTION

Recently, there has been much activity in the area of
the electronic behavior of quantum semiconductor struc-
tures (quantum wells and superlattices) interacting with
strong far-infrared laser radiation (see, for example, Refs.
1 —11). The most interesting effect in these systems is
that, if the laser power and frequency are chosen ap-
propriately, all the quasienergies of the system can be
crossed. Particularly, in the superlattices (SL) all
quasienergies group in a miniband with a finite width,
and when these eigenstates cross, the miniband width
reduces to zero (collapse of minibands). ' In this situa-
tion, if the electron is initially localized in one of the wells
(or sites), it can be found there again after many times.
This phenomenon is called dynamic or laser-induced lo-
calization of electrons. ' In the regime of dynamic lo-
calization (or collapsing of minibands), a number of in-
teresting effects are predicted (see, for example, Refs. 9
and 10, and references therein}. Recently we have shown
that in the regime of dynamic localization, electrons in
superlattices can be considered as internal resonances,
which efficiently localize acoustic waves at the resonance
frequency. ' Note that the idea of attaining strong locali-
zation of acoustic waves by internal resonances (gas bub-
bles in a liquid or Helmholtz resonators in air) was sug-
gested by Sornette and Souillard' (see also Refs. 14 and
15).

In this paper we present a theory of propagation of
elastic waves in superlattices under far-infrared laser ra-
diation. We will focus attention on the regime of the col-
lapsing of minibands, when the localization of waves may
be observed. We shall also discuss plasma oscillations
and related phenomena in that system. Nate that the
propagation of elastic waves in superlattices (in the ab-
sence of a laser field) is investigated in various aspects in
a larger number of works. '

The plan af this paper is as follows. In Sec. II the
dispersion equation of the propagation of elastic waves is
reviewed. It is shown that the attenuation length, sound

velocity, and plasma frequency are determined by the
complex dielectric functian or complex conductivity ten-
sor. In Sec. III we develop the Kubo formula to calculate
the complex conductivity of superlattices under the laser
field. In Sec. IV we analyze the canditions for the locali-
zation of acoustic waves in this system. In Sec. V we cal-
culate the spectrum of plasma oscillations, and in Sec. VI
we discuss these results and make some concluding re-
marks.

II.DISPERSION EQUATION
OF THE PROPAGATION OF ACOUSTIC WAVES

IN SUPERLATTICES

Bn, (x, t )= —A-ik
Xk

(ii} the Maxwell's equations

1 8 D 4n Bj(x,t)rorot 1+ 2 2= 2e c}t e
(2.2)

DI-=C;iE)i

and (iii) the continuity equation

Bn, (x, t)
divj(x, t }+e =0,

at
(2.3)

In this section we present a model that we have used to
obtain the dispersion equation for longitudinal elastic
waves in SL. ' We assume that there is no piezoelectric
eSect, so that the interaction of the acoustic waves with
the electrons can be realized only via the deformation po-
tential. Furthermore, for simplicity the electron-phonon
interaction in superlattices is considered the same as in
the bulk semiconductors. As it is known an accurate
evaluation of the inhuence of the superlattice potential
leads to renormalization of the electron-phonon interac-
tion constant by a factor of the order of unity. The basic
system of equations describing the propagation of acous-
tic waves in solids consists of (i) the equation of motion

8 tt; c)tti
P 2 iklm (2.1)

Qt2 ™
BXk
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1 ~1kj,(x, t)=cr;, E, ——
Ag, =o, E—, .

,"
e Bx)

(2.4)

where p is the density of the lattice, A, ,-kI is the modulus
of elasticity tensor, u is the displacement vector, u;I, is the
deformation tensor, A;k is the tensor of the electron-
phonon interaction constant, e;- is the tensor of dielectric
constant of the lattice, D is the induction vector, and
n&(x, t) is the deviation of electron concentration from
the equilibrium value caused by the sound wave. The
electric current density can be expressed in the form

Aq c
s =so 1+

2ps Oe co

4mso, + (o,+o, )

4wo2 4m',
z+ +

A2 3r=
2pe s co

E, o')
2

4P'cT 2 4770' )8+ +

' . 2, (2.10)

(2.1 1)

n, (q, ~)= a, u, , (2.5)

where the first term in Eq. (2.4) is due to electric field of
the space charge E„and the second term is due to the de-
formation potential. Note that in the presence of the ad-
ditional laser field F(t)=FsinQt, the linear response of
the system to the electric field induced by acoustic wave
E( t ) =E exp(i cot iq—r ) consists of all harmonics of type
exp [i(co+ n 0 )t ] [see Eq. (3.13)]. It should be em-
phasized that the current density j in Eq. (2.4} is only the
harmonic with the frequency co.

