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Analytic expressions are derived for the root-mean-square (rms) radius of a pair of fermions

in a BCS many-fermion state in one, two, and three dimensions, in terms of the BCS gap energy
and the associated chemical potential. These expressions are valid for any coupling strength of
any pair interaction model implying a momentum-independent gap energy. The latter holds, e.g.,
for an attractive b pair potential examined in the one-dimensional (1D) case (whose N-fermion
ground state can be determined exactly) or for the BCS (electron-phonon) model interaction in any
dimension. Weak-coupling and/or high-density limits for the rms radius are identical in 1D, 2D,
and 3D, and reduce to the familiar well-known Pippard result to within a factor of order unity. In
contrast, strong-coupling and/or low-density limits coincide in 1D and 3D, but difFer by a factor of
order unity in the 2D limit, and in each case are essentially the size of a single, isolated pair. The
1D 8 interaction McGuire-Yang-Gaudin many-fermion model is studied in detail. The interaction
renormalization scheme of Miyake and of Randeria, Duan, and Shieh, and the BCS interaction
model, both in 2D, are employed to analyze cuprate superconductor empirical results. Reasonable
agreement between theoretical rms radii with experimental coherence lengths suggests that cuprates
can be described moderately well as weakly coupled superconductors within the BCS-Bose formalism.

I. INTRODUCTION

The coherence length (o measuring the Cooper pair
radius, and the magnetic Seld "penetration depth" A, al-
low categorizing conventional superconductors into two
kinds: (a) type-I (or Pippard) superconductors, with
A « (o, are generally nontransition metals for which the
London equation must be modified with Pippard correc-
tions; and (b) type-II (or London) superconductors, with
A » (o, are usually transition metals or intermetallic
compounds like Nb3Sn, V3Ga, etc. , for which the Lon-
don equation is accurate for weak fields.

Interest in these two characteristic lengths resides in
classifying conventional superconductors (carrier density

10 cm s ), where (o is 3—4 orders of magnitude larger
than the interparticle spacing. This interest has been
renewed with the discovery of high-T superconductors

(densities 102' cm s) with their extremely short coher-
ence length (approaching an average interparticle spac-
ing). Since typically kp is of the order of the average
interparticle spacing, the dimensionless parameter (oky
for high-T, materials is conjectured to be O(l), i.e., in-
termediate somewhere between the 8CS limit ((oky » 1)
of large, overlapping, weakly coupled Cooper pairs, and
what one might call a Bose limit ((okp « 1) of well-

separated, "local," bosonic pairs. This latter extreme is
perhaps realized in the controversially small concentra-
tions of 10 cm in, e.g. , Zr-doped SrTi03.

The penetration depth is a measurable quantity and
the coherence length can also be obtained indirectly &om
experiments. Theoretically, the coherence length most
commonly used is the familiar (weak-coupling) Pippard
expression (o ——hv~/n'b, associated with BCS theory,
where 4 is the gap energy parameter; this is very nearly
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the value hvar/4b, estimated from uncertainty-principle
arguments valid for small 4/E~.

In this paper, using a one-dimensional (1D) fermion
fluid with pairwise attractive 8 interactions (the
McGuire-Yang-Gaudin model4) treated within the BCS
theory but without setting the chemical potential equal
to the Fermi energy, we Erst obtain closed analytic ex-
pressions for the root-mean-square pair radius to track
its evolution from the BCS limit {weak-coupling and/or
high-density) to the Bose limit (strong-coupling and/or
low-density). These results are then compared with simi-
larly derived results in 2D and 3D using more realistic in-
teraction models. In Sec. II we briefly sketch the (exactly
soluble) 1D model solved within BCS theory in an efFort
to test5 the latter; in Sec. III analytical expressions are
derived for the root-mean-square pair radius in 1D and
compared with results in 2D and in SD with the BCS in-

teraction model; in Sec. IV we use the 2D low-density in-
teraction renormalization scheme of Miyake and of Ran-
deria, Duan, and Shiehs (MRDS) as well as the BCS
model interaction to analyze the coherence length exper-
imental results of selected cuprate superconductors; and
Sec. V contains our conclusions that cuprates are moder-

ately well described as weakly coupled superconductors
in the BCS-Bose picture.

implies the (at worst numerical) solution of the gap equa-
tion

Vgg vt 1 —v 2 (4)

to be carried out self-consistently with that of the num-
ber equation

N =2) vi, .
k

This self-consistency defines the BCS-Bose model. Here,
the BCS transformation coefBcients vt, are given by

