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We present a Fermi-liquid description of magnetic scaling and spin-gap behavior in strongly correlat-
ed electron systems. We show that a gap in the spin-excitation spectrum is a natural consequence of the
existence of a second energy scale of magnetic origin, in systems of itinerant, but nearly localized elec-
tron spins, such as are found in the cuprate superconductors and heavy-electron systems. A second ener-

gy scale leads to a frequency-dependent restoring force f '(q, to) that becomes stronger as the frequency
increases. A spin gap at Q=(m/a, n /a) is a consequence of these frequency-dependent vertex correc-
tions; it takes on a constant value when the antiferromagnetic correlation length becomes a constant.
We show that the spin-spin response function reduces to that recently introduced by Barzykin to de-
scribe the damping by particle-hole excitations of the spin-wave spectrum found in the N = ~ quantum
nonlinear o model. We discuss fully doped and underdoped cuprate superconductors, the appearance of
a pseudogap of magnetic origin in the quasiparticle density of states in the underdoped system, and the
constraints nuclear magnetic resonance and neutron-scattering experiments impose on the magnitude
and temperature dependence of the Fermi-liquid parameters.

I. INTRODUCTION

A unified magnetic phase diagram of the cuprate su-
perconductors has recently been proposed by Sokol and
Pines' (hereafter SP). They have shown how straightfor-
ward scaling arguments applied to the interpretation of
measurements of the spin-echo decay rate 1/Tza and
spin-lattice relaxation rate 1/T, demonstrate the remark-
able universality of the low-frequency magnetic behavior
at high temperatures. A feature of this phase diagram is
a broad intermediate-doping region of quantum-critical
(QC) behavior with dynamical exponent z =1, character-
ized by a temperature-independent ratio T, T/Tza and
linear in T behavior for the product T& T. As the temper-
ature decreases there is a crossover to the quantum-
disordered (QD), z = 1, regime characterized by a
temperature-independent correlation length g. A gap 5
in the spin excitation spectrum at Q=(tr/a, n./a) in
these underdoped materials is related to the suppression
of the spectral weight for frequencies smaller than
h=c/g. The Gaussian or quantum-critical regime with
dynamic exponent z =2, characterized by a temperature-
independent ratio T, T/T2G, occurs only in the fully
doped materials.

It is striking that the scaling arguments originally
motivated by the study of the spin- —,

' Heisenberg model
work well for such a wide range of hole doping. It is like-
ly that the physical origin of this success is the proximity
of the antiferromagnetic instability even in the fully
doped materials. To demonstrate this, consider, for ex-
ample YBa2Cu307, where y&=75 states/eV just above
T, . If one writes

XQ
XQ

Q

this implies I'Q ~+0.975 when taking the value of
@&=1.7 states/eV for the irreducible particle-hole sus-
ceptibility calculated by Monthoux and Pines (hereafter
MP). The detailed calculations of MP show that it is
reasonable to regard YBa2Cu307 as a nearly antiferro-
magnetic Fermi liquid (NAFL), which obeys Gaussian
z =2 scaling.

However, in the case of the underdoped materials with
QC z =1, the straightforward mean-field theory for
itinerant magnets, which always yields z =2, does not ap-
ply. There are two possibilities to describe these systems.
The first approach, as proposed by Chubukov and
Sachdev and discussed by SP (Ref. 1) and recently by
Sachdev, is that of the nonlinear a model with holes,
which is a kind of two-component system. The main ad-
vantage of this point of view is that the magnetic scaling
and spin-gap behavior follow from the properties of the
nonlinear o model. In this paper we wish to explore the
second possibility, which is that of a one-component
fermion-only model. There are certain virtues to the
fermion-only approach. We know from experiment that
one has a one-component system, in that the magnetic
properties change at the transition to the superconduct-
ing state. This is most clearly seen in YBa2Cu307, where
one finds a sharp drop in both the Knight shift and the
copper spin-lattice relaxation rate below T„a result
which must arise from the feedback of superconductivity
on the spin-excitation spectrum. These changes are less
apparent in the underdoped systems because they are
masked by e6'ects associated with a pseudogap in the
quasiparticle density of states. Thus for YBa2Cu30663,
where the one-component nature of the spin description
is established by Knight shift experiments on Cu and
' 0 nuclei in the normal state, there is no abrupt drop in
the Knight shift below T„rather one sees at T, an
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in6ection point, with a temperature-dependent Knight
shift which as T increases is concave (as pairing theory
requires) below T„and convex (because of the quasiparti-
cle pseudogap) above T, . The one-component approach
thus explains naturally the change of the magnetic prop-
erties at T, . However, the origin of the magnetic scaling
is not transparent.

