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A simple three-dimensional orthorhombic model of particles with displacive degrees of freedom

interacting with the strain variables has been studied by the molecular-dynamics technique. The
modulated degrees of freedom is coupled linearly to the shear and bilinearly to the bulk deformation
component. The computer simulation has confirmed that the commensurate-incommensurate phase
transition mechanism relies on nucleation and growth of stripples. Diferent configuration patterns
of the initial commensurate phase revealed that the elastic domain walls between shear domains

can be used to nucleate new discommensuration planes, and stripples are able to recover planar
folding defects of the lattice, defects which are the result of heavy crystal deforxnation. It is shown

that in the incommensurate phase the shear component forms a modulated field which follows the
modulation wave with the same wave vector, but the bulk deformation component doubles the
modulation wave vector.

I. INTRODUCTION

Some dielectrics and metallic alloys exhibit incom-
mensurate modulations. Usually such a xnodulated phase
can be transformed to a commensurate one. Close to
a phase transition point the incommensurate phase can
be considered as an ordered sequence of domains of a
reference comxnensurate phase separated by discoxnxnen-
suration planes. Typically, in the phase transition kom
commensurate to incommensurate phase a large num-
ber of discommensuration planes is generated in the
crystal, and this process is carried on by the stripple
mechanisxn. A stripple resembles a disk built up
&om discoxnmensuration planes and bordered by a depe-
riodization line. Stripples are nucleated by thermal fIuc-
tuations in the metastable states of usually overheated
crystals, and later they grow, provided they exceed a
critical size, similar to the classical nuclei in the first-
order phase transition. However, in the first-order phase
transition one nuclei is, in principle, able to transform
the whole volume of the crystal. The peculiarity of the
incommensurate phase is that one stripple adds to the
system only one new modulation period, which usually
means a few discomxnensuration planes. In the case of
commensurate k = 0 to incommensurate phase transi-
tion each stripple carries on only two discommensuration
planes. Thus, usually a vast number of stripples must be
nucleated in order to coxnplete the phase transition.

It is believed that the stripple mechanisxn of the
commensurate-incommensurate phase transition can be
perturbed by crystal imperfections, e.g. , point defects,
ixnpurities, grain boundaries, dislocations, and sur-
faces of the crystal. Each of these imperfections can
locally modify the potential and generate a stress field
which in turn influences the incoxnmensurate modulation.

The presence of random point defects enhances the hys-
teresis efFects. Impurities may also serve as possible nu-
cleation centers and can directly influence the properties
of the modulated crystal. For example, systematic x-ray-
difFraction measurements on mixed (Rb i K e)2ZnC1 4
crystals show that point defects interact strongly with
discommensuration planes, and act as pinning centers.
The observation of memory efFects shows that defects
can also interact kinetically with modulation, by difFus-

jng and relaxing jn the "field" pf the modulation. ' If
the periodicity of this field is maintained constant for a
sufBcient long time, a defect density wave of the same
periodicity as the ordering field develops, which acts as
a periodicity "trap" with respect to all subsequent peri-
odicity changes.

The properties of the modulated phase should also de-
pend on the deformation and stress fields present in the
crystal. These static fields arise &om all types of defects
including point defects, grain boundaries, dislocations,
surfaces, and external stresses. There is experimental ev-
idence for existence of such fields even in the free crystal.
Namely, the phase transition between two commensurate
phases, which is of first order, and should occur at one
temperature, takes, as a rule, place during soxne temper-
ature interval. One can attribute the coexistence interval
of the two commensurate phases to the stress distribu-
tions present in the crystal, then from the phase bound-
ary of the p —T phase diagram one estixnates the value of
the stress dispersion, which for Rb 2ZnBr 4 (Ref. 20) and
[N(CHs)4]2 ZnC14 (Ref. 21) is of the order of 300 bars.

The inQuence of the crystal stress and deformation on
the modulation properties have not yet been studied. In
this work we have undertaken a task to set up a sixn-

ple orthorhombic model, which has a modulated phase
and in which the modulation interacts linearly and bi-
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linearly with the elastic deformation components. It is

known that the e6'ect of unit-cell deformation might cu-

mulate over a long distance, therefore, strains are ex-

pected to play an essential role in the phase transitions
involving long-wavelength modes, like in the commen-

surate k = 0 to incommensurate phase transition. The
explicit treatment of strain allows one to consider an in-

fluence of elastic domain walls on the mechanism of the
phase transition.

