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We present evidence for and study the properties of coreless Josephson vortices (parallel to the
superconducting layers) in the organic superconductor (BEDT-TTF)&Cu(NCS)s, using ac suscepti-
bility measurements in the mixed state. We observe (1) extremely weak-pinning restoring forces for
fiux motion parallel to the layers, due to the absence of the vortex normal core; (2) single vortex
(noncollective) pinning, due to weak interactions between Josephson vortices; (3) the "lock-in" of
the vortices parallel to the layers when the dc field is applied at an arbitrary angle; and (4) highly
nonlinear response to the ac Seld h in the lock-in state, above a threshold of h 0.5 G. The be-
havior of tilted Bux lines is dominated by the much stronger pinning and collective interactions
of two-dimensional Abrikosov "pancake" vortices, and linear response is largely restored when the
fiux lines unlock from the layers. We measure the Josephson penetration depth to be Az(T = 5

K) 20Q tom, yielding a penetration depth anisotropy of p = A~/A~~ 16Q —350.

I. INTRODUCTION

Many superconductors of recent interest have layered
crystal structures, and are believed to consist of two-
dimensional superconducting planes coupled by Joseph-
son tunneling. This has important efFects on the struc-
ture and behavior of magnetic vortices. For Hux lines
making a large angle with the layers, the conventional
picture of a vortex as a continuous, rigid fiux tube must
be replaced by a description of a Hux line as a stack
of two-dimensional "pancake" vortices in the individual
layers [Fig. 1 (top)]. These resemble a cross sectional
slice of a conventional Abrikosov vortex. The field and
supercurrent are distributed over a circular area with ra-
dius A~~, the penetration depth associated with in-plane
supercurrents; and the superconducting order parameter
is suppressed within a normal core region of radius
the in-plane coherence length. Pancake vortices in adja-
cent layers interact only weakly, via their magnetic fields
and the tunneling currents, leading to greatly enhanced
fIuctuations of the vortex lines, and this can strongly af-
fect the dc magnetization, s'4 transport, s fiux creep, s and
other properties.

The interesting case of a magnetic Geld parallel or
nearly parallel to the layers has been fairly well stud-
ied theoretically, but has received much less experimental
attention. From the theoretical point of view, fIux lines
parallel to the layers are expected to difFer &om perpen-
dicular vortices in two important ways. First, all length
scales for the vortex lattice are highly anisotropic, being
stretched out parallel to the layers. Endividual vor-
tices have elliptical cross sections of area A~A~~, where
A~ ——

pA~~ is the Josephson penetration depth, associated
with weak interlayer currents [Fig 1(bottom. )]. The pen-
etration depth anisotropy p & 1 is a key parameter for

characterizing a layered superconductor. The vortices
are located on a distorted triangular lattice, with length
scales /4o/pB in the direction normal to the layers
and gp@o/B parallel to the 1 ayers, sand this has been
confirmed by decoration experiments. ~

Second, and more importantly, a vortex line parallel to
the layers is believed not to have the usual normal core
region. ~~'~2 This is often attributed to the fact that the
interlayer spacing s exceeds the coherence length defined

sss~assssm$$ 1

LJ = yS

FIG. 1. Top: a tilted Bux line consists of a stack of
two-dimensional Abrikosov "pancake" vortices, each of which
contains a normal core (dark area). The vortex makes an
angle P with the layers. Bottom: structure of a Josephson
vortex, viewed along the Seld direction. The superconduct-
ing order parameter maintains its full value everywhere on the
layers The Josephson ."core" (shaded area) is the region in
which the tunneling current is comparable to the Josephson
critical value Jo and has width LJ = ps )
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by g~ ——
(~~ /p below some crossover temperature, approx-

imately given by (T/T, ) = [1 —((~~(0)/ps) ] ~, so that
the normal core "fits between the layers. " More precisely,
the divergence of the current and magnetic 6eld near the
center of the vortex is cut off when the interlayer current
becomes comparable to the Josephson critical current Jo.
The in-plane currents remain small compared to the crit-
ical value J, o cH, /A~~, at which the kinetic energy
density would become comparable to the condensation
energy H2/8x. (In a conventional Abrikosov vortex, the
supercurrents become comparable to J, o at r (, and
the order parameter goes to zero in order to avoid the
divergence and minimize the total energy. ) The order
parameter can thus maintain its full value everywhere on
the superconducting layers. The length scale over which
the tunneling current is comparable to and limited by Jo
is the Josephson length I~ = ps ) (~~, and I~ replaces

(~~ as the length scale for the Josephson vortex core in the
direction parallel to the layers [Fig. 1 (bottom)]. Vortices
parallel to the layers are in many ways similar to vortices
parallel to a single Josephson junction and are referred
to as Josephson vortices.

