
PHYSICAL REVIEW 8 VOLUME 50, NUMBER 21 1 DECEMBER 1994-I

Relation between pseudospin-rotation invariance and a supersolid
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In this paper, we discuss the physical meaning of pseudospin symmetry, which is actually a kind
of particle-hole rotation invariance. In an isotropic state with the total pseudospin S = 0, by using
the invariance of the pseudospin rotation in space, we shall establish a relation between o6-'diagonal
long-range order (ODLRO) and charge-density waves (CDW). This result indicates that ODLRO
and CD& must coexist in such an isotropic state, which is usually called a Supersolid. Finally, we

present two examples to show that a supersolid exists.

Pseudospin symmetry was first found in the Kondo lat-
tice model by Jones et aLi in 1988 and then in the Hub-
bard model by Yang and Zhang2 in 1990. Before their
works, many relevant properties had been found in the
study of the negative-U Hubbard model. For example,
in the large ~U~()) t) case, the Hubbard model is approx-
imately equivalent to an effective Hamiltonian in terms
of the pseudospin operators. s In 1989, Yang4 found that
the pseudospin is possibly related to superconductivity
and proposed a so-called "g-pairing" mechanism for the
Hubbard model. For an eigenstate, if its total pseudospin
and its z component have S —S2 = O(N~) (N~ is the to-
tal number of the lattice sites), then the state possesses
off-diagonal long-range order (ODLRO), which is char-
acteristic of superconductivity as Yang argued. Yang's
idea was realized in some theoretical models. ' One of
us and his collaborator showed that for a finite negative-
U Hubbard model on a bipartite lattice with N~ ) N~,
when 2N~ ) N, ) 2N~, its ground state has the total
pseudospin S = (NA —N~)/2 and possesses ODLRO,
which provides a novel direction to look for such a novel

type of superconducting materials.
The origin of pseudospin symmetry is now a challeng-

ing problem. Yang and Zhang thought that, in the
Hubbard model, it is an intricate combination of both
forms of the kinetic and the potential energies, which
gives rise to a coherent propagation of the g pairs. En

this case, the pair has a zero kinetic energy, and can-
not be scattered by the third electron on the same site
due to the Pauli principle. However, pseudospin symme-
try has a deeper physical background. Just like the spin
symmetry corresponding to the invariance of the spin ro-
tation in space, pseudospin symmetry also corresponds
to a particle-hole rotation invariance.

In this paper, we first discuss the rotation transfor-
mation for the pseudospin and present a physical inter-
pretation. For an isotropic state with S = 0, we es-
tablish a relation for two correlation functions charac-
terizing ODLRO and the charge-density wave (CDW),
respectively. The result indicates that ODLRO and the

CDW must coexist in this state. (Usually, the coexis-
tence of ODLRO and the CDW is called a supersolid. )
Finally, we present two examples: One is the pseudospin
Heisenberg model and another is the negative-U Hubbard
model on a hypercubic lattice at half filling, which have
the SU(2) pseudospin symmetry and their ground states
have the total pseudospin S = 0, and are a supersolid.

The total pseudospins are defined on a bipartite lattice
h by

' S+ = Q,.c~ S,+. = Q,.~~ e(i)c;tc;g,

= Eqn, 2E'cr(1 nt nt)

These operators and the usual spin operators are related
to each other due to a duality transformation T:

T S T =S.
The transformation operator T can be written in terms
of the creation and annihilation operators of electrons
with spin up,

T = [c,g —e(i)ct~],
i+A

(4)

which is not very difFerent from the so-called partial
particle-hole transformation.

For a system with pseudospin SU(2) symmetry, its
Hamiltonian H should commute with the total pseu-
dospin operator S, i.e. , [II, S] = 0. In other words, we

can define a unitary transformation exp(ibn S) in which
n = (n, n„, n, ) is a unit axis vector, and the Hamilto-

where e(i) is a phase factor of modulus l.io The z compo-
nent is just one-half of the difference between the number
of the lattice sites and that of the electrons. These op-
erators obey the commutation relations of the angular
momentum,

[S',S ] = +S+ and [S+,S ] = 2S'.
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nian is invariant under this transformation, where S+ is the Fourier transform of S,+.

