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The dynamics of the normal/superconducting interface in type-I supercouductors has recently
been derived from the time-dependent Ginzburg-Landau theory of superconductivity. In a suitable
limit these equations are mapped onto a "free-boundary" problem, in which the interfacial dynamics
are determined by the diffusion of magnetic Sux in the normal phase. The magnetic field at the
interface satisfies a modified Gibbs-Thomson boundary condition which involves both the surface
tension of the interface and a kinetic coefficient for motion of the interface. In this paper we calculate
the surface tension and kinetic coefficient numerically by solving the one-dimensional equilibrium
Ginzburg-Landau equations for a wide range of e values. We compare our numerical results to
asymptotic expansions valid for r « 1, ~ 1/~2, and ~ && 1, in order to determine the accuracy
of these expansions.

I. INTRODUCTION (V x h) x n~; = D~v„—h;, (1.2)

When a type-I superconductor in a magnetic field is
subjected to either a sudden temperature or magnetic
field quench which takes it &om the normal phase into
the Meissner phase, the approach to equilibrium will be
determined by the rate at which superconducting islands
are nucleated in the background normal phase, and the
subsequent dynamics of the superconducting/normal in-
terfaces. References 1 and 2 suggested that the essential
features of the interface motion could be understood in
terms of a free-boundary model for the magnetic field
in the normal phase; this model is almost identical to a
&ee-boundary model which is used to study the growth
of a solid into its supercooled liquid phase. The inter-
face motion in the latter case is known to be unstable,
and leads to highly ramified solidification patterns (den-
drites, for instance; see Ref. 3 for an overview). By anal-

ogy, the growth of the superconducting phase into the
normal phase should be dynamically unstable. Numer-
ical solutions of the time-dependent Ginzburg-Landau
(TDGL) equations of superconductivity confirmed these
expectations. ' However, the precise connection between
the TDGL equations and the free-boundary model was
not made.

More recently, the free-boundary model has been de-
rived &om the TDGL equations using the method of
matched asymptotic expansions. ' The &ee-boundary
model consists of a difFusion equation for the magnetic
field h in the normal phase,

Bgh = D~V'2h,

where DH = 1/4s'0'l l is the difFusion constant for the
magnetic Qux, with 0.( ) the normal state conductivity;
a continuity equation for the magnetic field at the nor-
mal/superconducting interface,

with v„ the interface velocity normal to the interface
(with n h; = 0); and a modified Gibbs-Thomson bound-
ary condition for the magnetic field at the interface,

a; = II. 1 —,(~„.X+r-'v„j,
C

(1 3)

a,'A, a.'W 2m'
Ons = &ns~4x

' 4. 5.2 ' (1.4)

where A is the magnetic penetration depth, ~ is the
Ginzburg-Landau parameter (the ratio of the penetra-
tion depth to the coherence length (), m is the mass of
a Cooper pair, and p is a dimensionless order parameter
relaxation time. The dimensionless surface tension and
the kinetic coefficient can be expressed in terms of the
solutions to the one-dimensional equilibrium Ginzburg-
Landau equations, which are

F"—Q F+—F —F =0,
K

qll F2q 0

where F(x) is the dimensionless order parameter ampli-
tude and Q(x) is the dimensionless magnetic vector po-
tential [the inagnetic field is II(x) = Q'(z)]. For an inter-

where H, is the thermodynamic critical field for the
superconductor, 0„, is the surface tension of the nor-
mal/superconducting interface, lc is the curvature of the
interface, and I' i is a kinetic coefficient for motion of
the interface (here we ignore thermal fiuctuationss). It
is convenient to introduce the dimensionless surface ten-
sion 0, and kinetic coefficient I', which are defined
through
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face between the normal and superconducting phases, we
have in the superconducting phase x + —oo, F(x) m 1
and Q(x) + 0, while in the normal phase z m oo,
F(x) ~ 0 and Q(z) z/~2. The surface tension and
kinetic coefficient are then4

pear in the TDGL equations; ' from our results we are
able to determine the range of parameter values which
result in a positive kinetic coefficient. Sec. V is a discus-
sion section in which we briefly summarize our results.