We demonstrate below that the appearance of a gap in
the spin-excitation spectrum behavior found in the QD
z =1 regime can be understood as a consequence of a
second energy scale coJ, which leads to a frequency-,
wave-vector-, and temperature-dependent spin-
antisymmetric mean field f (q, co, T ), which is a generali-
zation of the constant long-wavelength mean field f0 that
describes the magnetic interaction between quasiparticles
in Landau's Fermi-liquid theory. We show that for a
nearly antiferromagnetic system, in both z = 1 and z =2
systems, one then finds two distinct low-energy scales;
cosz, the relaxational mode introduced independently by
Millis, Monien, and Pines (hereafter MMP} and Moriya,
Takahashi, and Veda which is related to low-energy
quasiparticle behavior, and 6, the spin gap. We show
that scaling tells us what must be the temperature depen-
dence of the product of fQ

and the irreducible particle-
hole susceptibility fQ(co, T) We fin. d that the spin gap
can be described as a consequence of frequency-
dependent vertex corrections; it takes on a constant value
in the QD regime because the antiferromagnetic correla-
tion length becomes constant. We discuss how, in the un-

derdoped systems, the temperature dependence of cos~

reflects the pseudogap in the quasiparticle density of
states, and argue that this pseudogap is of magnetic ori-
gin.

We find that for a physically reasonable choice of cuJ

(-3J) the values we deduce for the spin gap 5 are so high
that the high-frequency spin waves in the vicinity of Q
are strongly overdamped by the particle-hole excitations
in both the fully doped and underdoped cuprate super-
conductors. As a result the high-frequency dynamical
behavior of both systems is dominated by the relaxational
mode at cosz, and is not far from that calculated using
MMP theory. The principal experimental constraints on
the Fermi-liquid parameters then come from the low-

frequency behavior as measured in NMR experiments,
and we consider these in some detail.

Of course the cuprates are not the only strongly corre-
lated electron system which exhibits nearly antiferromag-
netic or ferromagnetic behavior, since similar behavior is
found in a wide variety of heavy-electron systems. We
therefore anticipate that a nearly antiferromagnetic Fer-
mi liquid description might be useful as well for many of
the latter systems, including the antiferromagnetic met-
als, the superconductors, and the Kondo insulators.

In Sec. II, we develop the nearly antiferromagnetic
Fermi liquid description, and show that it leads to the
spin-gap behavior proposed by Barzykin for z =1 sys-
tems. %'e consider the application of NAFL theory to
the overdoped, QC z=2, system, YBazCu307 and the
constraints placed on NAFL parameters by experiments
on the underdoped, QC z = 1 materials such as

YBa2Cu30663 in Sec. III, and discuss some open ques-
tions and present our conclusions in Sec. IV.