In Sec. II we describe the model, and the quantity
which are calculated to define the action of the stripples.
Some attention is devoted to the boundary conditions,
which are essential for the simulations in the presence
of strain variables. Section III describes the commensu-
rate k = 0 to incommensurate phase transition obtained
under diHerent boundary and initial conditions for a sys-
tem which is in a strengthened state and is confined to
the restricted volume. The present simulations confirm
the existence of stripple mechanism in all cases. It also
shows that the coupled shear and deformation compo-
nents follow the modulation waves, and that the elastic
domain walls could serve as nuclei for discommensuration
planes. They proved that the folding defects which were
formed in the simulation to diminish heavy macroscopic

deformation of the simple crystallite could be removed by
stripples, because the modulated phase consists of a reg-
ular sequence of elastic stripe domains which more easily
accommodate large deformations.

ZX. MODEI.

The model considered here is a simple three-
dimensional orthorhombic lattice with one molecular ob-
ject in the unit cell. Each object at the lattice site
(i, j, k) has four degrees of freedom, three coordinates
X, j k, Y; j,k, Z;~ k, and a soft spin-like variable S;,j,k,
which describes the molecular orientation. Each molec-
ular object interacts with its first and second neighbors
via harmonic forces, and additionally, the soft spin is
assumed to be in the anharmonic local potential. This
potential can be treated as originating &om molecular
groups which are not explicitly taken into account in the
model. The potential energy can be written as

V = +local + Vintersite + +elastic + ~coupling~

where

Vi--1 = ). E~,',, k+~~,', ,k

i,j,k

Vintersite = [ le~i,j,k~i+1,j,k + Jly~i,j,k~i j+l,k + lz i,j,k, j) +,j»j~ + j
i,j,k

2
Ve&astic = ) Ae(Ri, j,k;i+1,j k

—ap) + Ay(Ri, j,k;i j+1,k bp) + Az(Ri, j,k;i,j,k+1 cp)
i,j,k

+Bey(R; j k, +1 &pl, k — Op + bp) + Bez(Ri,j,k;i+1,j,k+1 tip + 0)
2 2 2 2 2 2

+Byz (Ri,j,k;i,j+1,k+1 0 + ~0) (4)

2
Vcoupting = ) 4Azctz(R' j,k;i j,k+1 cp)~i '

k + 4ByzPyz(Ri j,k;i jul, k+1 0 + o)~i~jik
i,j,k

4ByzPyz(Ri j,k;i,j+1,kpl op + cp)~i,j,k

where

2 . . . . 2R;. .. , =[(X;,k —X;, „)+(Y;, k —Y, , k)
+(Z, , k —Z;, k) ]''. (6)

Here, ao, bo, and co denote the bare orthorhombic lat-
tice constants. In the second and third terms of Eq. (5)
either both upper or both lower signs of j and k incre-
ments should be taken. The soft-spin variable S; ~ k is
defined in a spin subsystem, Eqs. (2) and (3), which
itself is already able to form a modulated phase. Its har-
monic part leads to a soft mode while its anharrnonic
fourth-order term stabilizes this mode. The modulation
is directed along the Z axis. Such a model without a cou-

pling to strain has already been studied in one-, two-,
and three-dimensional cases. The harmonic part of
the potential energy, Eqs. (2) and (3) can be transformed
into a diagonal form, and then the corresponding eigen-
vector or dispersion curve reads

u (k) = 2E+ 2Jle cos2vrk ap + 2Jl„cos2nkybp

+2J1, cos2xkzcp + 2J2, cos 4mkzcp, (7)

where k = (k, k„,k, ). Thus, the spin subsystem pos-
sesses a simple branch with a nonzero eigenvalue at the
Brillouin zone center. When id2(k) becomes negative its
minimum describes the wave vector and the direction of
the static modulation. The extremum condition for the
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minimum of u2(k) along the k, direction relates the in-

commensurate wave vector k, ;„ofthe modulation with
the ratio of Ji, /J2,

Jg,
cos 2%kg mj~co

J2

The two other nearest-neighbor parameters Jq~ and J~„
define the curvature of the dispersion curve around the
minimum in k and k„directions, respectively.