The absence of the normal core for Josephson vortices
has its most dramatic effects for lux lines tilted at very
small angles P & tan (1/p) relative to the layers (see,
for example, Refs. 14—19). In this angular regime, the
vortex core consists of alternating two-dimensional (2D)
normal cores and Josephson cores, linked together in a
staircase fashion. One well-known experimental conse-
quence of this is intrinsic pinning. ' A large energy
barrier opposes the motion of a Josephson vortex through
the superconducting layers, leading to a suppression of
the in-plane resistivity when the flux lines are nearly par-
allel. Closely related to this is the magnetic lock-in ef-
fect, in which the flux lines are trapped parallel to the
layers even when the external field is applied at an angle.
A transition to tilted vortices occurs when the applied
perpendicular field component exceeds a threshold value.
The lock-in effect was first observed experimentally in Bi-
2212 by Zavaritskii and Zavaritskii, through dc magne-
tization measurements. Anomalies in torque magnetiza-
tion measurements have been observed in various high-T,
compounds at small tilt angles, and attributed to the ef-
fects of the layered structure. '2 Beyond this, there have
been few experiments which directly probe the properties
of Josephson vortices and relate them to the currently ac-
cepted theoretical models.

In a previous publication, we presented evidence for
the lock-in effect in the layered organic superconductor
(BEDT-TTF)2Cu(NCS)2, hereafter referred to as "ET."
The experimental probe was low frequency ac magnetic
susceptibility, which allows the measurement of the vor-
tex pinning force "spring constant" k„,and the signature
of the lock-in effect was a striking nonmonotonic behav-
ior of the susceptibility (see below). The quantitative
interpretation of the data focused almost exclusively on
the angle and temperature dependence of the threshold
6eld for the lock-in transition, and the details of the field,
angle, and temperature dependence of the susceptibility
were discussed only qualitatively. The data and analysis
presented in this paper provide further strong evidence

for the existence of Josephson vortices in ET, and show
that the behavior of parallel flux lines is quite different
than that of tilted flux lines in several respects. We list
here a summary of our key findings:

Josephson penetration depth and anisotropy. We mea-
sure the penetration depth associated with interlayer cur-
rents to be A~(5 K) 200 pm, by studying the sam-
ple size dependence of the susceptibility in the Meissner
state. Combined with A~~ 0.6—1.2 pm &om other mea-
surements, this gives an anisotropy of p 160—330, in
agreement with the result p & 200 &om torque magneti-
zation measurements.

Anisotropy of the microscopic pinning mechanism.

The pinning force constant k„for Josephson vortices
moving parallel to the layers is extremely weak, due to
the absence of the normal core; perpendicular vortices

are pinned much more strongly, k+/k„500. We relate
the measured force constants to the appropriate energy
and length scales for the vortex core: the condensation
energy H, /8vr and coherence length (~~ for perpendicular
vortices, and the Josephson coupling energy hjo/2e and
Josephson length I g ——ps for Josephson vortices. Based
on our experimental results, we estimate the depinning
critical currents for both types of vortices, and obtain
fair agreement with the results of remnant magnetiza-
tion measurements.

Anisotropy of collective sects and the shear modulus.

Despite the weakness of Josephson vortex pinning, k„is
independent of the vortex density (field strength), show-

ing that the interactions between vortices are even weaker
and do not affect the pinning. On the other hand, the
pinning force decreases with field for perpendicular vor-
tices, which we attribute to collective effects. This is in
agreement with calculations which show that the shear
modulus of the vortex lattice is a factor of p 10
smaller in parallel fields as a result of the anisotropy.