4&
2 ( Eic)

where Ei, are the quasiparticle (bogolon) energies

A':+ &I,

(i =ex —p

while (i, can be the Hartree-Fock single-particle energies
cg relative to the chemicaI potential p, namely

II. THE MCGUIRE- YANG-GAUDIN MODEL IN
BCS THEORY

For the pair interaction in (1) Vi, i, of (3) is simply
vp/L, since then V(r, r') = —vpb(r —r')6(r), so that the
gap parameter (4) becomes independent of k. Thus, our
two coupled equations (4) and (5) simplify to

Consider a system of N )) 1 fermions of mass m and
degeneracy 2 (say, spin up and spin down) in a box of
length L interacting via a pairwise attractive b potential.
The Hamiltonian of this McGuire-Yang-Gaudin {MYG)
model system is

5' "- d'
II = — ) —.,) S(z, —z, ),2m i dz2

i=1 i)j where

1= — dk
4~

X= — dk 1—
27r ~ ~ g(2+ Q2)

(10)

with vo a positive coupling constant. Introducing dimen-
sionless coordinates z,' = pz; where p = N/L is the den-
sity, one can write the dimensionless Hamiltonian

N
II' =— = —1/2 ) 2

—A ) b(z'; —z,'), (2)
i=1 i)j

where the dimensionless coupling constant A—:mop/h2p
ranges between 0 (weak-coupling and/or high-density)
and oo (strong-coupling and/or low-density). The Hamil-
tonian (2) is exactly solvable ' for the lowest N-body
quantum state for all values of A, and is of interest in su-
perconductivity as it possesses the same dynamics as the
30 "jellium" electron gas model in that coupling strength
and density scale reciprocally to each other.

It is well known that the BCS theory for any (S-wave)
interaction Vi, i, ~ (in any dimensionality D) given by

Vgi, =L d r d r'e ' ' V(r, r') e' ' (3)
I,D L,a

——pvp —p = —p .
2m 2 2m

The self-consistent numerical solution of (9) and (10)
then determines p and 4 for each value of the coupling
A. Only in the limit of weak coupling (BCS regime)
does the chemical potential coincide with the Fermi en-
ergy, p, = E~ = 5 k&/2m, where kz = wp/2 in 1D.
In the strong-coupling (Bose) limit the chemical po-
tential approaches ' one-half the pair binding energy,
p = —Ep(2)/2, with Ep(2) = mvp/45 Thus, as cou. -

pling A is increased, p decreases and changes sign &om
positive to negative. As shown in Ref. 5, in the two ex-
tremes of A the BCS many-fermion theory reproduces the
exact (i.e., Schrodinger) results for the ground-state en-

ergy per particle of the MYG model. As expected, very
good agreement is obtained between the BCS theory and
the exact results in the weak-coupling limit (A

i & 3),
but the agreement grows poorer for intermediate values
of A (0 ( A ( 1). Nevertheless, the ground-state BCS
energy agrees much better with the exact ground-state
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energy than the best Hartree-Fock result for the same
Hamiltonian (1). Finally, the energy gap has the same
formal expression in 1D, 2D, and 3D Fermi gases, with
a bifurcation in its expression as a function of the cou-
pling occurring precisely when p = 0, at which point the
energy gap itself is a maximum. This point can thus be
viewed as the boundary between BCS and Bose regimes.

For any interaction model for which b, » = b, , [e.g. , the
b function model (1), the 2D low-density renormalization
MRDS scheme for S waves, or the 3D BCS interaction
model], the integrals of Eq. (14) can be evaluated ana
lytically; this is the main point of this paper. In the 1D
case (and for any pair interaction implying a momentum-
independent gap energy) we obtain the closed expression
(see the Appendix)

III. ROOT-MEAN-SQUARE PAIR RADIUS

A. One dimension

h2
2 2+ 3+2rrms =

4 ~2( 2+ ~g) [IJ(IJ 4 )

+ z b, (p + z b, ) tan(P/2)], 1D, (16)

P g~ ~2~— «I~I/&'
quant q 2

mVO
(i2)

We first calculate the root-mean-square radius xq", '
of a single bound pair of fermions interacting with the
pair potential in (1). Since the pair wave function Q(z)