A part of the ground state (T = 0) phase diagram for
the spin subsystem defined by Eqs. (2) and (3) is shown
in Fig. 1. It contains the normal phase (N), commen-
surate phases 0/1 (k = 0), 1/6, and 1/4, and regions of
incoxnmensurate modulation. The computer simulations
reported here have been carried out through the phase
boundary &om the commensurate k = 0 to the incom-
mensurate phase. For that purpose the E and Jq, pa-
rameters were changed gradually. A similar phenomenon
occurs in real crystals where the effective potential energy
of these degrees of &eedom, which forms the modulation
pattern, is modified due to, for example, temperature
changes.

The elastic potential energy consists of harmonic
springs which are assumed to be related to both the near-
est and next-nearest neighbors. This is the minimum
range of elastic interaction which guarantees stability of
the crystal lattice. Such a choice of forces assures as
well that the phonon normal modes form three acoustic
branches and hence the structure behaves correctly like

an elastic medium.
The coupling energy, Eq. (5), between the elastic and

spin subsystems consists of linear spin- YZ shear and bi-
linear spin-ZZ deformation terms. The linear term con-
tributes to the phonon dispersion curves of the system.
Its symmetry requires that along the [0, 0, 1] direction the
two branches which are of the same symmetry, namely
the spin dispersion and the transfer acoustic phonon
curves, cannot cross. As a result a combined phonon-spin
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mode is formed. Therefore, this coupling is expected to
play an important role in the long-wavelength limit where
the elastic modes of the largest amplitudes could match
the spin modes.

The bilinear term in the potential energy in Eq. (5),
couples the square of the spin with the ZZ component
of the deformation. Thus, any nonzero value of the spin
S;~. i, involves elongation (n, ) 0), or shortening (n, (
0) of the lattice constant in the Z direction. This bilinear
coupling is allowed by symmetry for any value of the wave
vector of the modulation.

The present model has been studied by the molecular-
dynamics technique. The calculations have been per-
formed on the Hitachi supercomputer S-3800/380, and
graphics have been visualized by advanced visualization
system implemented on the TITAN2 by Kubota Co. The
simulated crystallite has a shape of rectangular paral-
lelepiped and consists of either (A) 26 x 26 x 48 = 32448
or (B) 38 x 38 x 76 = 109744 unit cells. The Newto-
nian equations of motion have been solved by a simple
difference scheme with the time step At = 0.leap, using
the canonical ensemble with the temperature constant.
The amplitude of average kinetic energy per degree of
&eedom is taken as the system temperature T. The
boundary conditions are the crucial point for the sim-
ulation. Typically, either periodic or &ee surface bound-
ary conditions are used. The first avoids dealing with
the surface problem and forces all topological defects like
stripples, to nucleate within the system. The second al-
lows the topological defects to enter and leave the sys-
tem through the surfaces. For elastic properties none
of the above boundary conditions seem to be appropri-
ate. The periodic boundary conditions would fix the vol-
ume of the simulated crystallite, and allow it to deform
freely. Free boundary conditions would be too crude of an
approximation for nonlarge linear sizes of the simulated
crystallite, since elastic forces have long-range charac-
ter. Therefore, we have used restricted volume boundary
conditions, 4 i.e., the simulated crystallite was inserted
into a cavity of fixed volume and fixed shape. Addi-
tionally, the magnitude of spins on the surfaces of the
crystallite was set to be equal to the average spin am-
plitude. To avoid, at least partly, the surface problem,
volume figures and maps presented below show only the
inside of the simulated crystallite. For data analysis four
layers of unit cells have been removed &om each crystal
surface.

To lower the eHect of Buctuations a smoothed spin field
D; ~ I, was introduced as a spin average over a short time
period (lwq) and narrow space window. Thus,

D;, ~ = go(~;, a) + ai(~', ~+i) + a2(~;, I+~), (9)

-10.0
-4.0 -2.0

Jiz~ &2z

0.0

FIG. 1. Ground-state phase diagram of the soft-spin sub-
system in the absence of the coupling potential energy,
+coupling = 0

where we have chosen go, gq, g2 to be 0.4, 0.2, 0.1, respec-
tively. Thus, the following distributions (fields) have
been used in describing the results: smoothed spin D; z g,
YZ shear o,". .