,

ibn. S~ —ibn S

As for the pseudospin, we have

S+ = ~ ~ +i~ "S+
gN /~ i

i/A
(12)

e' ' Se ' "' =n. (n S)+[nx (nxS)]cosb
+(n x S) sinb. (6)

Both S; and S are invariant under this transformation.
Therefore, it does not change the magnitude of the pseu-
dospin, and just changes its direction.

Let us consider a pair of the transformed operators of
electrons, c;t and c,.&, we havet.

s t'c
e' '

I I le
'"' =cos —+isin 7; n—

l t I, (7)E'a)
where

qadi=
o

o )' "' ( —"()
p

(e (z)

/'1 P )

0 —1) '

ie(i) &

0 ) '

The transformed operators are a mixture of c;t and ct&.

If we regard ct& as creating a particle with spin down, and
c,t as creating a hole also with spin down, this transfor-
mation just rotates the pseudospin in particle-hole space.
For instance, let n = (0, 1, 0) and b = zr; then we have

c;g m —e(z)c,.~,
cig M e(z)c ~.

In this case, the total number changes N, + 2NA —N„
which is also a kind of a particle-hole transformation.
From this example, we see that the usual particle-hole
transformation in the Hubbard model2 is not an addi-
tional symmetry, but just a combination of the spin and
pseudospin rotations in a special case. In summary, pseu-
dospin symmetry is a particle-hole rotation symmetry.

In the following, we make use of the rotation invariance
of the pseudospin in space to prove a theorem on super-
conductivity and the CDW in an isotropic pseudospin
state. According to the de6nitions of S+ and S', they
are related to two sorts of long-range orders, respectively:
The former is ODLRO and the later is a CDW. Follow-
ing Yang, for a state IC'}, we can define a two-particle
correlation matrix

If for a certain momentum qe, m+ {qo) has of order
N~, according to Yang's definitioni2, the state I@) pos-
sesses ODLRO, which characterizes the superconductiv-
ity. Similarly, let us consider a correlation function for
the z components,

m-(q) = {@ISS' lC}.

Substituting the definition of S' into Eq. (13), we have

m-(q) = -(Clzz~zz ~I%}+
"

I
1 —2

'
I b~, o, (14)=1 N„( N, )

4 ' ' 4

m+ (q) = m+ (—q) = 2m" (q).

Proof: For a state I@) with pseudospin S = 0, we have

S+l@}= S'I@}= 0. (16)

Thus this state is invariant under the unitary transfor-
mation e'~ 's, where b and n are arbitrary, i.e. ,

From Eqs. (6) and (17), we can obtain

(17)

(@'ls,* s;I@}= (@ls," s,"I@}= (@lsi s;I@) (»)
and

(mls; s,"Ie}= (mls,". s;Ie}= (els; s,*le}= o.

For example, choose n = {0,1,0) and b = (n + 1/2)zr;
then

i(n+1/2)zS S i(n+1/2)m—S"
(( '1)raSz SZ/ ( 1)n+1Sz)

which is just a density-density correlation function except
for the point q = 0 [nz ——& P, e'~' '(zz;t+ zz;g)]. If
m" (q) also is of order N~, it characterizes the charge
density wave. These two correlation functions are related
to each other in an isotropic pseudospin state. Our result
can be summarized in the following theorem:

Theory. m: For a state l@}with pseudospin S = 0, we
have

M+ = (M+ ) = ((@IS+S,:I@}). (1o)

and we have

(2o)

Suppose the system is periodic and homogeneous; the
M;~ should be a function in terms of i —j, i.e., M;~ =
m(r; —rz). By using of the technique of Fourier trans-
formation, it is easy to obtain that the NA eigenvalue of
M+ is~3

