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Diffusion coefficient for interacting lattice gases
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Diffusion in an interacting adsorbate is analyzed with the use of a master equation for the lattice-gas model.
The coefficient of chemical diffusion for the diluted, interacting adsorbate is calculated using concepts of
diffusion theory in a disordered medium in which the random potential is related to the local field that affects
each particle due to the particle interactions. We use the random-local-field method to evaluate the distribution

of local fields in the equilibrium state. Results obtained for the simplest, interacting lattice gas are successfully

compared with Monte Carlo simulations.

The aim of this paper is to provide a simple description of
the diffusion processes in interacting lattice gases, which
would be valid for dense adsorbates undergoing phase trans-
formation. In the abundant literature' diffusion is almost
always envisaged as the continuum time limit of a random-
walk process. We do have extensive knowledge of how lat-
tice properties, no matter how exotic, i.e, fractal, random,
etc., can affect diffusion. ' Considerably less is known about
how the interparticle interactions affect the diffusion. Indeed,
when one mimics repulsive short-range interactions (which
precludes double occupancy of the lattice sites) by so-called
blocking factors, the theoretical description becomes very
complex. The situation gets considerably worse when
long-range interactions are also taken into account. The latter
situation is relevant for adsorbates undergoing phase trans-
formations.

In the conventional, random-walk theory of diffusion, the
diffusion coefficient D is proportional to the product of the

jump rate S'0, and a purely geometrical factor with dimen-
sion of length; it is determined by the lattice spacing, the
coordination number, and the dimensionality of the lattice. It
has been shown that when the random walk is such that the

jump rate becomes a random quantity, then the diffusion co-
efficient is proportional to the inverse averaged jurnp rate
D-CW 'D . In this paper we adopt the idea that the
interactions between lattice-gas particles, causing local
changes of the particle density, result in fluctuating effective
jurnp rates to be used in a proper master equation. We shall
prove that the diffusion coefficient is then given in terms of
suitably averaged inverse jump rates. To develop our theory
we will employ the local-mean-field method, adopted from
studies of magnetic models, particularly dipolar glasses. Our
results are in a remarkably good agreement with the Monte
Carlo simulation for diffusion in an interacting lattice gas. '

Indeed, for attractive interactions our theoretical predictions
differ from the Monte Carlo data by a few percent over the
range of the coupling constants.

We assume that a dense adsorbate, for example, He on a
metal surface, can be sufficiently well described by a simple
lattice-gas model. The lattice gas is a natural way of mapping

the system of adsorbing sites ' and its Hamiltonian, assum-
ing two-partic1e interactions only, has the form

~= —
—,'g 1;;n;n; Vg —n;.

Here n; =0,1 is the occupation number of lattice site i and
the interaction coupling J;; depends, in general, on the dis-
tance between corresponding lattice sites. The one site "po-
tential" V describes adatom interactions with the solid below
the surface and on the parameters of ambient gas. It is
known that this model accounts for all salient features of the
equilibrium states of the adsorbate. The kinetics of such a
system are then described by a master equation with properly
chosen transition rates. ' ' lt is generally assumed that
these transition rates depend on the energy of the site from
which each particle moves, and usually allow for jumps be-
tween neighboring lattice sites only. We write

W;/((nt)) = voexp —PV —Pg 1; ink n;(1 —n, ),
J

' (2)

where i and j are neighboring sites, the particle jumps from
site i to site j, and vo is an attempt frequency.

The master equation with transition rates in the form (2)
represents a formidable mathematical problem. To obtain
from it interesting physical information we have to use some
approximate methods. In a previous publication we used the
perturbation theory in which the coupling coefficient J;;was
used as a "small" parameter. Here, we would like to pro-
pose a new method, the random-local-field method, bor-
rowed from magnetism theory, which reduces the problem to
the diffusion in a many-body system to that in a system of
effective, independent particles. ' The basic idea in this
method is that the interaction between particles results in an
additional random local field h; felt by an effective particle
on site i. Next, we assume that in a not too dense system
these local fields are essentially independent, and we calcu-
late their distribution calculating the thermal and space aver-

age of temporary local field h,'"=Xg;, Ans the result we

map our interacting lattice gas on that of independent effec-
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tive particles moving in a random field h;+ V. The distribu-

tion of these local fields changes when the system evolves in

time. Unless, however, the system is driven far away from
the equilibrium state, the local field distribution tends to be
essentially stationary.

Having this in mind we can simplify the general form of
the master equation, with transition rates Eq. (2), to the form
describing evolution of the probability of finding an effective
particle at site i at time t, P(i, t).