Magnetic lock-in effect. A magnetic field applied at
an arbitrary angle with the layers initially penetrates the
sample only in the form of weakly pinned Josephson vor-

tices, leading to a rapid decay of ac screening. The vor-
tices unlock &om the layers when the perpendicular field
component exceeds a threshold, and the screening recov-
ers due to the onset of strong pinning of the pancake
vortices.

Scaling with normal field component Well above t.he
lock-in threshold, for angles larger than about 5, the
ac susceptibility is determined by the perpendicular 6eld
component, including the collective pinning effects. This
shows that both the pinning and interactions of tilted
flux lines are determined by the properties of the pancake
vortices. We present a simple model which semiquantita-
tively reproduces the observed phenomenology over the
whole range of fields and angles.

Nonlinearity in parallel fields We observe hig. hly non-
linear response (strong suppression of screening) to ac
fields exceeding h 0.5 G in the absence of perpendic-
ular flux in the sample, i.e., in zero dc 6eld or in the
lock-in state. Linear behavior is largely restored when
the flux lines unlock &om the layers. While not yet fully
understood, this effect further establishes that Josephson
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vortices dier qualitatively from tilted vortices.
The experimental apparatus and techniques are de-

scribed in reference Ref. 24. The insets to Figs. 6 and 10
show the configuration of the experiment and the shape
of a typical crystal. The measurements described in this
paper were made on a single sample, with dimensions
1.2 x 0.8 x 0.15 mm, but all of the phenomena reported
here have been observed in several samples (although
measurements were made below 4.2 K on only one sam-
ple). The ac susceptibility was measured by a standard
mutual inductance technique. The ac field h was parallel
to the conducting layers and the longest sample dimen-
sion, and perpendicular to the dc field H. The sample
could be rotated about the ac field axis with 0.0025' reso-
lution, allowing the angle between H and the conducting
planes to be varied while keeping H J h. The ac Geld

amplitude and &equency were 0.1 G and 2.5 kHz, except
where otherwise noted.

An overview of the properties of the organic supercon-
ductor (BEDT-TTF)2Cu(NCS) 2 is given in Ref. 28. The
critical temperature T, 10 K, and the interlayer repeat
distance is s 15 A. Other properties (upper and lower
critical fields, coherence lengths, penetration depths) will
be discussed at appropriate points in the text.

II. AC SUSCEPTIBILITY OF ANISOTROPIC
SUP ERCONDUCTORS

We begin with a brief discussion of the ac susceptibil-
ity of superconductors, including the eKects of anisotropy
and of elastic vortex motion in the mixed state. Dis-
sipative vortex motion will be mentioned only brieBy.
Throughout this paper, we will use H and h to denote
the applied (external) dc and ac fields, respectively, and
B and b for the internal dc and ac magnetic fields. 8 will
denote the angle between H and the conducting layers,

and P is the angle between the layers and B [see, Fig.
13(a)].

The ac magnetic susceptibility of a superconductor,
y = M, /h, is never exactly equal to —I/4m, the value
associated with complete field exclusion (perfect Meiss-
ner efFect). The applied field decays exponentially into
the interior of the specimen, over the length scale of the
penetration depth A. If the field is applied parallel to an
infinite slab of thickness L, it is easily shown (see Ref.
29, for example) that the susceptibility per unit volume
is given by

2A (Li—4m' = 1 ——tanh
~

—~,L i2A&
' (2.1)

$2b (92bA„+A, —b= 0.
y z

(2.2)

Following the derivation of Clem and Coffey for the
isotropic case (A„=A, ), we obtain the equation

which depends only on the ratio A/L. The "screening
strength" —4m' is a conveniently normalized form of the
susceptibility, with —4xy = 1 indicating complete exclu-
sion of h (A « L), and —4m' = 0 indicating complete ac
field penetration (A» L).

