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Effective chiral-spin Hamiltonian for odd-numbered coupled Heisenberg chains
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An LXtx system of an odd number of coupled Heisenberg spin chains is studied using a degenerate

perturbation theory, where L is the number of coupled chains. An effective chain Hamiltonian is derived

explicitly in terms of two spin-2 degrees of freedom of a closed chain of L sites, valid in the regime where the

interchain coupling is stronger than the intrachain coupling. The spin gap has been calculated numerically

using the effective Hamiltonian for L =3, 5, 7, and 9 for a finite chain up to ten sites. It is suggested that the

ground state of the effective Hamiltonian is correlated, by examining various variational trial states for the

effective-spin chain Hamiltonian.

There is a growing interest in coupled chains of Hubbard-

Heisenberg spin systems, following the experimental realiza-
tion of coupled arrays of metal-oxide-metal ladder
systems. ' A number of investigations of weakly coupled
Heisenberg spin chains have been carried out, in which the

coupling between the chains is weaker than the intrachain

coupling, and have provided a strong indication that a system
with an even number of chains can be understood in terms of
a short-range resonating-valence-bond (RVB) picture, with

spin gap and a finite spin-spin correlation length. Conversely,
a system with an odd number of chains is gapless with
power-law spin correlations, indicating that it is in the same
universality class as a single spin chain. The framework for
understanding the difference between even- and odd-
numbered chains is the RVB picture, ' which suggests that

an even-numbered coupled-chain system can be thought of
as an integer spin chain exhibiting a Haldane spin gap, and
an odd-numbered coupled system maps onto a half-odd-
integer spin chain. Below we will construct an effective-spin
Hamiltonian for an odd-numbered coupled system, which is
cast explicitly in terms of spin--,' degrees of freedom. This
can be done straightforwardly in the regime where the cou-
pling along the chain is weaker than the coupling between
the chains, complementary to the earlier studies.

We consider the Heisenberg Hamiltonian given as

H=Jg st „st+t„+Jg st „st„+,—hg s't„(1)
l, n l, n l, n

defined on an L XN lattice where l=1,2, . . . ,L and
n = 1,2, . . . ,/t/, and st „ is a spin-1/2 operator at site (l,n)
The intrachain exchange coupling constant is J' and the in-
terchain coupling constant is J, and h is a magnetic field. We
use periodic boundary conditions in both directions, and as
we see below it makes a big difference. We are interested in
the regime where J'(J, and the case of odd-numbered
coupled chains, L =3,5, . . . . We can think of the system as
consisting of N sites with 2 degrees of freedom at each site,
and a complicated bond interaction between the sites medi-
ated by the J' bonds in the Hamiltonian given above. Start-
ing with an unperturbed system with J'=0, we proceed to

a (n, ,n2) = exp[ ~2ik(n, + n2)]cos[(k —r//5)(n2 —nt)

+ r//2], (2)

where k=2'/5 and the phase shift r/=2. 243. . . . These
two different states have spin currents going in two different
directions. We refer to these two states as having chirality by
defining gIP )=~-,'I P ), and the associated raising and

lowering operators through y I )=0, y I~)=I ). The

include the effect of a nonzero J' within perturbation theory.
This is achieved by identifying the most relevant degrees of
freedom for a given site, and projecting out the not so im-

portant degrees of freedom. Below we explicitly show an
analytical construction of the effective-spin chain Hamil-
tonian for the case of L =3 and 5, and for a larger L one can

perform a similar procedure numerically.
Let us consider the case of J' =0, and h =0. The ground

state of the system is the direct product of N copies of the
ground state of a closed chain with L sites. The ground state
of the Heisenberg Hamiltonian of a closed chain with an odd
number of sites is in the sector with total spin S=-,' and
S'= ~-,', implying at least a twofold Kramers degeneracy. As
a matter of fact, the ground state is fourfold degenerate. This
extra degeneracy arises from chirality. This can be viewed as
an unpaired spin in an otherwise singlet ground state, i.e., a
spinon which is forced to be there in the ground state. In
addition to the spin, the spinon carries a finite ground-state
momentum ~4m/L (orbital angular momentum about the
center of the closed chain). In the case of an open chain the
chiral degeneracy disappears, and we will be left with a two-
fold Kramers-degenerate ground state with S'=4-1/2. The
two ground states in the S'=-,' sector can be written as

Pt/2 =Xa ((n;))~(n;}), where n; refer to locations of
down spins (n t &n2. . .). Similarly the ground states in the
S'= —

—,
' sector can be written (here n; refer to the up spins).