II. A MEAN-FIELD DESCRIPTION OF A

NEARLY ANTIFERROMAGNETIC FERMI LIQUID

We consider a system of strongly correlated electrons
which is nearly antiferromagnetic, and which possesses a
second energy scale ~J of magnetic origin. We take as a
starting point a generalized mean-field expression for the
dynamical susceptibility y(q, co):

y(q, co}= Sq ~)
1 —f'(q co)8q co)

Nf'(Q ~)=fQ 1+ (4)

where I and co& (assumed to be less than I ) provide a
measure of the relevant frequency scales for g(Q, co) and

f'(Q, co), respectively. On substituting these expressions
into Eq. (2) and keeping only the leading terms in co we

find

gQ( 1+i~/r —~'/r ')

1 FQ FQco /coJ ——iFQco/I +—FQco /I

on introducing the dimensionless NAFL parameter

FQ fQXQ

On making use of Eq. (1), Eq. (5) then takes the form

x(Q ~)= XQ

1 CO /5 LCO/COsF

where

cosp=I (1 FQ)—

where g(q, co} is the irreducible particle-hole susceptibili-

ty, and f'(q, co ) is a wave-vector-, frequency-, and
temperature-dependent mean-field vertex correction. In
using such an expression, we are not assuming that either

f' or j takes on the values found in a weak-coupling
random-phase approximation description, but rather that
this form of the response function provides reasonable ac-
count of the actual strong-coupling situation. Support
for this point of view comes from the work of Bulut and
Scalapino who have found, in their Hubbard model cal-
culations, that a generalized mean-field description does
an excellent job of reproducing the result of their Monte
Carlo calculations. ' Moreover, both the high-

temperature z=1 and z=2 regimes are very close to
mean-field behavior. It therefore should be possible to
construct a mean-field description of the crossover from
z =2 to z=1 behavior.

We consider first the mean-field expression Eq. (2) at
the antiferromagnetic wave vector Q and in the low-

frequency limit. Expanding to order co, we have

2

SQ ~)=XQ 1+i=-r r'
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(8b)

represents the low-frequency relaxational mode intro-
duced by MMP (Ref. 6} and Moriya, Takahashi, and
Aeda for the case of z =2 and I =const, and

1 —F~ 1/2

4—
COg

e
Fa

form

with

c

(1 P/g2)1/2
(12)

describes a second, distinct, low-energy scale. There are
thus two independent energy scales, I and co&, when

combined with the antiferromagnetic enhancement
coeScient, 1 —F&, these determine cosF and 6, respective-
ly.

According to Eq. (3), since

x"(Q ~}
CO

it is Xe/r which measures the slope of X"(Q,co) at low co,

and hence characterizes the low-frequency irreducible
quasiparticle response. It may be expected to reflect the
"spin-pseudogap" behavior of the quasiparticles in the
underdoped systems. We have seen that
f'(Q, co)=fe(1+co /co&). It is tempting to conjecture
that this expression is the low-frequency expansion of the
expression

xe ag , (10a)

a form which suggests that the frequency dependence of
f'(q, co) arises via the exchange of excitations with ener-

gy co&. It is important to note from the expression for
f'(q, co) that, contrary to normal Fermi liquids which
possess a single energy scale Ez as long as co&coz, this
effective interaction increases as co increases.

If we write

C=
COJ

( 1 P /~2 )
1/2

(13)

becoming temperature independent when g»g. In the
limiting case of a temperature-independent correlation
length g'p the spin gap 5 becomes a constant, b,p= c /gp.

It is straightforward to extend these considerati. ons to
wave vectors q in the vicinity of Q. In place of Eqs. (3)
and (4), we have, on expanding to lowest nonvanishing
order in q —Q,

2

x(q.~}=xe I+@(q—Q}'+i=— (14)

f'(q, ~}=fq 1 —g(q —Q}'+
COg

(15)

where gf and gr describe the dispersion of f'(q, co) and

X(q, co } in the vicinity of the antiferromagnetic wave vec-
tor Q. Note that, for the Fermi surfaces relevant to the
cuprates, the irreducible particle-hole susceptibility has a
local minimum at Q and the commensurate peak in

X(q,co~0) is actually due to the momentum dependence
of f'(q, co~0) which has a local maximum at Q. On
substituting these expressions into Eq. (2), and keeping
only terms of order (q —Q) and co, one obtains, using