2Ais just e '~*~/2", with x the relative coordinate, then

where

/=tan
~

—,p&0,
I p

P=z+tan '~ —~, @&0.
Ep)

Similarly, the root-mean-square radius zc' ~ of a Cooper
pair under the same interaction (1) will be similar to (12)
except that the pair wave function vP(x) =—P» C»e*",
with C» —= 0 for —ky ( k ( k~, ensuring that states
occupied by the N 2backgro—und fermions are not occu-
pied by either Cooper-pair partner fermion in accordance
with the Pauli exclusion principle. Thus

In particular, this result holds for the 1D model (1) if p
is replaced by y,

' as defined in (11). We examine the two
extreme limits of this result. In weak coupling, vp ~ 0
and (4) implies that 6 ~ 0, so that

p'~E~ &0 (as A-+0, vp ~0, pfinite). (18)

Hence,

f «
I &(&) I' f d& C»C»

4 / hvar

~~ ~Coop )
where further details can be found in Ref. 10 and b,c"~
is the (positive) binding energy of a single Cooper pair.

On the other hand, to measure the pair radius inside
the nontrivial interacting BCS ground-state condensate
we de6ne

f dDk Q» rz @»

f d+k g' vj»
(i4)

where D is the system dimension, and g» is an appropri-
ate pair wave function in the momentum representation
so that rz -+ —V'z». After the early work of Eagles, ~~

it was recognized by Leggett, and further clari6ed by
Nozieres and Schmitt-Rink, that if 4»/2E» = @», the
BCS gap equation (4) at low density reduces in leading
order to

tan(P/2) -+

and (16) reduces to

4m&i' 8 g a (20)

b, m8Eye " (as Am0).

On the other hand, the BCS gap energy behaves as

b, m 8Ey e ~ " (as A -+ 0).

(21)

(22)

We have thus defined thee distinct lengths
r~" ~, rc, r, r, cs in (12), (13), and (20), respectively.
(Note that r, , = hvar/~8K Ave/m6:—(p, the Pip-
pard coherence length mentioned earlier. ) We now show
that in the weak-coupling limit these three lengths dif
fer drastically in magnitude. It can be shown ' that for
weak coupling, A = mvp jhzp ~ 0, the 1D Cooper-pair
binding energy

(is)

which is the Schrodinger equation in momentum space
for an isolated pair of fermions, where 2p, plays the role
of the eigenvalue. This remarlmble result holds in any
dimension and for any interaction V»», since (4) is easily
seen to vanish as p = N/L~ tends to zero, by using
(s)-(8 )

Clearly, for A ~ 0, 4 )) b,c ~. Hence, comparing (12),
(13), (21), and ( 22) gives

Coop . BCS . quant —C/« . —C/2«
rms ' rms ' rms I Vo

(for vp + 0 or p -+ oo), (23)

where C and D are positive constants. Consequently
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r, ,~ && r, , && r~", ' (as vo m 0 or p + oo). (24) 1.0

In the opposite limit of very low density (5) and (4) again
implies that b, -+ 0, and (15) then means that

p' m ——Eo(2) = —mvo/8h & 0
2

(as A ~ oo, p ~ 0, vo finite). (25)

In this case, expanding tan (6/p') in (17 ) gives

c 0.9

CO

K

cb

0.8

tan(P/2) +- 2@ (b, &'

2p (p) (26) 'f.oo

1

I

I

0.02 0.04 0.06 0.08 0.1 0 0.1 2 0.1 4

so that Eq. (16) then reduces to

h2 ( h' ) quant 2

2mEo(2) & mvo)
- (~™ (27)

h2
I

h2
and p = 2p '

mvo mvo
(28)

It is easy to see, using (16), (20), and (28), that in the
weak-coupling limit

2.0

1.8—

cn 1.6—
V
Cl

CO

a 1.4—
cb

lK 1.2—

0 8 I I i I t I i t i I I I I I I I I I

0.0 01 0.2 03 0.4 0.5 06 07 0.8 09 1.0

FIG. 1. Evolution of the rms radius r, , for 1D
many-fermion system (1) and (2) as given by (16), in units of
r,~, as de6ned by (20), for values of p' ) 0 (BCS regime) as
a function of A

Thus, the rms radius is precisely equal to the pair radius
of an isolated pair, and by (24) is much smaller than
the average interparticle spacing (or r,'i","ik~ &( 1) as
appropriate to tightly bound local pairs.