The amplitudes a are found using a Bethe ansatz for
L=3 the amplitudes are given by (there is only one down

spin in this case) a (nt) = exp(~i2mtt/3), and for L =5 the
amplitudes are given by (there are two down spins in this
case)
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chirality operator p can be written in terms of the original

spin operators. Following Ref. 11, we define a permutation

operator PI at a site I which permutes the spin labels such

that I+ m ~N+ I —m. This is equivalent to doing a reflection
on a regular polygon with L sites, around a straight

line bisecting the angle at site I. The P operators can be
readily constructed from the spin operators, as each of them

involve (L —1)/2 pairwise permutations, as P~
=2 ' ' II:,' (s~+ sN+& +4). Also, P& can be ex

pressed in terms of chiral lowering and raising operators as

PI=A,*X++AIX, whereA&=exp(i2rrl/L). The chirality op-

erator is now related to the original spin operators through

[P(,Pt+m1=4iX'sin2mnlL, and X' =P, /2.
If we denote the gap in the spectrum for this L-site closed

chain by BL (see Table I for the actual values of the gap for
L =3, 5, 7, and 9), for J'& Bz it is a good approximation to

just keep the ground-state manifold, 4 -fold degenerate for
J' =0, and drop the excited states. This is expected to suffice
for understanding the low-energy behavior of the system de-

scribed by the Hamiltonian given in Eq. (1), as the excitation
processes that include the states dropped have high energy.
The ground-state subspace we keep, belonging to the spin-

1/2 sector of each site (of 2 states), is identified as the most

relevant degrees of freedom. For L =3, this procedure keeps
all the spin-1/2 states at each site. However, for larger
L)3, there are also spin-1/2 excited states with large energy
which are eliminated in our procedure. This approximation is
not so good for L =9 or more, as the range of J' for validity

of our procedure becomes very restricted, viz. J'&0.8612
for L=9. The ground-state subspace for J'=0 is only
2 -dimensional if we use open boundary conditions for the
L-site chain; in contrast for periodic boundary conditions we

get a much larger Hilbert space, rendering the perturbation

theory to be valid in a smaller regime ofJ' as the gap for the
L-site open chain is smaller than that of a closed chain. Each
of the basis states P; for the full system is a direct product of
N ground-state eigenfunctions of a close chain of L sites.

f;=
P& X PI X gP&, where l;= 1,4. To find the effective

Hamiltonian within this subspace, we compute the matrix
elements (P;~H'

~ t/r;), and use them to construct an effective
Hamiltonian. The prime denotes that only J' bonds are in-

cluded. The evaluation of the matrix elements reduces to a
two-site problem (actually two closed chains of length L
connected by L bonds of strength J') as we have pairwise
interactions only.

Let us use two spin--,' effective degrees of freedom for
constructing an effective Hamiltonian, the spin and the chiral

quantum numbers S; and the chirality p; of the L-site closed
chains. An explicit calculation shows that the effective inter-

action strength A;, between two closed chains connected by
a J' bond (the corresponding operator is s; r.s, z) at sites i
and j is given in terms of the total spins of the two closed
chains and the permutation operators, which we discussed
above, at sites i and j, respectively, of two chains as

(3)

Here for L = 3, u3 = 16/9, y3 = 1/4, and for L = 5 u5 = 16P,
y5 = 1/20+p. The parameter p is given in terms of
x q

= cosk —
r/ /5+ r//2, and xz = cos2(k —ri/5) + rI/2 as

TABLE I. The energy gap of an L-site ring, and the wave-

function renormalization constants that appear in the effective

Hamiltonian given in Eq. (5) for various values of L.