Xe=Xe/(1 —fQXQ»

X(q ~}
1 —f'(q ~}x(q ~}

Xe=aP
with

(10b)

where g is the antiferromagnetic correlation length and a
a constant, it follows that

=xq 1 —(gfqxq
—axe'xq}(q —Q}'

co, Xe . ~xe2 2

2 fQXQ -2-2
mJ r xQ rxe

(16)

Q

(10c)

1 1 1 1fe=
Xq a( aP a (11a)

In this form it is clear that to the extent that g is weakly
temperature dependent (we shall present arguments later
which suggest this is the case) the temperature depen-
dence, and scaling behavior, of g arise primarily from
that of Fe. From Eq. (2) it follows that fQ and Fe take
the form

XQ

1+( (q Q} co —/5 —iso/cos„—
(17)

in the limit 5»~sF and u &&6, this reduces to the ex-
pression introduced by Millis, Monien, and Pines. On
expanding Eq. (17) to the same order in q —Q and co, we
obtain

We now compare this with the phenomenological ex-
pression for X(q, co) introduced by Barzykin, which de-
scribes the damping by particle-hole excitations of the
spin-wave spectrum, co =6 +c2(q —Q), found starting
with the N = 00 quantum nonlinear ~ model

x =
Q g2 g2

(1 lb)
2 2

xa(q ~}=xe 1 —e(q —Q)'+, —,+i
~SF ~SF

The form Eq. (11b) makes it evident that Fe 5 1 in the
long-correlation-length, nearly antiferromagnetic limit.
It is also evident that the spin gap takes the spin-wave Qn making the identi5cation

(18)
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f2 g2 g2
g2 + g2fa r f x

1 —F'
XQ Q

IXQ~ =r(1—F')=r
X

1 —F'
QCOg —

COJ(f'x )'" FQ

(19a)

(19b)

(19c)

we see that the two expressions are identical. We see that
our NAFL description leads naturally to spin waves
whose dispersion relation is that of the X= ~ quantum
nonlinear o model and whose damping arises solely from
the particle-hole excitations whose characteristic energy
is specified by I .

An alternative form of the Barzykin response function
Eq. (17) is useful for comparing with NMR experiments
on the cuprate superconductors. On making use of Eqs.
(9), (10), and (13), we find the Barzykin response function
can then be written as

ac
c /g +c (q —Q) —co iac co—/y&cusF

where, apart from g, the quantities which determine
y(q, co), are the two constants a=y&/g and the spin-
wave velocity c —=cozen, and the Product g&cosF. The latter
may be determined from NMR measurements of the Cu
spin-lattice relaxation rate and spin-echo decay rate. In
the limit of long correlation lengths, Thelen and Pines"
have shown these may be written as

quires that there be only one characteristic frequency,
co-P, where z denotes the scaling regime. Still, as we
shall demonstrate for the cuprates, for some regimes of
hole doping and temperature, the predicted magnetic
behavior is consistent with the scaling behavior obtained
by SP. When written in the form Eq. (20), it is evident
that the possible scaling regimes of interest for the nearly
antiferromagnetic Fermi liquid will be specified by the
temperature dependence of g and y&cosF. We now con-
sider separately the fully (and overdoped) regimes and the
underdoped regimes, and the constraints these impose on
the parameters f&, f&, and I which determine cosF and 6
in the more familiar forin, Eq. (17), of the Barzykin
response function.