Assuming that the quantities u, E&, and n& depend on
the coordinates and on the time in accordance with the
plane-wave law u, E„n, -exp(icot —iqx), we obtain the
Fourier components of the nonequilibrium values of the
electron density,

We put %=1 throughout this paper.
The dispersion equation of plasma oscillations can be

obtained as follows. For sufficiently weak applied po-
tential Vo(x, t ) = Vo exp(icot —iqx), the deviation of elec-
tron density n &(q, co) can be written as follows:

n, (q, co) =F(q, co) Vo . (2.12)

The deviation of electron density causes an additional
screening potential V, (x, t)=V, (q, co)exp(icot —tq. x},
which is governed by Poisson's equation

V V, (x, t)= 4ne n, (—x, t) . (2.13)

On the other hand, the deviation of electron density can
be expressed in the form of a linear response to the total
potential:

where n &(q, co) =X(q, co) V, V= Vo+ V, . (2.14)

4l '1TH 1

em cqe Ikq qI3
J

(2.6)

%qJ a) 4'
~J ~J 2 2 2 ~J ~ 'J (2.7)

and co and q are the frequency and wave vector of the
acoustic wave, respectively.

Now substituting (2.5) into (2.1), we obtain a dispersion
equation for the propagation of acoustic waves in a solid
as follows:

Detl pro'fi &+a;kl&qkq~+~Aikqk ~, 1=0 . (2.8)

We shall consider the idealized situation where there is
an absolute matching of the lattice parameters of adja-
cent layers forming superlattices; thus, all quantities be-
come scalars with only one component A, , A, and c.
Then, it follows from the dispersion equation (2.8) that

2 —s2q2= iA4q4o C

4i mo.
(2.9)

where o (q, co) is the longitudinal conductivity and
s=(X/p)'~ is the sound velocity. If we suppose that
q =q&+iq2, s =so+5s, o. =o.&+io.2, and q2/q) «1,
5s /so « 1, the dispersion equation may be solved analyti-
cally. In this case, for sound velocity s and absorption
coefficient I = —

q2 one can get

From Eqs. (2.12)—(2.14) one gets

Vo

1 — X(q, co)
q c

(2.15)

and the spectrum of plasma oscillations is defined by the
poles of the total potential V,

1 — ReX(q, co) =0 .
4~e

(2.16)
q E,

Note that the relation between conductivity o(q, co) and
the function X(q, c0) can be obtained from Eqs. (2.3) and
(2.4), and from the well-known relation e E= —V V:

o.(q, m) = X(q, ro) .
e (co iv)—

lq
(2. 17)

In Eq. (2.17},v is an adiabatic parameter and is taken to
be very small. The relation (2.17) between o(q, co) and

X(q,~) is obtained here phenomenologically. It will be
shown below that this relation can also be obtained from
microscopic calculations (see Sec. III). It is seen from
these equations that the character of the propagation of
the elastic waves is determined completely by the corn-
plex conductivity tensor o (q, co). There are some
different ways to calculate this fundamental quantity.
The semiclassical approach to the calculation of the con-
ductivity tensor uses the Boltzmann equation for the dis-
tribution function of electrons in the presence of acoustic
waves. However, the Boltzmann-equation treatment is
only valid when the wavelength of the acoustic waves is
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much less than the de Broglie wavelength of electrons or
the wave vector q is very small. In Sec. III, we present a
quantum approach to the calculation of the conductivity
tensor based on the generalized Kubo formula for the
conductivity in the far-infrared laser field.