& and ZZ deformation o,- -
& components.

7

lent

The isosurfaces D; ~ I,
——0 of the three-dimensional spin

field spanned over the simulated crystallite define the dis-
commensuration planes.

The YZ component of the shear field was defined as
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the angle between two vectors pointing towards Y and Z
directions of the lattice, i.e.

angular grids which have not been corrected for the crys-
tal deformation.

III. ELASTIC DEFORMATION AND PHASE
TRANSITION MECHANISMS

Positive and negative values of cr". '.
& denote two elas-

~)2 t

tic domains. The elastic domain walls will be oriented
along the coherent matching planes which in this case
are (0, 1,0) and (0, 0, 1).

The ZZ component of the deformation field is equal
to the deviation of the local lattice constant in the Z
direction:

(S',I,I;',I,I+1 &I)

))2)
Co

Positive and negative values of cr". '.
&

denote local expan-
~)2 t

sion and compression of the lattice, respectively. Both
quantities o". '.

&
and 0". .

& are averaged over a short time
)2) ~)2)

period (leo).
Some data will be presented in the form of two-

dimensional maps in which the color of each pixel was set
to the average values of given fields along the X direction,

~~O zs

The following sequence of colors is used: blue (negative)-
green-yellow-red (positive). Both the volume figures with
isosurfaces and the color maps have been drawn on rect-

The mechanism of the commensurate A: = 0 to in-
commensurate phase transition relies on nucleation and
growth of stripples. The reported runs started &om
equilibrated particle configurations which corresponded
to a commensurate phase k = 0 at finite temperature.
Then, the potential parameters E and Ji, were grad-
ually changed to the values which correspond to the
stable incommensurate phase; see the phase diagram
Fig. 1. Stripples or discommensuration planes appeared
in the metastable state, and the place they occur and
the manner in which they grow both depend on the spin-
deformation coupling potential and the elastic domain
pattern. In real incommensurate crystals the wave vector
of the modulation shifts with varying temperature, pres-
sure, or external field. This behavior is a consequence of
a shift of the minimum of the soft mode &u2(k) caused
by the renormalization of the parameters of the effec-
tive potential energy by thermal Huctuations of degrees
of freedom that otherwise are irrelevant for the incom-
mensurate modulation. The computer simulation disre-
gards the irrelevant degrees of &eedom and mimics the
above-mentioned behavior by simply changing the model
parameters of the potential.

FIG. 2. The (a) smoothed spin, (b) YZ shear, and (c) ZZ deformation maps representing the initial particle configuration
with the cylindrically shaped domain wall, before the commensurate k = 0 to incommensurate phase transtion took place. The
Y and Z axes point to horizontal and vertical directions, respectively.
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FIG. 5. The (a) smoothed spin, (b) YZ shear, and (c) ZZ deformation maps representing the final particle configuration
after the phase transition from commensurate k = 0, with cylindrically shaped domain walls, to incommensurate phase took
place. The Y and Z axes point to horizontal and vertical directions, respectively.

sion (red spots) close to the two remaining corners.
During the run the initial values of E and J~, param-

eters have been changed up to the values 7.0 and —5.0,
respectively. These changes put the crystallite into the
metastable conditions and the system reaction was such
that parts of the domain walls, which were parallel to
the modulation direction, started to wave, as is shown

in Fig. 4(b). The outer tips of this wave went to the
crystal surface, where they split off and formed a dis-
commensuration plane, Fig. 4(c). Later the remaining
discommensurations followed the same way, Fig. 4(d).

The maps of the final incommensurate phase are shown
in Fig. 5, where, of course, the modulation is formed by
stripes of positive (red) and negative (blue) values of spin.
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FIG. 7. Volume representation of the discommensuration planes (isosurface D;,», », = 0) taken (a) during phase transition
from commensurate phase k = 0 to incommensurate phase, and (b) in the Snal incommensurate phase. The X, Y, and Z axes
point to vertical, out of the 6gure plane, and horizontal directions of the crystallite, respectively.