8—P(i, t)=g I;,P(i+i, t) Q—I',P(i, t) . (3)

In the above equation all the correlation terms from the mi-

croscropic, original equation have been omitted. Transition
rates I for a system of independent, effective particles de-

pend only on the local field at a given site. Now, from the
definition of transition rates (2) we obtain an effective tran-

sition rate I dependent on the local field

I;=—I'(h;) = voexp( —PV)exp( —Ph;) . (4)

Let us assume that the field distribution is known. Equa-
tion (3) is analogous to that describing a random walk on a
lattice with random potential. Standard analysis leads to the

equation for the time evolution of the rms particle displace-
ment (r )(t)=(1/N;)X, Z;li —jl P(i, t) in the form

(exp( —iph;)) = ] (exp( —ipJ;;n, )) . (10)

Now, the product on the right-hand side of Eq. (10) can be
written as

~
N;

g p;(exp( —ipJO;))
i

1 ——g p;(1 —exp( —ipJ&;)), (11)

where p; is the occupation probability of the ith site. Here N
is the number of lattice sites. For systems not too far from
equilibrium it is proper to use uniform site distribution, i.e.,
p;= 1/N. For low adsorbate densities n we obtain for the
Fourier transform of the field distribution function f(p)

f(p)=exp —in+ [1—exp( —ipJ&;)] i

1
f(h) =(8(h —h;)) = dp(exp[i p(h —h;)]), (9)

2mJ

where the overbar denotes spatial, and angular bracket ther-
mal average, respectively. Following Ref. 14 we write

8 z—(r )= —g I';P(i, t),
Bt n where

= exp[ —~~i(p) —in~a(p)], (12)

where z is the lattice coordination number, ¹ is the total
number of particles in the system, and n is the mean lattice-

gas density. Now, using the H theorem one can prove that all

solutions of Eq. (3) tend to the equilibrium one, which can be
compactly written using the local field distribution function

f(h) as

~i(p) =X [1-cos(pJo;)],

~2(p) = X»n(pJo;) (13)

fdhf(h)I' '(h) (6)

To calculate the equilibrium diffusion coefficient Do we re-

place the time-dependent distribution function in Eq. (5) by
its equilibrium value given by Eq. (6). This coefficient is
given by

z
D p= —vpCI'

where CaD denotes the average over the equilibrium distri-
bution of the local field and d is the space dimensionality.

The crucial point in our analysis is then evaluation of the
field distribution f(h). We adopt for our urpose a method
proposed by Vugmeister and Stefanovich. The field distri-
bution is defined as

z I

D,= „dhf(h)r(h)P's(h),
2Gn J

and can be calculated explicitly once the field distribution

f(h) is known.
Now, using Eq. (6) we obtain a simple expression for the

diffusion coefficient:

Using above expression for the field distribution function,
we can evaluate the diffusion coefficient given by Eq. (7).
Straightforward algebra leads to the final expression of our
paper, written below, which can then be compared with
Monte Carlo simulation results. We have

Do= po exp( —(PV+nz[exp(PJ) —1])) (14)

For small values of PJ Eq. (14) simplifies to a conven-
tional expression for the diffusion coefficient with the diffu-
sion activation energy 6 equal to V+nzJ.

Tringides and Gomer, have run an extensive Monte Carlo
simulation of the diffusion coefficient in an interacting lattice
gas. They obtained values of the diffusion coefficient for a
range of coupling constants and above and below the lattice-
gas critical point. For negative values of the couplings J the
normalization used in Ref. 9 makes the comparison with our
theory cumbersome. Delaying the full discussion of this
point for future publication, in Figs. 1 and 2 we have shown
a comparison of our formula, Eq. (14), with the Tringides
and Gomer results for a range of coupling constants and for
two densities n=0.3 and n=0.5, respectively. To facilitate
comparison we use the same values of parameters as in the
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FIG. I. Dependence of interacting lattice-gas diffusion coeffi-
cient Do on PI, Eq. (14) (solid line) compared with Monte Carlo

simulations (rhombuses) [from Ref. 9; z=4; voz/(2d)=0. 25;
V= 0]. Density n = 0.3.

FIG. 2. Dependence of interacting lattice-gas diffusion coeffi-
cient Do on PJ, Eq. (14) (solid line) compared with Monte Carlo
simulations (rhombuses) [from Ref. 9; z=4; voz/(2d)=0. 25;
V=O]. Density n=0.5.

Monte Carlo simulations, i.e., V=0 (no on-site binding po-
tential) and zvo/2d=0. 25. The agreement is remarkably

good in spite of the fact that Eq. (14) follows from a truly

simplified version of the local-mean-field method.
To summarize, we have shown that simple use of the

local-mean-field method borrowed from dipolar glass phys-
ics results in an analytic expression for the diffusion coeffi-
cient in an interacting lattice gas which agrees quite well
with existing Monte Carlo data. The theory can be general-
ized for higher densities with slight improvement of the
agreement with numerical experiments. The local-mean-field

method can readily be applied for systems with weak and

long-range interactions, for example, dipolar forces. Further
extension of our procedure is possible for the kinetic Potts
model. The inclusion of various other interactions, more
detailed analysis of the role of the blocking factors, correla-
tion effects, etc., is possible and work along this line is now
in progress.
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