H = g a)gbgbg+ g Cqa +qa (bq+ b i, )
k pk

+ P 1rpa p+irap (3.3)

III. GENERALIZED KUSO FORMULA
FOR THE CONDUCTIVITY TENSOR

i p = [Ho(t )+H'„p(t )] .. p(t)
(3.1)

Here Ho(t ) is a sum of two terms:

Ho(t)=H, (t)+H = pe p ——A(t} a a +H„.e
C

Let the system be acted upon by a weak electric field
{induced by acoustic wave) E(z, t ) =E exp(icot iq—z )

(E~~q~~ superlattice axis OZ), and by a strong laser field
F(t ) =F sinQt (the laser field is described here in the di-
pole approximation, F and 0 are amplitude and frequen-
cy of the laser field, respectively and F~~OZ). We shall
restrict our investigation to the region where the wave-
length of the acoustic wave A, is larger than the superlat-
tice period d. In this case the system can be considered
to be homogeneous and the conductivity tensor is con-
nected with the current density j(q, t) by the relation
j (q, t ) =cr(q, t )E(t ). We shall also limit our investigation
to the region of frequencies to, r '&(ei),25&Q&e,
where r is the relation time, 2h is the ground miniband
width, ( ei ) is the in-plane characteristic energy of elec-
trons, and c,

g
is the band gap between the ground and first

excited minibands. These conditions at first show the va-
lidity of the Bloch picture of electron motion along the
superlattice axis. It also means that both acoustic and
electromagnetic waves do not cause interminiband transi-
tions. Furthermore, the laser field cannot cause the in-
traminiband transitions (the real absorption of light is ab-
sent). These limitations are quite reasonable for experi-
mental observation. For example, for GaAs/A1As super-
lattices with corresponding 14/12 (13/13) monolayers of
well and barrier width (d=73.58 A) from a Kronig-
Penny model for an electron (mo~, =0.067mo,
mA, ~, =0.0895mo, band ofFset of 1 eV) one can get
25=3.1(2.7) meV and e =489.2 (526.2) meV. So the
above conditions can be satisfied for acoustic waves with
frequency co = (2—5 ) X 10" s ', temperature T & 100 K,
and laser frequency in the range of
Q = ( 1.5 X 10' -4.5 X 10' s ' ).

The quantum approach to the calculation of the
current density makes use of the Liouville equation to
determine the density matrix p(t ),

where nq=4m. Ze /s(k +rD ), Cq is the matrix element
of electron-phonon scattering, atp and a are electron
creation and annihilation operators, bi, and bz are
creation and annihilation operators of phonons, and co& is
the phonon frequency with wave vector k. The vector
potential of the laser field is defined in the dipole approxi-
mation by —(1/c)B A(t)/Bt =F sinQt. For simplicity in
the Hamiltonian {3.3), umklapp processes are neglected.

In the tight-binding single miniband approximation,
the electron spectrum has the form

p
2

e(p) =ei+e, = —5 cosp, d+e, , (3.4)

where 2h is the miniband width of the superlattice, rn is
the in-plane electron effective mass, and c,

&
determines the

position of the lowest miniband.
The interaction of electrons with the acoustic wave can

be treated as the interaction with the self-consistent field
E(z, t }and is regarded as an external perturbation:

H' = e'"'g at a
eE

1
lg p

' (3.5)

ap, (t)
i = [Ho(t ),po(t )]t (3.6)

.~p{t), ip, (t)
i = [H, (t )+p, (t )]+[H'„po(t )]-t (3.7)

In Eq (3.7), th. e scattering effect (connected with H ) is
treated by a simple relaxation-time approximation:zs'z9
[H~,p, (t )]~ ip, (t )/r Not—e that in .the system of Eqs.
(3.6) and (3.7), the electric field E(t ) is taken into account
in the linear approximation. However, the laser field is
included in Ho(t) and po(t) exactly. In Eq. (3.6), po(t ) is
the nonequilibrium density matrix.

The solution of Eq. (3.7) has a form

The solution of Eq. (3.1) is split as usual in the form
p(t )=po(t )+pi(t), and working in the linear response ap-
proximation with respect to Hti we have

(3.2)

The first term in Eq. (3.2) is the Hamiltonian of electrons
in the laser field. The second term includes the Hamil-
tonian of scatterers and their interaction with electrons.
Let us suppose that electrons are scattered by "internal"
phonons and charged impurities; in this case the Hamil-
tonian H has a form

where

S(t,t') =T exp —i f H, (x )dx (3.9)

p, (t)= i f dt'e" —""S(t,t')[H', ,p,(t')]S(t', t),
(3.8)
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and T is the time-ordering operator.
The current density now can be calculated according

to the formula

j(q, t)= —,
' g [v(p+q, t)+v(p)]at+qadi,

P

Be p ——A(t)