Yellow lines denote small displacements and correspond
to the discommensurations. The YZ shear component,
Fig. 5(b), arranged as a sequence of elastic domains, and
each elastic domain wall occur at the same place as the
discommensuration. The ZZ deformation component,
Fig. 5(c), shows a more random pattern, in which, how-

ever, it is possible to elucidate the doubling of the mod-
ulation wave vector. Indeed, the pattern of the "domain
walls" in Fig. 5(c) seems to occur at twice as small a sep-
aration. That means that the characteristic modulation
wave vector of the ZZ deformation field is twice as large
than the one corresponding to the main modulation.

B. Expanded crystal

A similar run as described in Sec. IIIA for the ex-
panded crystal with cylindrically shaped domain walls
was made with the larger system B. The potential pa-
rameters for this run were generally twice as large than
previously used and were set to A = 4.4, A„=3.6, A, =
4.0, B y = 2.2, B = 2.4, By = 2.0, Jy~ = —4.0) Jyy
—4.0, Ji, ———16.0, J2, ——4.0, E = 16.5, G = 2.35, and
n, = —0.41,P„,= 0.41. The system was inserted into
a restricted volume cavity of the size 38ap x 38bp x 76cp
with rectangular parallelepiped shape. The crystallite

»

««ck
«

«

FIG. 8. The (a) smoothed spin, (b) YZ shear, and (c) ZZ deformation maps made during the phase transition from
commensurate phase k = 0 to incommensurate phase. The particle configuration was the same as for Fig. 7(a). The Y and Z
axes point to horizontal and vertical directions, respectively.
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was uniformly expanded and remained in a strengthened,
although in a single, domain state as shown in Fig. 6(a).
During the run Jq and E potential parameters were
changed to values of —10.0 and 13.0, respectively. In this
way the crystallite went to a metastable state. The Cern-
perature of the run T = 0.04 was kept constant. Close to
the end of the run stripples were nucleated mainly close
to the opposite corners of the crystallite, Fig. 7(a), where
the largest stresses occurred due to closing the crystal in
the cavity. Each stripple produces two discommensura-
tion planes. In Fig. 8 we show a smoothed spin, YZ
shear, and ZZ deformation maps, which are the projec-
tion of the system on the YZ plane. The stripples (blue)
as well as some stripes of the modulation are seen in
Fig. 8(a). The YZ shear pattern, shown in Fig. 8(b)
generally follows the soft-spin configuration. Thus, neg-
ative (blue) displacement of spin involves a positive YZ
shear (red). The ZZ deformation component, Fig. 8(c),
which is bilinearly coupled to the strain, has a tendency
to double the modulation wave vector, so that the largest
compression (blue) occurs just at the place of the maxi-
mum spin modulation amplitude. Moreover, one notices
a ZZ expansion region (red) at the point of the deperi-
odization line of the stripples. There, the spin amplitude
is close to zero, the a, coupling term ceases to contribute,
and the configuration becomes highly unstable, therefore,
the lattice could be at this point considerably expanded.

C. Compressed crystal

In the case of compressed crystal the volume of the cav-
ity was smaller than the volume required by the crystal
with free boundary conditions. The potential parame-
ters and the size and shape of cavity were the same as
used for the expanded crystal in Sec. III B, with the only
exception that the bilinear coupling coefBcient was posi-
tive and was set to o,, = 0.2. The macroscopic shape of
the &ee crystallite could be sheared and elongated along
the Z direction, in comparison with its size and shape
in the absence of coupling (o., = P„,= 0). Thus, it
could either be compressed uniformly, or it could gener-
ate defects which are able to compensate the deforma-
tion. And indeed, the crystal, equilibrated in the com-
mensurate k = 0 phase formed a type of planar defect
shown in Fig. 9(a). A view of the corresponding particle
configurations is given in Fig. 6(b). Unit cells between
the planar defects remain in the perfect crystalline state,
while those in the defect regions are heavily deformed. A
closer look at the particle configurations reveals a fold-
ing of the crystal lattice in the defect region. The folds
reduce both the macroscopic shear and the elongation of
the crystallite. We have found that in this region 7%%uo of
nearest-neighbor pairs of particles fall below the distance
0.6 of the average lattice constant, and a few far-away lat-
tice sites become nearest-neighbor. Unfortunately, the