3/2

1.1180
1.0489
0.8612

bl

1/8

0.0697
0.0436
0.0230

8/3

2.8685
3.2765
4.8275

2 (1+cos2k)x, + (1+cosk)xz —x,xz

5 X +X~
(4)

For L&5, the wave-function renormalization constants eL
and yL are difficult to calculate analytically, as the number of
s'-basis states in S = 1/2 becomes very large. However, the

constants can be calculated numerically, and the form of the

interaction remains valid. Numerically computed values of
the constants are given in Table I for up to L = 9.

The interaction H,'z between two closed chains is medi-

atedby L bondsof strength J' Hiz=J ~p;I s;z, which in

terms of the effective degrees of freedom is obtained by
XP;;. Now it is straightforward to write the effective
Hamiltonian for the full system within the closed-chain
ground-state subspace as

N

H,rr=KI g S; S;+I (br + X; X;+ r + X& Xg+ r) ~ (5)

where Kr =J'aIL/2, and br =2yr (K3=8J'/3, b3=1/8,
and Ks =2.845J', b&=0.06528, see Table I). It is interesting
to note that only the xy component of the chiral interaction
enters the effective Hamiltonian leaving only a twofold up-
down symmetry for the chiral variables. The rotational in-

variance for the total spin is expected as we started with a
fully rotational invariant interaction and we did not break the

symmetry by restricting the Hilbert space to the spin-1/2
sector of every closed chain. Just by looking at the form of
the effective interaction we learn that on a pair of neighbor-

ing sites the spins and chiral variables are strongly corre-
lated. If we try to lower the spin energy by forcing a singlet
state between a pair of neighboring sites, the chiral variables

go into a triplet state (with X'=0). However, because of the
additive constant bl in front of the chirality interaction, a
spin triplet and a chiral singlet are not favored.

Let us try some variational ansatz. A simple variational
state of spin singlets and chiral triplets on nearest neighbors,

Psz= II;,ddt; P;, where P is a spin singlet between sitesiS T

i and i+1 and p, is a chiral triplet state with X'=0, gives
an upper bound on the ground-state energy of the effec-
tive Hamiltonian given above E rr/iKL ~Esr(2)/KI

4gbI+ ,')NI2 (= 0—.9375NI-4, for L =3). The—factor
—

4 is the spin singlet energy, 1/2 is the chiral triplet energy,
and N/2 is due to the fact that only half the bonds have spin
singlets and chiral triplets. This state is of course too simple
to give us any insight about the structure of the actual ground
state. However, as we will see below, it is doing better than
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expected. Let us use Jordan-Wigner fermion language for
the chirality terms. The xy term translates into a simple spin-
less fermion hopping. Now it is tempting to try a free ferrn-

ion ground state for chirality variables, with an average
value of 1/7r for the xy chiral interaction. In this case, we
would be left with a Bethe ansatz ground state for the spins,
giving an energy estimate EaF/Ki = (ln—2 4)(—bi. +1/m)
xN(= 0.7—86N/4 for L=3). Compared to the singlet-
triplet valence bond variational state the Bethe free-fermion
variational state has 20% larger energy, indicating that a cor-
related state with spin singlets and chiral triplets with longer-
ranged valence bonds would do much better. Let us consider
a four-site system and construct valence-bond state space.
We form two orthogonal states for a four-site system (the
sector with S=O has only two states in this case) from the
valence bond states, viz. , A =(12)(34), B={(23)(41)
—2(12)(34))2/P3, where (12) stands for a spin singlet be-
tween the two sites. Similarly we construct the chiral states
A' and B' where (12) denotes a chiral triplet with y'=0.
Diagonalizing the effective Hamiltonian given in Eq. (5),
with this fourfold spin-chiral valence bond subspace, yields a
variational energy of EsT(4)/Kl —0.9695N/4 for L=3.
This is a 3% lowering of energy compared to the nearest-
neighbor valence bond state we considered above. The prob-
ability amplitude for a valence bond configuration with a
bond occupied by a spin singlet and chiral triplet is more
than the other configurations, implying strong correlations
between the spin and chiral degrees of freedom. It is inter-

esting to note that this further-neighbor valence bond varia-
tional state has an energy very close to the exact ground-state
energy by less than 3% (the indication from numerical diago-
nalization of the effective Hamiltonian on a finite site system

up to N=10 is that the ground-state energy tends to
NKI/4 for L—=3, as we discuss below).
An effective way of constructing a convergent series of

upper bounds on the exact ground-state energy is by calcu-
lating the ground-state energy E(n) of a finite open chain of
n-eU en sites, giving rise to a variational inequality