(,) = (els+s;le

{@ISz Sa
I @} (@I i( +i/2) S S Sz —i(m+1/2)zS"

I @)

(elsi . s;le} (21)
and

(@IS*. . s".Ie) = (@Ie'("+'/2) s"s* . Sse-*( +»» s"
ly}

= (-1)"(+ls: s,*l+}=0 {22)
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In the last step of Eq. (22), it is obvious that n can be
taken to be even or odd. Furthermore, their correspond-
ing Fourier components are

H, = —t ) c,'.c,.—U) 2) & 2)

(mls*, . S*,le) = (mls;. s",Ie) = (mls;. s', Ie)

(23)

+P' ) micr t (28)

and

(+Is*. s".I~) = (~IS". s' .I~) = (~ls; s*.l~) = o

(24)

Substituting these Eqs. (23) and (24) into the definition
of m+ (q) [Eq. (11)],one obtains

'
(q) = (@l(s*-,+ S",)(S*,—'S",)I@)

= (4 ls* s* I@) + (0 Is& . s" ly)
= 2(@IS' . S' I@). (25)

Hi ——J) S, Si, (26)

with the constraint of the condition of empty or double
occupancy at every site, i.e. , n;t ——n, g

——0 or 1. For the
antiferromagnetic Heisenberg model on a cubic lattice, it
has been proved that its ground state possesses antiferro-
magnetic long-range order. Following their derivation,
it is easy to write down that

Q.E.D.
The physical meaning of this theorem is that, if super-

conductivity characterized by ODLRO via a local singlet
pairing mechanism arises, then so does the charge den-
sity wave, and vice versa. In other words, a supersolid
exists in this state if one of long-range order arises.

Finally, we present two examples as an application of
this theorem. An exact example that the ground state
is a supersolid is a Heisenberg model in terms of the
pseudospin operators on a cubic lattice,

where the summation in the first term runs over all pairs
of the nearest neighbor sites. When the system is exactly
half filled, the chemical potential is p = 0. In this case,
the Hamiltonian possesses pseudospin SU(2) symmetry
rather than the usual spin SU(2) symmetry, as Yang and
Zhang pointed out. One can also check it by deriving
the commutation relation [H, S] = 0, and in this case the
phase factor e(i) should taken to be 1 for i E A and —1
for i p B. At large IUI &) t, this model is approximately
equivalent to model (26) in an expansion of order t2/IUI
in the subspace S, = 0. When N~ ——N~, e.g. , on a d-

dimensional hypercubic lattice, the ground state has the
pseudospin S = 0 at half filling. " The result is indepen-
dent of U (only required to be negative) and the lattice
dimensionality. Due to the fact of an attractive poten-
tial arising between electrons on the same site, it leads
to Cooper's instabilityis in the ground state (d ) 2).
Mean field theory and enormous numerical calculations
indicate that in the ground state electrons form a lo-
cal singlet pair with zero momentum [in our notation,
q = Q = (x, x, . . .)] and superconductivity arises. Si-
multaneously, when the system is exactly half filled, our
theorem tells us that the CDW appears. This is the well-
known phenomenon of the coexistence of superconductiv-
ity and the CDW in the negative Hubbard model. This
point is clearly manifested by Eq. (27), which comes from
the invariance of the pseudospin rotation in the ground
state. It should be stressed that the result holds only
for a state S = 0, and when the system deviates from
the half filling case, the corresponding ground state must
have S & 0. In this case, we could not obtain the result
by utilizing the invariance of the pseudospin in space.

m+ (6})= 2m" (Q) = O(X ) (27)

for the ground state of Hq when S, = 0 and S, = 0.
Alternatively, it can be also obtained by utilizing the
partial particle-hole transformation.

The second example is the Hubbard model on a bipar-
tite lattice,
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