?.
I'

FIG. 9. Volunie representation of the YZ shear coinponent (isosurface cr". *,
&

—0), sIiowing four stages of the phase transition
from commensurate k = 0 to incommensurate phase for the compressed crystal model. The same states of the crystallite are
drawn in Fig. 11 for the discommensuration planes. The X, Y and Z axes point to vertical, out of the figure plane, and
horizontal directions of the crystallite, respectively.
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interaction between the newly arised nearest-neighbors
pairs was not taken into account in the numerical code,
since it would be required to update the neighboring list
which due to our vectorization procedure must be kept
constant.

In Fig. 10 the maps of smoothed spin, YZ shear, and
ZZ deformation are shown in the initial states. Each
fold consists of two edges seen in Fig. 10 as collection of
dots with remarkably large deformation. The separation
between subsequent folds as well as their orientation de-
pend on the values of o., and P„~parameters. For twice
as large o., six folds appeared in the same crystallite.

To bring the system to the incommensurate phase the
potential parameters were gradually changed to E = 13.0
and Jq, ———10.0. The temperature was kept constant at
T = 0.04. Stripples were nucleated and they transformed
the crystal to the incommensurate phase. Some stages
of the evolution of YZ shear and of the discommensura-
tion pattern are compared in Figs. 9 and ll, respectively.
Figures 9(a) and 11(a) correspond to an initial commen-
surate domain with planar defects. The Grst stripple,
shown in Fig. 11(b) appears also in the YZ shear field,
Fig. 9(b). The stripples destroy the folds and recover
completely the perfect crystal lattice. The final incom-
mensurate modulation is accompanied by the sequence
of shear elastic stripe domains characterized by the same
incommensurate wave vector as the main modulation.

The stripe elastic domains are able to reduce the inter-
nal stresses in ZZ direction.

IV. FINAL REMARKS

The results of the simulations confirm the existence of
the stripple mechanism also in the presence of deforma-
tion. The stripples have a structure determined by the
domains of the reference commensurate phase k = 0. All
simulations were carried out on a system inserted into
a restricted volume and we believe that such conditions
occur inside a macroscopic crystal. To be consistent with
the approach and to model properly the deformations of
the crystallite, we did not impose the periodic bound-
ary conditions, instead, the spin component was set at
the surface to a constant value. Even then one is not
able to avoid the stripple nucleation at crystal edges and
surfaces. Unfortunately, periodic boundary conditions
could be imposed only on all degrees of freedom simul-
taneously. If one imposes periodic boundary conditions
on the spin variable and leaves the surfaces &ee for the
strain, a number of unphysical assumptions about a spin-
strain coupling at the crystallite surfaces are required.

In this work we have explored only simple cases where
the lattice was macroscopically deformed due to re-
stricted volume. Then, it was proved that the elas-
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FIG. 10. The (a) smoothed spin, (h) Y Z shear, and (c) ZZ deformation maps representing the initial particle configuratio
of the compressed crystal model before the commensurate k = 0 to incommensurate phase transtion took place. The maps are
drawn from the same state as the volume representations in Figs. 9(a) and 11(s). The Y and Z axes point to horizontal and
vertical directions, respectively.
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FIG. 11. Volume representation of the discommensuration planes (isosurface D, ,~ g = 0), showing four stages of the phase

transition from commensurate k = 0 to incommensurate phase for the compressed crystal model. The X, Y and Z axes point

to vertical, out of the figure plane, and horizontal directions of the crystallite, respectively.

tic domain walls which are oriented along the matching
plane directions could be converted to discommensura-
tion planes. Another effect found in this work is related
to the recovering of heavily deformed lattice folds by
stripples which redistribute the 6eld of stresses and pro-
duce a con6guration of tiny stripes of elastic domains,
which are able, in turn, to accommodate larger defor-
mations. In computer simulations these folds are rather
unphysical objects, however, in real crystals, similar pla-
nar defects arise during plastic deformation. One hopes
that an incommensurate phase would be able to recover
these defects at least partly.
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