If the sample has a finite cross section L„XL, but
the penetration depth is isotropic [Fig. 2(a)], Eq. (2.1)
can still be used as long as the aspect ratio is large
and Geld penetration across the smaller sample dimen-
sion (which we call L, ) dominates. For a superconduc-
tor with a large penetration depth anisotropy, however,
the situation shown in Fig. 2(b) can occur, in which

A„/L„&A, /L„and field penetration along the longer tJ

direction can significantly contribute to or even dominate
the permeability of the sample to the ac field. A more
general equation for y is therefore needed, which can be
used for arbitrary values of Av/L„and A, /L, . We begin
with the anisotropic London equation for b

~[ z,

2A, ( L, l 16A„. tanh(q„L„/2)
L, ~ 2A 'L„~.(2n+ I)'(k2A2+1)»2'

u
(2.3)

with

2n+ 1k„=
L

jr and
k„'A,'+ 1

Ly

f

O

1&

Lz
lk

It is easily seen that Eq. (2.3) is a function only of Az/L&
and A, /L, We have check. ed both analytically and nu-
merically that this equation gives physically reasonable
results. If either A; = 0, Eq. (2.3) reduces to the form
of Eq. (2.1), and if either or both A; -+ oo, y = 0. We
have numerically verified that the results of Eq. (2.3) are
symmetric under the interchange of the labels y and z.
Keeping terms to n = 50 was found to be more than
sufBcient summing to higher n did not lead to any

Xy
~

~,':,'::,:::::;:&.:',.:,-:,-:.,.'.',:.'..:.'.~.'-,.:'.:'-.",.,
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'
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FIG. 2. Field penetration (shaded areas) in isotropic and
anisotropic superconductors with rectangular cross sections.
(a) For an isotropic superconductor, Beld penetration from
the edges can be ignored if L„))L, . (b) This is not the case
in an anisotropic superconductor if A„/L„))A /L .
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observable changes in the results of calculations using
Eq. (2.3).

The above discussion holds regardless of the mecha-
nism of ac field penetration. In the Meissner state, A„
will be the Josephson penetration depth A~, and A,
the I ondon penetration depth A~~. In the mixed state,
the motion of vortices in response to the ac field pro-
vides another mechanism for ac field penetration. We
will base our discussion of this on the simple model first
proposed by Campbell and later elaborated by other
workers. These are mean field models in the sense
that the starting point is a single-vortex equation of mo-
tion. The parameters of the model are the pinning restor-
ing force "spring constant" k~ and the viscosity rl (see
below), which are assumed to be the same for all vor-
tices. Recent experimental work ' has shown that this
approach does not at all correctly describe the observed
frequency dependence of the complex impedance, while
models based on a scaling approach ' work much bet-
ter. Nonetheless, in the limit of low &equencies and lin-
ear response, the "mean field" approach seems to be an
adequate framework for interpreting our results. Lim-
ited studies of the frequency dependence of the complex
susceptibility in ET (Ref. 40) show a weak, roughly log-
arithmic frequency dependence, similar to that observed
in Ref. 37 and Ref. 41. Order of magnitude changes in
the frequency typically lead to only small changes in the
susceptibility, which we take as justification for using the
approximation of linear, elastic vortex motion.

We discuss the situation shown in Fig. 3, with the
ac and dc fields perpendicular to each other; this cor-
responds to all of the experiments in the mixed state
described in this paper. The dc field H establishes the
vortex lattice and determines the average vortex den-
sity and orientation. The perturbing ac field h induces
a screening current near the surface, and this exerts a
force on the fiux lines of J x 4o/c per unit length, which

h „+

causes them to tilt in the direction of the ac field. This
force is balanced by pinning and viscous forces, according
to the equation

1—J x 40 ——k„u+qu, (2 5)

where u is the displacement of the vortex from its equi-
librium location. The pinning force constant k„and vis-
cosity g are per unit length of vortex. The tilting of the
Aux lines leads to enhanced penetration of the ac field.
In the low frequency limit of this model, ~ (( ufo

——k„/q,
the viscous forces can be ignored. The vortex displace-
ments and the field and current distribution must be
calculated self-consistently, and several workers ' have
shown that the resulting total penetration depth is

A2 A2 A2 A2
Bc'0

a,c + v +
4K p

(2.6)

This is the equation which we will use throughout this
paper [together with Eq. (2.1) or (2.3)j to determine the
pinning force constant kz from the susceptibility and pen-
etration depth. The first term on the right hand side of
Eq. (2.6) is the square of the London or Josephson pene-
tration depth (depending on the geometry of the experi-
ment), and the second term gives the square of the vortex
motion contribution to the penetration depth A„.