Fully and overdoped systems

For YBa2Cu207 „, with x &0. 1, and for the over-
doped bismuth- and thallium-based superconductors, one
finds an essentially temperature-independent go(T) and a
monotonic behavior for T, T, which decreases as T de-
creases. In this regime we expect that I, which is in-
versely proportional to an effective quasiparticle density
of states, will be of order of the Fermi energy and in-
dependent of temperature. Hence for these systems,
which are those considered by MMP (Ref. 6) and Moriya,
Takahashi, and Ueda, one is in the Gaussian z =2 mag-
netic scaling regime, with

1
co ——-a+bTSF

XQ
63 2Ti T coSFC ~SF

1 +Q -ag
T2G

(21a)

(21b)

as is observed for YBa2Cu307. From Eqs. (9) and (10a),
y&cosF=const and f&-p=const. More precisely, rg&
must be constant to get z=2 scaling. From Eq. (lla),
one finds that f& is weakly temperature dependent,

Hence

T] T =CXqcosF =CXqI
T2G

(22)

where the constant of proportionality, C, depends only on
the choice of hyperfine coupling constants in the Mila-
Rice Hamiltonian for these systems. The same NMR
measurements together with the spin-wave velocity deter-
mine the damping y& of the spin waves near Q, which is
given by the ratio of the spin gap 5 to the characteristic
frequency for the relaxational mode, ~sF. Thus

63~g C u T2G
yQ= '= =Dc

~sF a0 ~sF T, T
(23)

where the constant of proportionality, D, is specified by
the choice of hyperfine coupling constants in the Mila-
Rice Hamiltonian.

III. APPLICATION TO THK CUPRATK
SUPERCONDUCTOR S

A NAFL with two distinct energy scales cannot, in
general, exhibit pure scaling behavior, since the latter re-

1 1 1 1 1fg= —,= ————, -a bT, —
Xg a4' a P

where a and b are positive constants, and we have used
the fact that in this regime g =const+bT.

An interesting consequence of our ansatz that f&
possesses a characteristic frequency dependence arising
from the exchange of excitations of energy ~ =coJ is that,
even though, as we shall see, the spin-wave excitations
are overdamped in this regime, these still may influence
the Barzykin response function, Eq. (17) or Eq. (20), at
high energies through its dependence on b, =c/g. The
quantities c,g which enter Eq. (20) can be determined for
a given system by combining the results of microscopic
calculations of g with an analysis of NMR experiments
on T, and T2G.

The only z =2 system for which these results are avail-
able is YBa2Cu307, and we consider that briefly. We take
o.' =—15 states/eV, following Thelen and Pines, " and, at
100 K, take f&=aP=1.67 states/eV, close to the value

1.7 states/eV calculated by MP; we then have for the
temperature-independent quantities which characterize
this system
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(=0.33,
c =to&/=44 meV(co&/J) -=132meV,

(XQsF )expt 1
=6QQ meV,

XQ XQ

on making use of the result XQcosF=—1, independent of
temperature, obtained by Thelen and Pines" from the T&

and T2G measurements of Imai and Slichter' and taking
coJ -3J, the energy per spin required to interchange two
nearest-neighbor spins, as measured in two-magnon Ra-
man scattering, ' with J=0.132 eV.

The other quantities which characterize the spin-
fluctuation spectrum of YBa2Cu307 are all temperature
dependent, and can be determined directly from the mea-
sured values of T, T-cps„/a. With a=15 states/eV, one
finds, for example, at T= 100 K,

g&(100 K)=70 states/eV,

cps„(100 K)=14.2 meV,

Fq(100 K)=0.976,

f(100 K)=2.16 .

We further note that in our strong-coupling calculations
for this system, reported in Ref. 2, we found a weak tem-
perature dependence for f&, as T d'ecreases, 4 increases,
because the lifetime of the quasiparticles responsible for
g& has increased. The net increase in g& between 200
and 100 K we found was some 3%.

Were the spin-wave velocity appreciably smaller, the
high-frequency behavior of Eq. (20} would be quite
different from that obtained using the MMP expression;
with the latter, the spin-fluctuation peak is at cosF, while
Eq. (20) in the absence of strong spin-wave damping pre-
dicts a spin-fluctuation peak at

' 1/2
C2

+c (q —Q)

even though one is in a z=2 regime. However, for our
choice of co& that high-energy peak, b, &(100 K) -60 meV,
is never well defined; for example, at Q and T=100 K,
one finds, on making use of Eq. (23)

6(100 K) J
yg(100 K)= 4.3 .