1
0„, = —[Ig(n) —I2(~)j, (1.7) II. NUMERICAL METHODS

2~@ ~"~

where the integrals I1 and I2 are defined by

I, (~) = 2f dz(P')'

2K2 Q~ F2 F4 F2 2 (1.9)
F" —Q F+F —F =0, (2 1)

Numerical computation is necessary to solve Eqs. (1.5)
and (1.6) in general. The method chosen was standard
relaxation using Newton's method. Since the relative
size of the solution scales as 1/~ we rescaled the GL
equations by substituting z' = Kx which results in the
rescaled equations

~Q" —F Q=O. (2 2)
OO

I2(~) = 2~ dz Q' —(Q')

Q~ F2 (1.10)

The rescaled differential equations can then be written as
the following set of first order finite difference equations:

where the second set of expressions are obtained by
integrating by parts and using Eqs. (1.5) and (1.6).
The Ginzburg-Landau equations have analytical solu-
tions only in certain limiting cases, to be discussed below.
Somewhat surprisingly, there appear to be few numer-
ical calculations of the surface tension, even though the
fundamental importance of this quantity in distinguish-
ing type-I and type-II superconductors was recognized by
Ginzburg and Landau in 1950.

In order to complete the derivation of the free-
boundary model from the TDGL equations, in this pa-
per we solve the equilibrium Ginzburg-Landau equations
numerically for a wide range of K values, and use the
solutions to calculate the surface tension and kinetic co-
efficient. Our paper is organized as follows. In Sec. II we
review our numerical methods for solving the Ginzburg-
Landau equations. In Sec. III we discuss the surface
tension, and derive the asymptotic form of the surface
tension for small e, which agrees well with the numeri-
cal results for a large range of ~ values. Our results also
show that an asymptotic expansion for the surface ten-
sion near r = 1/~2, which was derived in Appendix B
of Ref. 5, has a larger range of validity than expected. In
Sec. IV we discuss our results for the kinetic coefficient.
The kinetic coefficient can be either positive or negative
depending upon the ratio of relaxation times which ap-

&yx x/»s
&y2, 1 /»I,
&ys, s/»g

Ay4 s/»s

y4, X~

2 2
yi, g (y2, s) +(yi, s) —1,

2 — 2
(yi, i ) y2, 1 /" (2.3)

with y~ ——F, y2 ——Q, ys = F', y4 ——Q', Ay„ I, = y„A;—
1y„~ „azI, = z'„—z'„„and y „=—, (y„s + y„s,).

Each of the four equations is to be solved for k
2, . . . , M, with M the number of mesh points. We also
have four boundary conditions as follows:

y1, 1 1)

y4, 1=0,
y1,M =o,
y4, M = 1/(~~2), (2.4)

giving a total of 4M equations of the 4M y„A, 's. If we
move the right-hand side of Eqs. (2.3) to the left-hand
side and multiply by Ax& we are then left with a set of
homogeneous equations. Labeling these equations E„I,
for n = 1, . . . , 4, k = 2, . . . , M, the problem is now to
solve E„I, = 0 and Eq. (2.4) simultaneously. Given an
initial guess yI, we can improve the solution using the
expansion

BEg OEk
Es(y~+&y~, yl-i+&yI —x) = El, (yl, y) x)+). — &y, I —). +). &y, l. ,

1 yn, A: —1 1 yn, k
(2.5)

where we want the leR hand side to equal zero. This gives
a system of linear equations to solve for the Gyp's. We
then add the Gyp to the yA. to obtain a closer approxima-
tion. This process is repeated until the maximum value
of ~E„g~ is less than 10 e.

The mesh of points x& are chosen at the start of the
relaxation. We want the range to be large enough so that
at the end points the functions are already close to their
values at infinity. By trying different values for the end
points we have found that at x' = +100 the functions are
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TABLE I. Re reseepresentative numerical results from thes rom t e solution of the Ginzbur -L durg- an au equations.

