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Tricritical behavior of the frustrated XF antiferromagnet
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Extensive histogram Monte Carlo simulations of the XY antiferromagnet on a stacked triangular lattice

reveal exponent estimates that strongly favor a scenario of mean-field tricritical behavior for the spin-order

transition. The corresponding chiral-order transition occurs at the same temperature but appears to be decou-

pled from the spin order. These results are relevant to a wide class of frustrated systems with planar-type order

and serve to resolve a long-standing controversy regarding their criticality.

The nature of phase transitions in frustrated systems that
can be mapped onto spin models has been studied ex-
tensively over the past twenty years by means of renor-
malization-group (RG) methods and Monte Carlo (MC)
simulations. ' The triangular antiferromagnet serves as the
simplest example of geometry-induced frustration, which in
this case gives rise to the noncolinear 120' spin structure.
This type of magnetic order can also be described as a heli-

cally polarized spin density. The appropriate Landau-
Ginzburg-%ilson Hamiltonian is usually taken as

W=rS. S*+(V.S)(V S*)+U,(S.S*)'+U,~s S~',

where S is a complex vector and there are two fourth-order
terms as a consequence of frustration. One reason for the
plethora of studies of this Hamiltonian is that in addition to
describing helical spin systems, it is also relevant to the di-

pole phase of superQuid He, Josephson-junction arrays in a
transverse magnetic field, as well as the fully frustrated bi-
partite lattice (see Refs. 1 and 2 for references). Although
some of the earlier RG studies suggested a continuous tran-

sition within standard universality classes, others found evi-
dence for a first-order transition. In view of these results, the
tricritical behavior suggested by the histogram MC simula-
tions of the XY stacked triangular antiferromagnet (STAF)
reported here may not be too surprising.

Interest in the criticality of frustrated spin systems has
recently been enhanced due to the suggestion by Kawamura
of "chiral" universality classes associated with the XF and
Heisenberg STAF's. ' This claim is partially supported by
arguments which demonstrate that the symmetry of the order
parameter V in the XY case involves a discrete twofold chi-
ral degeneracy as well as that of the two-dimensional rota-
tion group, so that V=Z2XS&. If this is indeed the rel-
evant symmetry, and if the transition is neither first order nor
tricritical, then the universality class should be different from
the standard ones. The strongest support for the existence of
these universality classes comes from Kawamura's MC
simulations. These were of the conventional type using
rather large lattices L XL XL with L =18—60 but with a pos-
sibly modest number of Monte Carlo steps per site (MCS),
6—20 runs with 2X 10 MCS each. Critical exponents were
estimated by the conventional '*data collapsing" method,
which necessitates a simultaneous estimation of the critical

temperature. In the Heisenberg case, the reported values are
u =0.24(8), P=0.30(2), y= 1.17(7), and u =0.59(2) .
These results have recently been corroborated by three dif-
ferent groups using the more accurate finite-size scaling
based on histogram MC data. In the XY case, the expo-
nent values reported by Kawamura are u =0.34(6),
p=0.253(10), y=1.13(5), and v=0.54(2). Both of these
sets of exponents are quite different from those of any stan-
dard class in three-dimensions (3D). However, they are
somewhat suggestive of mean-field tricriticality (apart from
the values for n), where a= L p=, y=1 and v=-,'. Note that
it is only Kawamura's estimate for p in the XY case which
coincides with these values within error.

Unique sets of exponents were also found for the chirality
order, which Kawamura suggests occurs at the same critical
temperature. The coincidence, or not, of the two critical tem-
peratures has received much attention in corresponding 2D
frustrated systems. ' Most authors appear to support the no-
tion that they are the same.

In contrast with the suggestion of chiral universality, the
conclusion of a study of the nonlinear o. model in 2+ e di-
mensions by Azaria et al. ' is that the criticality of such frus-
trated systems, at least in the Heisenberg case, is nonuniver-
sal. Depending on unspecified system parameters, one can
have either standard O(4) criticality, a first-order transition,
or mean-field tricritical behavior. It is natural to extend these
arguments to the XF case and speculate either a first-order or
tricritical transition. ' %e note that the nature of the chiral
transition was not addressed by these authors.