Thus the spin waves introduced by an energy scale of
magnetic origin are always significantly overdamped, and
as a result the high-frequency behavior of y(q, to) is close
to that obtained using the MMP expression.

Spin-pseudogap behavior in the underdoped systems

The underdoped cup rate superconductor s
(YBa2Cu307 „ for x ~ 0. 15; La& „Sr„Cu04) demon-
strate low-frequency magnetic behavior which is quite
different from that measured in YBa2Cu 307 for
x 0.1: the long-wavelength static magnetic susceptibili-
ty Xo becomes markedly temperature dependent, decreas-

ing as T decreases, while the product ( T, T) ' turns
over as T decreases; thus it initially rises, reaches a max-
imum, and then decreases, as T is decreased from, say,
300 K. Moreover, for YBa2Cu306 63 the only under-
doped system for which T26 has been measured, ' the
product T&T/ T2G is no longer independent of T;
rather it increases as (a +bT) ' as T is decreased.

As has been discussed by many authors (see Ref. 15 for
a review), this behavior suggests that a "spin pseudogap"
forms in the quasiparticle system, which afFects the mag-
netic behavior but does not give rise to superconductivi-
ty. At long wavelengths it can be characterized by an
effective temperature-dependent density of states No(T),
so that

yo( T)-No ( T), (24a)

where No(T) might, for example, resemble the Yosida
function introduced by Yosida to explain the fall ofF of
yo(T} in conventional superconductors. '6 As Loram'7
has shown, one can understand in this way the specific
heat of the underdoped cuprate superconductors.

In considering the behavior of f(q, t0) for the under-
doped cuprate superconductors at wave vectors in the vi-

cinity of Q, it would therefore seem reasonable to intro-
duce the phenomenological expression, valid at low co,

(24b)X"(Q ~)=XgNq(T}~

where g&=aP is assumed to be weakly temperature
dependent, as in YBazCu307, and N&(T) is an effective
temperature-dependent quasiparticle density of states
which reflects the spin-pseudogap suppression of the
low-frequency magnetic behavior. On comparing Eqs.
(24) and (9), we see that this implies that in the under-
doped system I becomes temperature dependent, being
given by

I'= [Ng( T}] (25}

To the extent this description is appropriate, we can
then understand, from a Fermi-liquid perspective, how
the low-temperature magnetic scaling regime, the quan-
tum disordered regime posited by SP, comes about. In
this regime, found in YBa2Cu30663 for T &120 K, ' the
antiferromagnetic correlations are frozen; both the corre-
lation length g and Tz are independent of temperature.
This in turn implies that y& =a/ becomes independent
of temperature, as does F&. On the other hand,

1 Xg Xg
T T /co PI P

=a N (T) (26}

simply tracks the spin-gap-induced suppression of the
effective quasiparticle density of states N&( T), as does the
product ( Tt T/ T }

In a more speculative vein, we note that the freezing of
the antiferromagnetic correlations signaled by the tem-
perature independence of the effective quasiparticle in-
teraction, FJ =f&g& in the NAFL description, is just
what might be expected if the effects of negative feedback
in this underdoped system are comparable to those found
in the Hubbard-model-conserving calculations of the
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effective interaction in the superconducting state of the
fully doped system carried out by Monthoux and Scalapi-
no' and Pao and Bickers. ' Thus as the spin pseudogap
begins to be fully developed, it both reduces yo and in-
creases cusp., the resulting reduction in the feedback of the
spin-fluctuation excitations on the quasiparticle motion
then opposes what would otherwise be a reduction in y&,
thereby maintaining an effectively temperature-
independent I'&.