As an illustration of how the coherence length evolves
between the BCS limit of large overlapping Cooper pairs
and that of the Bose regime, we display in Figs. 1 and 2

the ratios r,m, /r, cs and r,~,/rq", " as a function of A

for the 1D b-potential many-ferrnion BCS system. This
was done by numerically eliminating 6 and y, in (16) in
favor of A, by solving ( 9) and (10) simultaneously. s We
plot r, ,/r~+~ in Fig. 1 for P' & 0, using a dimensionless

gap parameter 6 and chemical potential P,
' defined by

FIG. 2. Evolution of the rms radius r, , for 1D
many-fermion system as given by (16), in units of rq","' as de-
fined by (12), for values of P' & 0 (Bose regime) as a function
fA

r, ,/r, , = —(2p') ~ ~ 1 (as A M 0), (29)

—V ify, —hid~ & ei„ei,~ & p+ hu)~,
( )0 otherwise,

where V is a positive coupling constant, cg = h k /2m,
and ~D is the Debye energy. As shown in Ref. 13, the
"pair wave function" in the momentum representation is
also given by gg = A/2Ei, so that the coherence length
is correctly given by (16) for any such interaction model.
We now analyze the two- and three-dimensional cases.

B. Two dimensions

In 2D the formal expectation value equation (14) can
also be evaluated analytically for Ak ——4, and one ob-
tains

since P,
' Ep = h E~/mvs —— z&, , this is displayed in

Fig. 1. At first glance this limit is a rather reasonable
approximation for values of A & 0.5. Nevertheless,
for P,

' = 0 (A
i = 0.16), the ratio (29) r,~,/rP~,

—"(6b,)i~2 = 2.04. It follows that using of r~~, for values
of A ~ between 0.16 and 0.5 can introduce large errors.
For jY & 0, we have plotted r, ,/rq", " in Fig. 2. The
strong-coupling limit (27) here is a reasonable approxi-
mation only for values of A 0, and in the interval,
say 0 & A & 0.16 (which corresponds to p,

' & 0) the
full expression (16) for r, , must be used.

We emphasize that the coherence length given by (16)
is formally identical to that obtained in 10 with any in-
teraction model such that Ag

—= 4, e.g. , the standard
BCS interaction model. In this model, pairing in D di-
mensions emerges &om a two-electron Schrodinger equa-
tion with an attractive electron-phonon interaction, mim-
icked in momentum space by
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2
X'XXls

h21 p
4m'

+ —+ tan
p + 4 2

p~E~ and —~0
p

(32)

so that (31) gives

A2EF 1 (hvF)
4mb, ' 8gb, &

(33)

which is identical to the 1D limit result (20). In the
opposite limit of very strong coupling

1
p ——Ep(2) and —-+ 0,

2 P
(34)

where Ep(2) is again the (positive) binding energy of an
isolated, single pair (see Ref. 6). Expanding tan (p/b, )
up to order (4/p)s one obtains Rom (31) the limit

52 2 h~

3mlv( 3 mE, (2)
(35)

so that one recovers the extreme Bose regime of nonin-
teracting bosons with a pair size much smaller than the
interparticle spacing, or r, ,k~ (& 1.

This result coincides with that reported by Randeria et
al. , for the 2D Fermi gas model in the MRDS scheme,
which also implies Lg —= 6, which assumes that the un-
derlying generic pair interaction is of suKciently short
range. Again, we exhibit results in the two extremes.
For weak coupling

a pair size much larger than the interparticle spacing.
Note that the weak-coupling limits given by Eqs. (20),
(33), and (37) are identical in all dimensions one, two,
and three, and agree up to a factor of order unity with
the (weak-coupling) Pippard expression (p ——hvF/xb, ,
or with the value hvF/4b, derived via the well-known
uncertainty-principle estimate. In the strong-coupling
limit, 6, m 0 and again by (15) p = —Ep(2)/2 & 0,
where Ep(2) is now the binding energy of a single pair in
vacuum, tan(P/2) is once more given by (17), and from
(36) one obtains the limit

52 h2

4m)p) 2mEp(2)
(38)

This expression agrees with the 1D result (27), but dif-
fers by a factor of order unity from the result for the
2D Fermi gas (35), a fact probably associated with the
anomalousness of 2D compared with 1D or SD.