(3.11)

j (q, t ) =Tr[j(q, t )p, (t)], (3.10) v(p, t)=
p

where the current density operator is Substituting (3.8) and (3.11) into (3.10), one gets

j(q, t)=—e -I/7 I

Ee dt'e' ""g [v(p+q, t)+v(p, t)][f0(p+q, t') —fo(p, t')]exp i I—[e +q(~) —s&(v)]dr
P

(3.12)

where v = I /r, f0(p, t ) =Tr[a a po( t ) ], and e ( t ) =e[p —(e /c ) A( t ) ].
In general the current density j (q, t ) consists of all harmonics,

j(q, t)= g a(q, to+nQ)e' +"""E. (3.13)

Here we are interested only in the linear response of the system to the perturbation (3.5) with the frequency co. (Note
that it is consistent with the dispersion-equation treatment described in Sec. II.) The limitations on frequencies made
above imply that we are far from resonance ( ~co+ n Ql %to for any n }. From Eq. (3.12) one can get an expression for the
zero-order Fourier component (n =0) of the conductivity tensor as follows:

a(q, to)= Q n/0 t *

i(co—i v)}(t'—t )

2K —a/0 2q
I

X g [v, (p+q, t)+v, (p, t)][f0(p+q, t') —fo(p, t')]exp i f —[e&+q(v) —e&(r)]d~
P

(3.14)

Equation (3.14) is an exact expression for the conductivi-
ty tensor in the time-dependent electric field F(t ) [except
for the relaxation-time approximation made in Eq. (3.7}].
To evaluate the conductivity tensor o(q, a3) one should
know the explicit form of the nonequilibrium distribution
function fo(p, t ). Generally it is quite a difficult problem.
One of the ways to treat it is to replace the distribution
function fo(p, t ) by the equilibrium distribution function
fo(p). This approximation is equivalent to neglecting the
influence of the incident radiation on the energy distribu-
tion of electrons (heating effect), and it is valid only under
the condition e2F2/mQ &(I (high frequency and weak
electric field) (see, for example, Refs. 30 and 31, and refer-
ences therein).

The other, more accurate way to solve this problem is

I

f,(p, t ) = g f,"(p)e'""' . (3.15)

The limitations on laser frequencies made above mean
that the real absorption of light is absent. In this case, all
higher harmonics of the distribution function (3.15) van-
ish, except the steady-state part fo(p) [below we denote
it by fo(p)]. The equation for fo(p) was given in Ref. 32
as follows:

as follows. The quantum transport equation for the dis-
tribution function fo(p, t ) in superlattices can be derived
from Eq. (3.6) by the method of Refs. 31—33. Generally
the distribution function fo(p, t) consists of all harmon-
ics of type

& IC„I'&,13(p, ) [(1V„+1)fo(p+k)[1 —fo(p)] —
N&fo(p)[1 —f~(p+k)]]

+X IC~ I'&~&(~2 }[&|fo(p —k}[1—f,(p)]—(&i, +1)f,(p) [1—fo(p —k)]]
k

+g ipl'I', ~(P3}[f,(p+k) [1—f,(p) ]—f,(p) [1—fo(p+k)]] =0,
k
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where Z& z„=(1/nQ)[a„(peak, F)—a„(p,F)], P& 2=
—,[ao(p+k, F)—ao(p, F)]+co&, P3 is identical with P,

when cod =0, and

In the limit q~O and when the laser field is absent, from
Eq. (3.17}one can get the result for the longitudinal con-
ductivity o(O, co) obtained by semiclassical Boltzmann-
equation treatment, '

1
o(O, to)= iAe N, bd—2

N
(3.18)

where A =I&(b, /T)/Iu(b, /T) in the case of nondegen-
erated electron gas, and A =b, /2sF in the case of strong
degenerated electron gas (s~=mdN, /m )2b, ); l„(z) are
Bessel functions with an imaginary argument, cF is the
Fermi energy, X, is the electron density, and T is the
temperature of the crystal in the energy units. In the
presence of the laser field, the conductivity tensor has the
exact form of Eq. (3.18) with the change h~E; it can
easily be seen that at the roots of the Bessel function
Jo(erd /Q) the conductivity tensor vanishes. This shows
that dynamic localization of electrons takes place, in
agreement with the results obtained for the mean-square
displacement in Refs. 4—6.