What happens as the temperature increases? Accord-
ing to SP and Barzykin et a/. for T&a crossover tern-
perature T' (-175 K for YBa2Cui066i), the system
enters into a quantum-critical, z =1, magnetic sealing re-
gion, in which cps„varies inversely with g, so that

cosF —(a +bT) —g (27)

This behavior is confirmed by NMR experiments on
YBa2Cu306 63 which show that for
T & T'( Ti T/ T2G ) is independent of temperature,
with

cpsFg=c —=60 meV . (28)

In our NAFL description, since cosF =I'P/g, this means
that above T' one obtains a result equivalent to QC z = 1

scaling if the temperature variation of N&(T) is propor
tional to that of g '( T), that is, if

N&(T)- -a+bT .
1

(29)

This constraint appears reasonable, since yp(T) [and by
inference Np(T)] is found experimentally, for T & T*, to
display an approximately linear variation with T for the
underdoped cuprates. ' As was the case for the fully
(and over-) doped systems, in this temperature regime we
expect f& to follow Eq. (1 la), and hence to be weakly
temperature dependent. Because g is greater for the un-

derdoped systems, ' ' the actual temperature depen-
dence of f& will not be appreciable; it will just suffice to
yield the temperature dependence of g( T).

We note that, in the underdoped systems, this NAFL
scenario then iinplies that @&1'&-( Ti T/ T2G) will

not change its character appreciably over the entire tem-
perature domain, since our assumption that y& is weakly
temperature dependent means that the temperature
dependence of this quantity simply tracks that of
N& '(T), which is found to be (a +bT) ' in both the QC
z = 1 regime and the QD z = 1 regimes. Our NAFL
description thus provides a natural explanation of the
nearly monotonic increase in ( T, T/ T2G ) measured by
Takigawa' in Yaa&Cu306 63 We note that experiment
shows that, while N&(T) and Np(T) display comparable
temperature variations between T, and 300 K, N&(T)
does not scale with Np(T).

We turn next to a consideration of the high-frequency
magnetic behavior. In the QD (frozen-correlation-length)
regime, as might be expected, 6& =c/g is independent of
temperature; for YBazCu30663 with c-J and g-4. 2,
6-30 meV at temperatures below —120 K. The corre-
sponding value of y(T) is minimum at 60 K, where it is
determined by T, measurements to be

The remaining set of experimental constraints on the
underdoped systems are from measurements of the ' 0
spin-lattice relaxation time, which show quite generally
that

("TiT) '-yp(T)

This result, which is found for YBa2Cu306 63,
'

YBa2Cu408, and La& 85Sro &5Cu04, may be under-
stood along the lines proposed by Monien, Pines, and
Takigawa. In the present notation it corresponds to
taking for j(q, cp) a long-wavelength analogue of Eq.
(24b),

jp (q, cp) =Np(T)ct)/I p . (30)

Here I p-EF, while Np(T) is the temperature-dependent
density of states introduced in Eq. (24a).

A some~hat more general, one-component, account of
both the long-wavelength behavior and the nearly antifer-
romagnetic behavior of the underdoped cuprates is ob-
tained using Eq. (2), with

g(q, co) =aP [1+icoN (T)] . (31)

For wavelengths which are long (but not so long that one
is in the Uery long-wavelength limit in which
g"-1/q

VF ), on identifying asap with I'p ' this expression
goes over to Eq. (30), while it also clearly reproduces our
results for wave vectors near Q. With a specific model
for f, (q, 0) and N ( T) it should then be possible to obtain
a quantitative fit to both the ' 0 and Cu NMR experi-
ments on the underdoped cuprates, analogous to that
found by Thelen, Pines, and Lu for the normal and su-

perconducting states of YBa2Cu307.
In concluding this section on the underdoped

curprates, it is important to note that the temperature
dependence of both b, &( T) and the crossover temperature
T' are such that both quantities increase as the doping
increases. This contrasts with the behavior of the spin

yg(60 K)= -=1 5
cpsF(60 K)

on taking a-15 states/eV. Thus, even in the QD regime
at just above T„ the spin waves are considerably over-
damped; as T increases that damping becomes more sub-
stantial. Above T*, in the QC z =1 regime, it becomes
independent of temperature, being given by