This already confusing situation was recently further ex-
acerbated by the results of Zumbach's local-potential-
approximation treatment of the RG.' This work emphasizes
the possibility of "almost second-order phase transitions" for
frustrated systems, where there can be a set of effective criti-
cal exponents (also see Refs. 3 and 14). At least in the
Heisenberg case, the distinction between this possibility and
that of a chiral universality class may never be satisfactorily
resolved by MC simulations.

Although many recently reported experimental results
have been interpreted in a way that supports chiral
universality, Azaria et al. have argued that earlier data are
fully consistent with their scenario.

The finite-size scaling of thermodynamic functions evalu-
ated from histogram MC data has demonstrated the ability to
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FIG. 1. Results of applying the cumulant-crossing method (see
text) to estimate the critical temperatures associated with the spin
and chiral orderings where b =L'/L.

yield highly accurate critical-exponent estimates for unfrus-
trated systems. ' In addition, this procedure when com-
bined with the cumulant crossing method gives an indepen-
dent and accurate estimate of critical temperatures. This
latter feature is particularly useful for frustrated systems in
view of the possibility that spin and chiral degrees of free-
dom order at different, but nearby, temperatures.

It is hoped that the results of MC simulations presented
here will provide convincing evidence that the XY STAF
exhibits mean-field tricritical behavior.

Near-neighbor antiferromagnetic exchange coupling in
the basal plane, J~ = 1, and ferromagnetic coupling along the
c axis, J~~= —1, were used. The Metropolis MC algorithm
was employed in combination with the histogram technique
on lattices with L =12—33 and runs using 1 X 10 MCS for
the smaller lattices and 1.2X 10 MCS for the larger lattices,
after discarding the initial 2X10 —5X10 MCS for ther-
malization. Averaging was then made over 6 (smaller L) to
17 (larger L) runs. For the largest lattices, this gives a re-
spectable 20.4X10 MCS for averaging. The advantage of
performing many runs is that errors can be estimated (ap-
proximately) by taking the standard deviation. The present
work represents one of the very few reports of finite-size
scaling of MC data which includes error bars. All histograms
were generated at Kawamura's estimate of the critical tem-
perature, T,= 1.458.

The correlation time 7. for the spin order parameter was
estimated' to be about 620 MCS at L =24 and T=1.458.
With the assumption ~-L, it can thus be expected that
averaging was performed using roughly 500 independent
configurations in a single run for our largest lattice size.
Although r decreases sharply away from T„ it remains
rather large. At T=1.440, for example, 7 was found to be
approximately 200 MCS. This result implies that averaging
was made using not more than about eight independent con-
figurations in a single run for Kawamura's simulations at this
temperature with L = 60.

Results of applying the cumulant-crossing method to es-
timate the critical temperatures associated with both spin and
chiral orderings are presented in Fig. 1.The points represent
the temperatures at which the order-parameter cumulant

FIG. 2. Finite-size scaling of the specific-heat data for
L = 12—33. Data at L=12 are excluded from the fit. Error bars are
estimated from the standard deviation found in the MC runs.

U (T) atL' crosses the cumulant atL=12 orL=15. There

is considerable scatter in the data and care must be taken to
use only results with L sufficiently large to be in the asymp-
totic region where a linear extrapolation is justified. ' In the
case of the spin order, this appears to be for ln '(L'/L)
«1.5 but somewhat larger in the case of chiral order. As with
the Heisenberg model, finite-size effects appear much less
pronounced for the chiral degrees of freedom. These results
suggest that the two types of order occur at the same tem-
perature, T,=1.4584(6). The possibility that there are two
very close but distinct ordering temperatures can never be
ruled out based on finite-size simulations. '

The possibility that the transition is weakly first order was
also examined. No evidence for a double-peak structure was
found in the energy histograms, consistent with a continuous
transition. In addition, the fourth-order energy cumulant U
evaluated at T, yielded a result extrapolated to L~~ of
U* =0.666 652(20), consistent with a value —', expected for
a continuous transition. A somewhat smaller value occurs
in the case of a weak first-order transition. ' We note, how-
ever, that other continuous transitions which occur in this
model under the influence of an applied magnetic field have
values of U* closer to —, than found in the present case.
Finally, the assumption of volume-dependent scaling of vari-
ous thermodynamic quantities did not yield a straight-line fit,
even for the data at large L.