EG/¹E(n)/n The best b.ound is obtained from the largest
open chain that can be numerically diagonalized. Since the
number of states per site is 4, we are able diagonalize only
up to ten sites. This gives us a bound for L = 3

Eos /NK3 ~ E (10)/10= —0.9932/4. (6)

From this calculation it seems that the ground-state energy is
tending towards NKr/4 from ab—ove. Similarly one can
construct a sequence of lower bounds variationally from the
I-site chain energy through EG/¹E(n)/(n 1). However, —
this sequence is seen to be not as convergent as the sequence
of upper bounds. A better convergent sequence of lower
bounds can be constructed by varying the bond strengths for
a given n-site chain, which becomes very complicated for
even n=6, and we will not present the details here. The
ground state is seen to be in a sector with S=0 and y'= 0, in
all the finite chain diagonalizations we have done up to
%=10.The spin gap, defined as the difference between the
energies of the lowest-energy states of the sector
S= 1,y'= 0 and S= O,y'= 0, is seen to fall off as the number
of sites is increased, as shown in Fig. 1, for different values
of L. However, the data at hand are insufficient to fit the

1.15

L=3 o
L=5 +
L=7 o
L=9 x

0.9

0.65,

I

0.2 0.25

FIG. 1.The spin gap of an L XN system as a function of 1/N for
various numbers of coupled chains, L =3, 5, 7, and 9. The gap is
calculated numerically from the effective Hamiltonian given in Eq.
(5).

finite-N scaling of the gap. The gap seems to be nonmono-
tonic as a function of L for a given value of N; as can be
seen from the figure for L=9 the gap is larger than for
L = 3. This could be an artifact of our approximation, imply-
ing the perturbation theory in conjunction with the truncation
we have implemented may not be valid for larger L. We
have studied the spin-spin correlation function also for the
ten-site chain and is seen to be slowly decaying as in the case
of L =1. We may conjecture that the decay is likely to be
slower for a larger L than that for the case of L =1, though
we are not able to substantiate it just now. This is based on
the fact that we have a long-ranged valence bond ground
state, and the probability amplitude for a configuration with a
valence bond between two sites far apart would be much
smaller for a larger L than for the case of L=1. But the
characterization of the long-distance behavior needs an in-

vestigation of larger chains. The density matrix renormaliza-
tion approach can be used for this; currently an investigation
is in progress incorporating this scheme for the finite-size
spectrum and thermodynamics of larger chains (N)10) for
the effective Hamiltonian.

Now we consider the case of a nonzero magnetic field in
the Hamiltonian given in Eq. (1). It is easy to see that the
effective Hamiltonian given in Eq. (5) will have an addi-

tional piece, viz. , —hXS',-. Let us focus on the case of
L=3. The effective Hamiltonian is valid in the regime
h&3J/4, for L =3, to ensure that the ground-state subspace
is composed of S'= ~ 1/2 states of the L-site chains. Now, if
the magnetic field is strong enough to polarize the spins in
the effective Hamiltonian, the ground state would be just a
polarized spin and a free ferrnion state for the chiral degrees
of freedom. The range of h for which this state has lower
energy than the S= 0 state works out to be for
0.75J~h &(7 m —8)J '/6m= 0 74225J'. The free f.ermion
chiral state has low-lying excited states with a gap of
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b, = (7 '—8)K3/4N. This should be contrasted with the case
of L = 1, where there are no low-lying states if the magnetic
field is of the order of the exchange coupling constants.

In conclusion, we have established an effective spin-chiral
chain Hamiltonian for a system of odd-numbered coupled
Heisenberg spin chains. The effective interaction has a prod-
uct form, viz. , an isotropic Heisenberg for spins and only xy
interaction for chiral spins. The spin gap studied numerically

using the effective Hamiltonian for L =3, 5, 7, and 9 falls off
as the number of sites i increases. Indications from a finite-

size study are that long-ranged resonating-valence-bond
variational states (with spin singlets and chiral triplets) are
suited for studying the behavior of the effective Hamiltonian.
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