0.001
0.01
0.05
0.1
0.2
0.3
0.4
0.5
0.6

1.0
5.5

10.0

Ig (~)
0.000926
0.00891
0.0414
0.0782
0.144
0.202
0.254
0.301
0.345
0.388
0.490
1.16
1.43

I2(~)
0.0000161
0.000516
0.00586
0.0169
0.0495
0.0943
0.150
0.217
0.294
0.388
0.706

17.2
55.8

Ons

910
84.0
14.2
6.13
2.36
1.19
0.648
0.338
0.142
0.000219

-0.216
-0.529
-0.544

p —1 a

0.000910
0.00840
0.0356
0.0613
0.0942
0.107
0.104
0.0845
0.0511
0.000109

-0.216
-16.0
-54.4

WWe have chosen (2m ho' /m ) =my~ ——1 for the purposes of illustration
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III. SURFACE TENSION

Ic'Q'( —tanh (z'/~2) Q( ——0. (3.1)

Although this equation does not appear to have an ex-
plicit analytical solution, for v « 1 we can use the WKB
method to obtain an asymptotic solution. Some care
is necessary as this equation has a second-order turning
point at x' = 0. The uniformly valid asymptotic solu-
tion (i.e., a solution valid both near and away f'rom the
turning point) is

The surface tension is the excess free energy per unit
area due to the presence of the interface. As shown by
Ginzburg and Landau (see also Ref. 9), for K « 1/~2,
o„, = 2~2/3tc+0(r i ). Unfortunately, we have found
that the lowest order expansion provides a very poor ap-
proximation to the surface tension, except for very small
values of K (less than 10 ); this fact was also noted by
Ginzburg and Landau. Therefore, in this section we will
first generalize their result somewhat by calculating the
next order term in the expansion.

In the small-K limit it is convenient to work with
the rescaled Ginzburg-Landau equations, Eqs. (2.1) and
(2.2). The lowest order approximation is obtained by set-
ting the first term in the second Ginzburg-Landau equa-
tion, Eq. (2.2), equal to zero so that F2Q = 0. In the
superconducting phase Q = 0 with F in the supercon-
ducting phase determined by Eq. (2.1) with Q = 0; the
solution to this equation is F(z') = —tanh(z'/v 2), for
x' & 0. When this solution is substituted into the ex-
pression for the surface tension it produces the lowest
order expansion derived by Ginzburg and Landau. To
calculate the next order term, we need to take this ex-
pression for the order parameter and substitute it back
into Eq. (2.2), and then solve for Q. For x' ) 0 (the
normal phase), we have Q') ——0, which integrates to

Q)(z') = z'/K~2+ Ci, with Ci a constant to be deter-
mined by matching onto the x' ( 0 solution. For z' ( 0
(the superconducting phase), the vector potential satis-
fies

I 1()
- X/2

ln cosh(x'/y 2)
—tanh(z'/~2)

XK 1/4 ln cosh(z'/v 2) (3 4)

To calculate the surface tension, we substitute our so-
lution into our expression for the surface tension, Eq.
(1.7). For Ii we have

I|(K) = 2~ f dz' r' —F —r'Q'

23/4~7l 3/2
8I'(3/4) 2 (3.5)

and for I2,

I 2 2 2 It 3I2(r) = 2r dz'F2Q2 = Ksi2.
8r(3/4) z (3.6)

2~21 2isr 1

3 4r(3/4) ~+ (3.7)

The first term in the expansion was previously obtained
by Ginzburg and Landau, and the second term is the
new result. This calculation can also be formulated as a
variational calculation, with F(z') = —tanh(z'/(„~2) a
trial solution for the order parameter; the WKB calcu-

1000

Therefore, from Eq. (1.7) we find that the surface tension
in the small-r limit is

2 ~ I'(3/4) 1 ln cosh(z'/~2)
—tanh(z'/ ~2)

100

xK i/4 ln cosh(z'/~2)
10

where C2 is a second constant of integration and
K ri4(z) is the modified Bessel function of order —1/4.
The integration constants are determined by matching
the solutions and their derivatives at x' = 0, with the
result

1
0.001

I

0.01 0.3

so that

2 i I'(3/4) ~ic' (3.3)
FIG. 3. Dimensionless surface tension cr„, as a function of

the Ginzburg-Landau parameter ~ for 10 ( x & 0.3. The
solid line is the numerical result, and the dashed line is the
asymptotic expansion for r « 1 given in Eq. (3.8).
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lation may be repeated, and the resulting solution used
to calculate the surface tension as a function of the vari-
ational parameter („. Minimizing this expression and
taking the small-r limit, we obtain Eq. (3.7).ii

For tc » 1/y 2 the second derivative term in the
first Ginzburg-Landau equation, Eq. (1.5), may be ne-
glected, and the resulting algebraic equation solved for
F as a function of Q. This expression is then substi-
tuted into the second Ginzburg-Landau equation, Eq.
(1.6), and the resulting nonlinear differential equation
may also be solved. The surface tension in this limit is
o„,= —4(i/2 —1)/3.