Note that for the electron spectrum in a superlattice
[see Eq. (3.4)],

[u, (p+q)+v, (p)]=d cot ['au+ —Z ],qd
2

(3.19)

~1,2 g JO(Z1, 2
n=1

2
a„(p,F)=—I dx cosnxs[p+(e/Q)Fcosx] .

7T 0

As mentioned in Ref. 32, in our case the absence of any
real light absorption indicates that the phonons are strict-
ly in equilibrium. In this case, the quantum transport
equation (3.16) can be solved exactly. Direct substitution
shows that the distribution function fo(p) has the exact
form of the Fermi function with a change:
e, ~'f, = bc ops,

—d, E=b Jo(end/Q). Thus, the distri-
bution function fo(p, t ) in Eq. (3.14) can be replaced by

fo(p). The other quantities in (3.14) can be expressed in

terms of the small parameter b, /Q, and in zero order in
b, /Q one can get

le fo(p+q) —f,(p)
o (q, to) = g [u, (p+q)+ v, (p)]

2q CO Ep+q+Zp l V

(3.17)

n, (q, t)=Tr[ata p, (t)] . (3.21)

Substituting (3.8) into (3.21) and following all procedures
described above for calculating the current density, one
gets

n, (q, to)= . X(q, co),
eE
lg

where

fo p fo p+q
Xq, to =

co fp~q+fp l v

(3.22)

(3.23)

is the polarization operator.
By comparison with Eq. (3.20) and taking into account

the condition of homogeneity qd ( 1, we obtain again the
phenomenological relation (2.17), but this time through a
microscopic calculation.

IV. LOCALIZATION OF ACOUSTIC WAVES
IN SUPERLAITICES

We proceed to the analysis of the characteristics of the
propagation of acoustic waves in superlattices. It will be
shown below that for a certain range of the parameter
x =so/dk= 1 the localization of waves may occur. This
condition can be reached for narrow miniband (in the
range of a few meV) superlattices or by varying the pa-
rameters of the laser field.

It is commonly accepted that the localization of the
wave occurs when the diffusion constant (D -sl„ l, is the
elastic mean free path) of the wave reduces to zero, 3

while the wave absorption characterized by an attenua-
tion length I, increases. The apparent contradictory re-
sults presented by John and Anderson on the renor-
malization of absorption by localization were reconciled
and shown to apply to different situations by Sornette.
In a recent experimental work, evidence for localization
of acoustic waves in a three-dimensional system was re-
ported. According to Graham, Piche, and Grant, the lo-
calization of acoustic waves is demonstrated by a strong
renormalization of wave velocity (around 5%) together
with intense peaks in attenuation. The similar effect
(strong renormalization of wave velocity associated with
intense attenuation peaks) can happen when an acoustic
wave propagates along the superlattice axis.

To analyze the sound velocity s and absorption
coefficient I' according to Eqs. (2.10) and (2.11), we
should first evaluate the complex conductivity tensor
o(q, co) by using Eq. (3.20). Passing from summation to
integration in Eq. (3.23), one gets

so the conductivity tensor (3.17) can be written in the
other form X(q, to) = +e ~ 2~ cosydy

0 b —cosy
' (4. 1)

e d qd . fo(P} fo(p+q}
o(q, to)= . cot (to iv) g—

2(ttl 2 P+q I
co Z +K —l v

(3.20}

The density matrix p, (t ) (3.8) can be used to evaluate
other quantities. For example, the deviation of the elec-
tron density can be calculated according to the formula

where b=(co iv}/qdb, . In the ca—se of nondegenerated
electron gas, we assumed that 6/T & 1. The integral in
Eq. (4.1) can be calculated by residues; the result is

(4.2)

where p and y are modulus and argument of the complex

X(q, ~)= — '
1 — P g2N, A

i sgng sin2y—
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parameter b =pe 'r, g=x (1+a )
—(1—a }(1+a )

a=(co7) ', sgnx=x/jx~. Substituting (4.2) into (3.20)
we obtain the analytical expression for the real and imag-
inary parts of o as follows: o, 2=oaf, z(z, a ), where

a .os+—
V'r 2

—sin, g&0
a

I 2

f, (z, a)= '

a . 6 a
a 1 — —sin + —cos+, (&0,v'r 2 v'r 2

(4.3)

f,(z,a}= ':
a a

1 — —cos +a —sin, g&0V'r 2 V'r 2
'

a . 6 a
1 — sin —a —cos+, g &0,v'r 2 vr 2

s =so[1+Pfz(z, a )],
I =qPf, (z, a ),

(4.5)