IV. COHERENCE LENGTH IN 2D AND
CUPRATE SUPERCONDUCTORS

In this section we analyze empirical coherence length
data reported for cuprate superconductors in terms of
the theoretical rms radius (31) in 2D for any pair in-
teraction model such that b,s = b, , e.g. , the BCS model
interaction. ~s We shall imagine, say, a short-ranged at-
tractive plus shorter-ranged repulsive interaction model
implied by the MRDS renormalization scheme, s which
must be suKciently attractive to support an S-wave
bound state of (positive) binding energy Ep(2). The re-
pulsion represents the screened Coulomb repulsion be-
tween electron holes; the attraction mimics the electron
(hole)-phonon interaction of longer range. The MRDS
scheme leads to closed expressions for both the BCS
gap energy 6 and the chemical potential p, given by

C. Three dimensions

For the 3D Fermi gas the formal expectation value in
(14) can again be evaluated analytically if Es ——b, , and
one obtains (see the Appendix)

4 = /2EFEp(2),

1= EF ——Ep(2),
2

(40)

h2 I', 5
4mB'( ' + b, ')'&'

g 4

tan(P/2), 3D,
Ap,

2
(36)

where p is again defined by (17). In the weak-coupling
limit, when b, ~ 0 and p ~ EF, use of (19) leads to

where EF = h~kF2/2m = 52mp/m, with p the 2D carrier
density. A 6nite temperature extension of the MRDS
scheme is due to van der Marel, while the 3D treatment
of Haussmann is exceptionally clear.

Instead of depending separately on p and b, as in (31),
the 2D rms radius can be written in terms of a single
variable 0 & g = Ep(2)/EF & oo as follows. Using (39)
and (40), express the ratio

A2EF 1 F hvF )
4m42 8gb, )

In 3D we thus recover the same BCS limit as in the
1D and 2D Fermi gases (20) and (33), respectively, of
large, overlapping, weakly bound, Cooper pairs, namely,

p EF —Ep(2)/2
+2EFEp(2) v ~g

Consequently, (31) simplifies to

=—f(n). (41)
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1 f(rl)'+ 2

k (8)" &()'
- xi2

x —+ tan (42)

0.Saz— jJEF

O.a94—

I lllj I I ! I I Ill/ I I I I I

Illa'

I I I I I I lli I I I I I ill/ I I I I I Ills

1.000

p 1
(43)

or, to a function of the single variable rI = Ep(2)/E~
This suggests that the pair binding energy Ep(2) of the
associate pair interaction model used might be more use-
ful variable than the actual coupling strength of the pair
interaction being employed. In terms of rI (40) becomes
simply

ll/EF:
I I

TIBaCaCuO YBaCuO
I

BISrCaCuO

For example, for the 1D MYG model, ri
—= Ep(2)/E~ =

2A2/n2, where A = mvp/esp is the dimensionless cou-
pling constant introduced in (2), and where Ep(2)
mvps/4FP was used. Weak couPling automatically imPlies
ri « 1, and expanding (42) for small q reveals that

IIIII r I I IIIIII I I jjlllll I jjlllll I
',

I IIIIII I I I IIIIII

1Q-~ 't Q0 1Q~ 1Q2 1Q3 1Q4

FIG. 3. Variations of (r, ,k~), [y,/6(0)], and IJ/E~ vs
for either the MRDS or BCS interactions.

r, , m (p 1.11(p (ri « 1),
2 2

(44)

where (p = hv~/mA is the Pippard coherence length. i4

Measured values of the zero-temperature gap parame-
ter b (0) for cuprates are currently highly controversial. s

There seems to be some consensus, 2P however, that the
dimensionless ratio 26(0)/k~T, lies between 5 and 8,
as compared with the standard BCS value of 3.53. As-
suming this range and the values of T, and Ty cited in
Ref. 21 for the three cuprates YBaCuO, BiSrCaCuO, and
T1BaCaCuO, Eq. (42) allows one to determine the result-
ing range of values for g and for p/EF listed in Table I.
The ensuing closeness of IM to E~ would suggest that in a
2D BCS-Bose description, with either the MRDS or BCS
interaction models, these materials are tpeakly coupled.