This result applies to purely elastic and reversible vor-
tex motion, and the complex susceptibility y = y' + i y"
is real (y" = 0) and frequency independent. We do in
fact observe a small but finite dissipation y" g 0 (Fig. 6),
and a weak, logarithmic frequency dependence. How-
ever, the magnitude ~A~ of the complex penetration depth
A = iA~e' can be determined from y' alone as long as
y" is not too large. The phase angle b can have any
value between b = 0 (elastic dynamics) and b = vr/4 (vis-
cous dynamics, pure fiux fiow resistance). The complex
impedance Z iA is thus real (resistive) for b = 7r/4 and
imaginary (reactive) for b = O.ss's Figure 4 shows the
real and imaginary parts of the susceptibility as a func-
tion of ~A~, for several values of b. The calculations were
made by expanding Eq. (2.1) into its real and imaginary

&) eeh
it ~B
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FIG. 3. (a) Relationship between ac field penetration and
flux line pinning. The total external field H+ h executes a
small amplitude tilting motion (top). Left: rigidly pinned
flux lines: B = H inside while B = H+ h outside, and so

—1/4ir. Right: if there are no forces opposing 6ux
line motion, then B = H + h inside the sample and y, = 0.
Center: in the general case, pinning forces lead to a vortex
contribution A„to the ac penetration depth. (b) Geometry
for discussion of angular dependence of A„.
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10 10 10
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FIC. 4. Real and imaginary parts of the complex suscepti-
bility y(A) vs ~A~, with A = ~Aie', for b = 0 (purely reactive
impedance), s'/16, s/8, and s'/4 (purely resistive impedance,
A =classical skin depth). X'(A) depends only weakly on b for
8 ( 7r/8.
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parts. 2s It can be seen that for h' & vr/8 (corresponding
to a small peak in y"), y' is determined to good accuracy

by ~A~ only, as claimed above.
If the vortices make an angle P with the surface but

are still perpendicular to the ac field [Fig. 3(b)j, Eq. (2.6)
is replaced by

B@p
A, =A + sin (2.7)

III. MEASUREMENT OF THE JOSEPHSON
PENETRATION DEPTH

where we have allowed for a possible angular dependence
of the pinning force constant k„.One factor of sin P arises
&om the angular dependence of the Lorentz force be-
tween the vortex and the surface currents, F = J x 4p/c,
and the other is essentially due to the fact that the ac
6eld is most effectively transmitted along the direction of
the Hux lines, which are parallel to B. A„is zero when the
vortices are parallel to the surface ac screening currents.

K T,/2. The real part of the susceptibility y'(T) was
measured for five ET samples of various sizes, in the ge-
ometry shown in the inset to Fig. 5(b). The apparatus
was calibrated using reference samples of three conven-
tional superconductors, slabs of Nb, Pb, and Ta with di-
mensions sixnilar to the ET crystals. The reference sam-
ples gave sharp transitions in y' at the correct T 's, and
the ratio of the step in the coil output to the sample
volume was the same for all three saxnples, to about 5%
accuracy. The reference samples were thus assumed to
have a susceptibility of —I/4vr per unit volume.

Measurements were made on five ET crystals. The ab-
solute values of the screening strength per unit volume

47ry'—(T) for three of the samples are plotted in Fig. 5(a).
Recall that —4xy' = 1 indicates a perfect Meissner effect.
The transitions are broad, the screening does not satu-
rate down to T = 4.5 K T,/2, and the screening per unit
volume is weaker for smaller samples. The same data are
shown again in Fig. 5(b), normalized to approximately
coincide at T = 5 K. It can be seen that the transition is
sharper for larger samples. All of these features are qual-
itatively consistent with the behavior expected if one of

The in-plane penetration depth A~~ of (BEDT-
TTF)qCu(NCS)2 has been measured by muon spin
precession, reversible dc magnetization, and mi-
crowave cavity perturbation, which give values of A~~ (0)
ranging from 0.65 pm to 1.2 pm. The anisotropy p can
then be determined in a number of ways. The upper crit-
ical fields at T = 0, determined &om the transition in the
in-plane resistance, 4s are H,2(0) 20 T and H, 2 5 T,
yielding p 4. A similar anisotropy was obtained &om
specific heat measurements of the critical 6elds close to
T,. (A larger anisotropy, p 20, is obtained f'rom the
resistive phase boundaries near T„due to the positive
curvature of the resistive phase boundary. 4s) However, p
is related to the critical 6eld anisotropy in this way only

if H, 2 is determined by orbital effects, e.g. , the overlap
of the normal cores. The critical 6eld measurements give

$~~(0) 80 A and Q = (I/p —20 A. s, suggesting
that ET is at least close to the limit of weakly coupled
layers and that soxne other mechanism might determine

H,z. We note that H,2(0) is fairly close to the Pauli
pair-breaking limit of (18.4 kG/K) xT, .