The surface tension is zero at r = 1/y 2;s at this point
the Ginzburg-Landau equations become integrable. s The

0 943+ —0.880K / K (( 1,
o„.= ) 0.388(1/2r —1), Ic = 1/v 2,

, —0.552, K &) 1.
(3.8)

In Fig. 3 the numerical results for the surface tension
are compared to the asymptotic expressions for e && 1.
The asymptotic result is accurate for e & 0.2; the ~
correction in Eq. (3.7) is important for values of e which
are greater that 10 3. In Fig. 4 we compare the numer-
ical results against the asymptotic expansion derived in
Ref. 5 for e = 1/i/2. The asymptotic expansion is rea-
sonably accurate for 0.5 ( e ( 1.0. If we identify the
small parameter in this expansion to be e = 1/(2+2) —1,
then this would imply that the expansion is accurate for
values of e as large as e = 1, a somewhat surprising result.
In this 6gure we also see that the surface tension changes
sign at r = 1/i/2, as expected. Figure 5 shows the sur-
face tension in the range 1.0 ( K ( 10.0; for large K we
see that the surface tension is approaching the limiting
value of —0.55.

solutions may be used to carry out a local analysis of
the surface tension about r = 1/~2, s with the result
(r„, = 0.388(1/2+2 —1).

Summarizing, we have

-0.50 IV. KINETIC COEFFICIENT

-055 ----—---—————---——————-----
-0.60 ' I I I I I I I

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
K

FIG. 5. Dimensionless surface tension o. , as a function of
the Ginzburg-Landau parameter ~ for 1.0 ( rc & 10.0. The
solid line is the numerical result, and the dashed line is the
limiting value for e )) 1 given in Eq. (3.8).

The kinetic coefBcient I' is a function of e, which
is a ratio of length scales, as well as 2zho i )/mp, which
is the ratio of the difFusion constant for the order pa-
rameter, D@ = h/2m', to the difFusion constant for the
magnetic field, D~ = 1/4zo'l ). If this latter ratio is
suf6ciently large, the kinetic coeKcient may also change
sign (resulting in some sort of dynamic instability). By
setting I' i = 0 in Eq. (1.8), we obtain an expression for
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the neutral stability curve:

mp Iz(r)
2s Ml"I. neutral Iy(K)

(4.1)

3/2 + 0( 2)
3 mq ~ Si'(3/4)'

(4.2)

By setting I' = 0, we see that for small z the sta-
bility curve should behave as K / for small K, which is
con6rmed by the numerical results shown in Fig. 6.

The numerical result is plotted in Fig. (6).
In the limit of small K we may use the previously de-

rived expansions for Iq and Iz in Eqs. (3.5) and (3.6) to
obtain

expansions. The numerical results for the surface ter.—

sion of the normal-superconducting interface agree well
with the small-K asymptotic expansion developed in this
paper. In addition, a recently developed asymptotic ex-
pansion of the surface tension for values of K near I/~2
(Ref. 5) agrees with the numerical results over a surpris-
ingly large range of K values. We have also calculated the
neutral stability curve for the kinetic coeKcient, which
will be important in studies of the dynamics of the nor-
mal/superconducting interface. 4'

Note added in proof. After these calculations were
completed we realized that Eq. (3.1) does have an ex-

act solution. By changing variables to ( = tanh(z'/y 2)
the resulting equation can be solved in terms of the as-
sociated Legendre function P"((). The values of Cq and
C~ calculated in this manner agree with the results in
Eq. (3.3) for r ~ 0. However, we have not succeeded in
calculating Iq and Iq using the exact solutions.

V. DISCUSSION

We have investigated in some detail the behavior of
the solutions to the one-dimensional Ginzburg-Landau
equations using both numerical methods and asymptotic
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