(4.6)

where P=A'E, /2ps 20 ( e ) .
In the high-frequency (or collisionless} limit (a~O),

Eqs. (4.3) and (4.4) are simplified to

f, (z, o)=e(1—x')
&I—x' '

fz(z, O) = 1 —e(x —1) &x' —1

(4.7)

(4.8)

where e(x ) is the step function. Equations (4.6) and (4.7)
recover the result of Ref. 41 for the absorption coefficient
in the collisionless and short wavelength (q/ »1) limits.
From Eqs. (4.7) and (4.8} it is easy to see that f, and f2

diverge at the points ~x ~
=so/db, ~Jo(z)~ =1. This diver-

gence leads simultaneously to strong absorption peaks
and sharp renormalization of sound velocity indicating
the localization of waves. Since this localization of waves
can be achieved by varying the parameters of the laser
field (z=eFd/0), it is called dynamic localization of
waves. [Note that the dynamic localization of electrons
occurs when Jo(z ) =0. ] It is well known that important
parameters in the localization theory (renormalized
sound velocity, absorption length, mean free path of
waves, etc.) are related to the scattering cross section.
Localization can occur if the scattering cross section res-

(4.4)

z=eFd/0, a=x+I+a, r =+( +4a /(1+a ),
cosf/2= &(r+ ~P~ )/2r, x =co/qd&, cro=e'&, co/q'( E)
and ( a ) = T in the case of nondegenerated electron gas;

(e) =eF in the case of strong degenerated electron

gas. Note that in superlattices a maximum value of elec-
tron velocity is Ed, so the maximum value of the electron
mean free path is / =hdr. Our results (4.3) and (4.4)
indeed contain the traditional parameters ql and
a =(cor) ' of the theory of acoustic phenomena [via the
parameter x =(aq/ ) '] and are valid for a wide range of
these parameters.

When screening effects can be neglected, ~&4mcro/c
from (2.10) and (2.11),and (4.3) and (4.4) we have

onantly increases. ' ' ' From this point of view, the
phenomenon described here can be explained as follows.
The process of phonon scattering by electrons is
governed by the momentum and energy conservation
laws,

qd
Fp+q Ep 24 sm pz+ d sin =co . (4.9)

Since qd & 1 and ~sin(p, +q /2)d
~

& 1, the maximum ener-

gy change of electrons is qd ~
b, ~. If co & qd ~

b,
~

[so/dh& ~JO(z)~], the momentum and energy conserva-
tion laws (4.9) cannot be satisfied. In this case, electrons
cannot interact with the wave. When co =qd ~

5
~

[so /d 6=
~
Jo(z ) ~ ], this interaction occurs resonantly and

it tends to localize the wave. This situation is very simi-
lar to the localization of waves by internal resonances
suggested by Sornette and co-workers in Refs. 13-15.
The internal resonances in our system are bound elec-
trons in a superlattice with a resonant frequency
coo=qdb and the localization occurs over a narrow range
of frequencies co=coo. For typical values of superlattice
parameters d and 6, the resonant frequency ~0 is often
larger than the sound frequency co (coo & co), so in order to
localize, that is, to reduce the resonant frequency
cop~coo —co the presence of a laser field is required.

When the scattering frequency v is finite, the peaks of
f, and fz have finite heights and weights. From Eqs.
(4.3) and (4.4), we can see that these peaks occur at the
points

V'I —a'x= (a &1) .
1+a

(4.10)

If a & 1, f, and f2 are monotonic functions and localiza-
tion of waves is almost destroyed. The situation is very
similar to the acoustic Anderson localization problem
where the dissipation of the acoustic energy hampers the
observation of localization (see, for example, Ref. 36).