Finite-size scaling results at T, for the specific 'heat C,
spin order parameter M, susceptibility (as defined in Kawa-
mura's work ' ' ) y, and the first logarithmic derivative of
the order parameter Vi=8[In(M)]/Blt. (where K=T )
are shown in Figs. 2—4. Exponent ratios were estimated by
performing ln-ln plots and also by assuming a scaling depen-
dence F= aL' for a function of interest (plus a constant term
in the case of the specific heat). Except for the specific heat
where errors are very large, the two methods gave essentially
the same results only if the smaller lattices L=12 and
L = 15 were excluded. In order to estimate errors due to the
uncertainty in T, , identical scaling was also performed at
T=1.4579 and T=1.4590. The resulting exponent ratios,
along with those associated with chiral order, are presented
in Table I.All results correspond to fits performed on data for
L = 18—33, except in the case of the specific heat where
L = 15 data were also included to reduce the error [otherwise,
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TABLE I. Variation of exponents with assumed critical tempera-

ture, along with Kawamura's results.
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FIG. 3. Finite-size scaling of the order parameter. Data at L =12
and 15 are excluded from the fit. Error bars are estimated from the

standard deviation found in the MC runs.

the result is a=0.47(20)]. The given errors represent the

robustness of the fitting procedure and do not account for
error bars on the figures. Results for the exponents v and

v, estimated from the second logarithmic derivative V2
(Refs. 8 and 17) are 0.51(1) and 0.55(1), respectively.

For ease of comparison, the results of Kawamura's work
are also included in Table I. Note that in order to obtain
best-fit exponents by the data-collapsing method, Kawamura
used two different values of T, : 1.458 for spin order and

1.459 for chiral order (within the range of our estimate for

T,). Within errors, however, he concludes that the two tran-

sitions were the same.
From the results in Table I, it can be seen that p, y,

p„, and y„are the most sensitive to the choice of T, . Varia-

tion in the exponents due to the error bars on the figures
was about the same. With these considerations, our best es-
timate of the exponents and their associated errors at

T,= 1.4584(6) are given by u =0.46(10), P=0.24(2),
y= 1.03(4), and v= 0.50(1) for spin order, and

P„=0.38(2), y„=0.90(9), and v =0.55(1) for chiral or-

der. These results for the spin order strongly suggest that the
transition is mean-field tricritical.

A possible interpretation for this behavior can be found in
our recent results of applying an in-plane magnetic field.
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FIG. 4. Finite-size scaling of the susceptibility y as well as the
logarithmic derivative of the order parameter Vt (see text), as in

Fig. 2.

This work reveals that T, is a multicritical point, with one

phase having the symmetry of the three-state Potts model
and consequently a weak first order transition. The effect of
the field is to generate a term third order in S in the free

energy, of the form -mS, where m is the q=0 Fourier
component of the spin density induced by the field. Since the

system is frustrated in the triangular plane, one might expect
that short-range order along the c axis is already well devel-

oped at temperatures near T„ in the present case corre-
sponding to the spin component m. At zero applied field,
coupling between this short-range order and S could generate
a third-order term which influences the critical behavior. For
other types of systems, there may be similar coupling to
other Fourier components.

It is also noteworthy that even though our simulations on
the LY model were made with about a factor of 10 more
MCS than in the Heisenberg system, larger fluctuations
were observed in the present case for the spin order. This can
be observed by comparing the cumulant-crossing data of Fig.
1 with the corresponding results of Ref. 8. Larger fluctua-
tions are expected if the transition is at or near a tricritical
point.

Our results for the chiral order are more difficult to inter-

pret. The values for the exponents are not too different from
those of Kawamura (when the errors are accounted for), and
do not correspond to any known universality class (also see
Ref. 9). The estimates for v„are in agreement but are sig-
nificantly different from our value of v for the spin order.
This may indicate that the chiral order has a distinct correla-
tion length and that its criticality is decoupled from the spin
order, ' as it is in the 2D TAF.

In conclusion, these results of extensive histogram MC
simulations of the stacked triangular XY antiferromagnet
strongly support the scenario of tricritical behavior associ-
ated with the spin order, in agreement with Azaria et al. and
in contrast with the proposal of XY-chiral universality by
Kawamura. (Recent MC simulations do support, however,
the existence of a Heisenberg-chiral universality class. )
This resolves a long-standing controversy in the literature,
and is relevant to a wide class of frustrated systems. Further
work is necessary to fully understand the nature of the chiral
ordering transition which appears to be decoupled from the
spin order.
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