As a further test of this conclusion, Eq. (42) can now
be used to determine the range of values of the rms ra-
dius r, , consistent with the range 5—8 of 2b, (0)/k~T, .
These results are also listed in the table, but to compare
with experiment we assume the "clean" limit [meaning
that the mean free path l )) ( s(0), the coherence length
in the ab plane], which implies P that ( s(0) = 0.74r,
Ranges for ( s(0) and ( HAPP(0)

= 0.74hv~/xA are listed
in the table, and are in moderate agreement with exper-
imental values 2 based principally on upper critical
field 0,2(0) = (ti/2e)/2xr2, data, last column.

Finally, Fig. 3 displays (r, ,k~) i and p/E~, as well
as a portion of [p/b, (0)] vs il, where the left ex-

treme corresponds to the Bose, and the right to the BCS,
regimes. Horizontal "error bar" symbols mark off ranges
of g listed in Table I for the three cuprates consid-
ered. The inset in the upper-right-hand corner shows
both (r, ,kF) i and p/E~ in the relevant range of ri

values, in an ampli6ed scale.

V. CONCLUSIONS

Analytic expressions have been obtained for root-
mean-square pair radii r, , in the BCS state in 1D, 2D,
and 3D, for any interaction strength and any (8-wave) in-
teraction model VgA., leading to a k -independent gap pa-
rameter, viz. , b, s = A. All three cases reduce to the same
expression for r, , in the weak-coupling limit, which in
turn differs only by a factor of order unity from the well-
known Pippard value. In the opposite extreme of strong
coupling, r, , becomes the same in. 1D and 3D, while
for 2D it differs by a factor of order unity, and is es-
sentially the root-mean-square radius of an isolated pair
provided the N-fermion ground state is an ideal boson
gas of pairs (which it indeed is in the 1D soluble MYG
model treated).

The one-dimensional fermion Quid MYG model with
pairwise b attractive interaction solved in the BCS ap-
proximation allows one to track the evolution of the co-

TABLE I. Range of ii, p/Ep, ( q(0), and ( &PP(0) values as defined in text, for three cuprates and for the gap-to-T, ratio

26(0)/knT, ranging between 5 and 8, as explained in text, according to either the 2D MRDS or BCS interaction models. All

lengths are in A. units.

Compound
YBaCuO

BiSrCaCuO
T1BaCaCuO

T (K)
93
100
125

TF (K)
8807
4234
4234

0.4462
0.3094
0.3094

rl

3.48—8.92 x 10
1.74—4.46 x 10
2.72—6.97x 10

IJ /@i'
0.9998—0.9995
0.9991—0.9978
0.9986—0.9965

j!-~(0)
45—28
29-18
23—15

gP&PP (0)
40—25
26-16
21—13

Expt.
66—12 (Ref. 22)
35—18 (Ref. 23)
31—18 (Ref. 24)
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herence length in the regime intermediate between the
two extremes of weak interaction (A -+ 0) and strong
interaction (A -s oo).

The 2D MRDS and BCS interaction models are used
to analyze cuprate data, &om which it is concluded that
they are moderately well described as weakly coupled
superconductors, within the BCS regime (p, ) 0), in spite
of their comparatively small pair sizes.

Factorize the polynomial in k as ((s, —ts') + b,
(hz/2m)z(k —kq) . . (k —k4), with

( $2 1/2 Q2 l 1/2
4 = A —

~ ) Qp' —i6,4 = ( ~
Qp'+iE,

(Q2 1/2 ($2 11/2
ks ——

~

QP' —ib, , k4 ———
~ ~

Qls'+id, .

(A3)
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For the second-order poles of the numerator give

(A4)

Thus, one can evaluate both integrals in the complex
plane using the residue theorem. Choosing as the con-
tour of integration the real axis and a semicircle in the
upper half-plane, the two poles contributing are those
corresponding to kq and k2. For the first-order poles of
the denominator of (A2) we find the residues

APPENDIX

In this appendix we describe details in the calculation
of the coherence length for the 1D model in the BCS-Bose
approach. We start from expression (14) for D = 1,
namely

(2m &/24@ —3/ —6jp /
R, =(

16ib, (p! —ib, ) &

&/2 4p' —3/ + 6jp'/
Rz ——

/

E Ii2 ].6j+s(y/+ jQ)s/z

One is then led to the final result

(A5)
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(A ~ @a)
(A1)

(2m) 86z Regp'+ ib

where @b = 6/2Eb Recalling .(7) and (11 ), this becomes

(A2)

(A6)

which is equivalent to (16). Similar methods were used in
the 3D case to obtain (36); for D = 2 (14) can be directly
computed on the real axis and gives (31), as reported by
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