The behavior of f, and f2 as functions of the dimen-

sionless parameter x for the case z=0 and for several
values of a =(cor) ' is depicted in Figs. 1(a) and 1(b). In
Figs. 2(a} and 2(b) we present the behavior of f, and f2
as functions of the parameter z for the case so/db, =0.25

( d =7 nm, 2b, =2. 6 meV, so =3.5 X 10 cm/s). We can
see a set of intense and narrow peaks showing a strong
absorption (function f, } and a sudden change of sound

velocity (function f2). By increasing the scattering, the

height and distinction of the peaks decrease, and the lo-

calization is suppressed. A similar situation is well

known in the theory of dynamic localization of elec-
trons. 6

For nondegenerated electron gas with N, = 10' cm
T=100 K, and for typical values of parameters (of
CxaAs): A= 10 eV, v=13. 1, so=3.5X10 cm/s, p=5. 3

g cm one gets @=0.003. So we can see that in the re-

gime of dynamic localization, the absorption coefficient
increases sharply 2—10 times and the sound velocity
reduces —1 —5%%uo. In the ease of strong degenerated elec-
tron gas for acoustic-wave frequencies up to 10' s ', the
screening effect cannot be neglected. In this case the ab-
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sorption coeScient and sound velocity are defined by the
complete set of equations (2.10}, (2.11}, (4.3}, and (4.4),
and localization of the wave is not observed.

Let us estimate the magnitude of the scattering effect
and wave frequency required to observe the effect de-
scribed in this section. Two conditions d & A, and
~) 4ncro/E limit the wave frequency within a region
so/d &co&4moo/E. For typical numerical values given
above and d =7 nm, both conditions can be satisfied for
co=(2—5}X10"s '. On the other hand, to avoid the
scattering effect, the condition co~) 1 should be satisfied,
thus, the scattering time must be of order ~~10 ' s. So,
it is expected to observe the dynamic localization of
high-frequency acoustic waves in highly pure superlat-
tices at low temperature. The magnitude of the ampli-
tude F and frequency Q of the laser field can be estimated
as follows. The dynamic localization occurs near the
points z=2.4, 5.5. . . [see Figs. 2(a) and 2(b)]. So if
AQ = 10 meV (Q = 1.5 X 10' s '), the localization will be
observed for a laser field of the order of few hundreds
kV/cm.

FIG. 1. (a) The function f, (x,a) for the following parame-
ters: z =eFd /0=0; curve 1, a =0.001; curve 2, a =0.01; curve

3, a=0. 1. (b) The function f,(x,a) with the same parameters
as (a).

V. PLASMA OSCILLATIONS
IN SUPERLATTICES

In this section we brie6y consider the plasma osci11a-
tions in superlattices under the laser field by using results
for the conductivity tensor o (q, co) obtained in the
preceding section. According to Eqs. (2.16) and (2.18),
the plasma frequency co,(q) and damping constant y(q)
are defined as follows:

f , (z,a)-
12-.

8-

4-

0 4
z=eFd/0

f.(z,a) 5

p-.~~'~
—5-

a)

2

l.1
~ ~ ~ ~ ~ I ~ ~

12

b)

4m1+ o z(q, a), )=0,
ECOp)

O 1(q, COp))
r(q}=

Bo z(q, cop()/Bco,

(5.1)

(5.2)

When deriving Eqs. (5.1) and (5.2), we assume as usual
that co&I &&y.

Let us consider the simple case when the collisions in
plasma can be neglected (co &&)v). In this case the real
and imaginary parts of the conductivity tensor are given
by Eqs. (4.7) and (4.8). Substituting (4.7) into Eq. (5.1)
one can see that it has a solution only when co~, ) lElqd.
In this case, one gets

[1+(raq }'1'
~,&(q) =l&lqd», ~,~& l&lqd,

[1+(rDq) )
—1

(5.3)

10-

15-

20
0

~ ~ ~ ~ I I I I / l ~ I I ~ l ~ ~ ~ $ ~ ~ ~ ~ I ~ ~ I ~

8 12
z=eFd/n

where rz is the Debye screening radius:
rD=a(E)/4me N, It is interesti. ng to note that in the
case of strong degenerated electron gas, the Debye
screening radius become independent on the carrier den-
sity: ra=cd/4me .

In the case of strong screening when rzq « 1 we have

FIG. 2. (a) The function f, (z,a) for the following parame-
ters: so/Lid =0.25; curve 1, a =0.001; curve 2, a =0.1; curve 3,
a=0.5. (b) The function fz(z, a) with the same parameters as
Fig. 1(a).