J
QQ —2o 2 ~

C

These estimates suggest that quite generally, although the
spin-wave energies are considerably lower in the under-
doped cuprates (because g is larger), these excitations
continue to be so strongly damped as not to be observable
in a neutron-scattering experiment. Indeed, for y&

~ 1.5,
spin-wave damping is so strong that the high-frequency
peak of y"(Q, cp) will be close to that predicted by MMP
theory. These conclusions are consistent with the results
of the Brookhaven neutron-scattering experiments on
YBa2Cu~06 s (Ref. 22) and YBa2CuiOs 5 (Ref. 23) which
find no evidence for well-defined spin-wave excitations at
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pseudogap 5,& which one might introduce to describe
phenomenologically the evolution with doping of No(T)
and N&(T); as Slichter' and Loram et al. ' have shown,

h, fr decreases as the hole doping increases, presumably
going to zero at the crossover from underdoped to fully
doped behavior.

In concluding this section we note that, in contrast to
Randeira et aI. and Trivedi et al. , we do not regard the
spin-pseudogap behavior considered here as a precursor
to superconductivity, in the sense that spin pseudogap
and superconductivity originate in the same physical phe-
nomena. In our view, the spin pseudogap describes a
quite subtle modification in quasip article behavior
brought on by the presence of holes and strong antiferro-
magnetic correlations. As the hole concentration in-
creases, that modification becomes less and less impor-
tant, disappearing altogether in the fully doped and over-
doped systems. Superconductivity, on the other hand,
originates in spin-fluctuation exchange between quasipar-
ticles; T, increases as the doping increases, almost cer-
tainly because the "strength" of the spin-fluctuation spec-
trum increases with increased doping. Thus the forma-
tion of a spin pseudogap in the normal-state quasiparticle
spectrum acts to reduce T„not increase it. The
difFerence between the influence of the spin pseudogap
and the influence of superconductivity on the uniform
spin susceptibility is also clearly visible in Knight shift
experiments on the underdoped superconductors, which
show clearly an inflection point at T, .

IV. CONCLUDING REMARKS

If a NAFL description is to be applicable to the under-
doped systems, it seems evident that nonlinear feedback
sects must play a significant role in the temperature evo-
lution of go(T), I (T), cosF(T), and g(T). Let us suppose,
for example, that it is the long range of the antiferromag-
netic correlations which is responsible for spin-pseudogap
behavior, and, further, that there may be a threshold g'
for the onset of the suppression of the quasiparticle densi-
ty of states which characterizes the spin pseudogap. On

this scenario, once g exceeds g*, as a result offJ ( T) anti-
ferromagnetic correlations act to initiate a reduction in
No(T) and g(q, co); since however, in a one-component
description it is the quasiparticles themselves which are
responsible for y(q, co), this reduction in g(q, co) will
cause both the correlation length g and y(q, co) to grow
less rapidly at low frequencies. Since we are dealing with
a strong-coupling problem, this change in y(q, co) will, as
a result of the coupling of the quasiparticles to the spin
fluctuations, act to further reduce No(T) and g(q, co), etc.
One therefore has Jpositiue feedback in the vicinity of the
onset of spin-pseudogap behavior at some temperature
T'. It will lead to a comparatively rapid evolution with
decreasing temperature of the effective pseudogap b.,rr,

which might be invoked to describe that suppression. On
the other hand, as we have discussed earlier, negative
feedback likely acts to suppress the continued growth of
g as T decreases, leading to a constant value go at low
temperatures in the underdoped systems.

The approach we have described represents a Fermi-
liquid alternative to an approach based on the quantum
nonlinear o model of localized spins modified by holes.
It appears capable of explaining the "universal" behavior
of &0( T) found in the 2-1-4 system by Johnston, Nakano
et al. , and Hwang et al. , a topic to which, together
with its applicability to neutron-scattering experiments
and calculations of the superconducting transition tem-
perature, we shall return in a future publication.
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