(5.4)

On the other hand, when the screening is weak rDq )&1
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formula (5.3}gives

(5.5)

For this range of wave numbers, the plasma oscillations
follow the acoustic law of dispersion. The velocity of
such an "electron sound" s =

~
b, ~d has the same order of

magnitude as the electron velocity along the superlattice
axis. Formulas (5.3)—(5.5) recover the result of Ref. 16
when the laser field is absent: A~h. The spectrum of
plasma oscillations in units of co =

~
E ~d /rD as a function

of the dimensionless wave number qra is presented in

Fig. 3.
For the plasma oscillations with the spectrum (5.3),

one can see that the damping constant (5.2) equals zero.
As mentioned already in Ref. 16, this phenomenon is ex-

plained as follows. The damping of plasma oscillations is
governed by the momentum and energy conservation
laws (4.9). For the plasma oscillations with the frequency
(5.3), the conservation laws cannot be satisfied, which in
turn allows the plasmons to propagate along the superlat-
tice axis without decay. Note that in the dynamic locali-
zation regime when Jo(eFd/Q)=0 the frequency (5.3)
turns to zero and plasma oscillations along the superlat-
tice axis disappear.

VI. DISCUSSION

Let us summarize the results presented in this paper.
As reviewed in Sec. II, within the framework of the
dispersion-equation treatment, all characteristics of the
propagation of the elastic wave are connected with the
conductivity tensor. To obtain this fundamental quanti-
ty, we have generalized the Kubo formahsm, which al-
lows us to evaluate the current and electron deviation
densities characterized by their response to the longitudi-
nal self-consistent electric field E(x, t) driven by the far-
infrared laser radiation. The generalized Kubo formula
for these physical quantities together with the quantum
transport equation for nonequilibrium electron distribu-
tion in a laser field completely describe the behavior of
the electron system in the presence of a laser field. For

1I I I I I I I 11:i! I I

6 8 IG
Nl, 'iviBF I',

FIG. 3. The plasma frequency cop&/Np as the function of di-

mensionless wave number qrD.

infrared laser radiation, whose frequency exceeds the
miniband width but does not cause interminiband transi-
tions, the distribution function of electrons can be found,
which has the exact form of the Fermi function with the
renormalized electron spectrum. In this case, the analyti-
cal expression for the conductivity is obtained. We have
shown that for a certain range of the parameter
so/d ~6~ =1, a strong renormalization of sound velocity
and intense absorption peaks indicating the localization
of wave are observed. The conditions for this kind of lo-
calization are discussed. The spectrum of plasma oscilla-
tions propagating along the superlattice axis is also calcu-
lated. The characteristic feature of these plasmons is the
absence of Landau damping. In the dynamic localization
regime, the plasma oscillations along the superlattice axis
disappear.

We would like to comment on the approximations
made in this work.

(1) The absorption coefficient I = —
qz and the change

in sound velocity given by the dispersion-equation treat-
ment are correct only under the conditions qz/q, «1
and 5s /so « 1. That means the attenuation length

t, =I' ' must be larger than the wavelength A, (weak ab-
sorption), and the change in the sound velocity must be
less than the sound velocity so in the absence of the in-
teraction. However, for complete localization we should
have s ~0 or 5s/so —1. But, because of the limitation of
our theory, we were not able to come to this regime.

(2) The dependence of the response to the action is lo-
cal in space and time, that is, j(x, t)= 0(q, co)E( xt).
This approximation is good only for homogeneous sys-
tems and restricts our investigations only in the region
where the wavelength A, is larger than the superlattice
period.

(3) The constant relaxation-time approximation is ade-

quate when the condition co) v is fulfilled. Note that
these restrictions might be eliminated by the Green's-
function treatment of the problem (see, for example, Refs.
37, 42, and 43).

Beside these main approximations in evaluating the
conductivity tensor, we limited ourselves to zero order in
the parameter b, /Q, . However, as was shown by addi-
tional calculations, the corrections to our results appear
only in second order of this parameter, thus, for the case
of 6/0&1, we consider that the inclusion of these
corrections are not relevant.

Note that here we consider the localization and propa-
gation of waves along the superlattice axis. However, a
more interesting case should be when surface acoustic
waves propagate parallel to the layers. In this situation
the localization of acoustic waves is experimentally ob-
served. ' ' ' ' The theoretical investigation of this prob-
lem will be addressed in the future.
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