A xnuch larger anisotropy, p & 200, was obtained &om
reversible torque magnetization experixnents, implying
that A~ 130—240 pm. Kanoda et al. measured A~(T)
of ET directly, using calibrated low &equency ac suscep-
tibility xneasurements in the Meissner state, and found a
macroscopic value of A~(0) 1 mm. Although this result
was controversial, it is at least consistent with the lower
limit &om the torque measurements. dc susceptibility
experiments had previously provided evidence for macro-
scopically large Josephson penetration depths in the or-
ganic superconductor (TMTSF)zC104 (Ref. 48) and in
the intercalation coxnpound TaSz(@II)xyz.

We have used the method of Kanoda et al. for mea-
suring A~. We focus on the size of the penetration depth
at one temperature, not the details of the temperature
dependence, and have taken data only down to T 4.5

0.8
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FIG. 5. (a) Absolute value of the screening strength —4z'g'
for three samples with difFerent lengths L„.(b) Same data as
in (a), normalized to coincide at T = 5 K. (c) —4z y' (5 K) vs
L„for all five measurements. The fit is described in the text,
and gives A~ (5 K)=200 ym.
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the penetration depths is comparable to the appropri-
ate sample dimension. Because the in-plane penetration
depth A~~(0) - 1 pm is much smaller than the typical
sample thickness L 100 pm, field penetration normal
to the layers cannot be responsible for this behavior. We
therefore attribute it to a macroscopically large penetra-
tion depth A~ associated with interlayer currents, and
assume that the situation is as shown in Fig. 2(b).

The value of A~ at T = 5 K was obtained by fitting
y'(T = 5 K) from all five samples to Eq. (2.1), with
the penetration depth A~(T = 5 K) as the only fitting
parameter [Fig. 5(c)]. The quality of the fit is fairly good,
showing that the susceptibilities of all of the samples can
be explained by the same value of the penetration depth
A~, and the result is A~(5 K) 195 6 20 ym. The
penetration depth A~ and Josephson critical current Jq
are related by Jo ——c@o/8x2sA~&, which gives Jo 400
A/cm2. Given the range of reported values 0.55 ym &

A~~
& 1.2 pm, using A~(0) 200 pm gives 160 & p ( 350

for the anisotropy. This is consistent with the torque
result, p & 200. Tokumoto et al. observed similar
behavior of the dc susceptibility with a weak field parallel
to the layers, and we obtain A~(T = 5 K) 200 ym Rom
an analysis of their data. (The two largest dimensions of
their sample were 1.2 and 0.7 mm. We use I„=1 mm
since the orientation of the field is not specified in Ref.
50.) We can only attribute the discrepency between our
result and the value of 1 mm of Kanoda et a/. 47 to a
difference in sample quality. Cracks in a sample would
reduce the effective sample size, leading to enhanced ac
field penetration and an overestimate of A~

Bbo 1600

5
(9
CS
0)

lQ 3

o~
o

FIG. 6. Real and imaginary parts of the complex suscep-
tibility at T = 4.2 K, with the dc magnetic field applied (a)
normal to the layers, and (b) parallel to the layers.

IV. PINNING MECHANISM ANISOTROPY

Application of a dc magnetic field 8 either parallel or
perpendicular to the conducting layers (and perpendic-
ular to the ac field h) causes a monotonic decrease of
the screening strength —4m'', as shown for T = 4.2 K in
Figs. 6(a) and 6(b), but the behavior of y(H) in these
two orientations differs in several ways: (1) The screen-

ing —4ay'(H) decreases much more rapidly for H paral-
lel to the layers. This is the opposite of the anisotropy
in the resistively determined critical fields H+2 2 T
and H, 2 17 T. The midpoint of the "transition" in
y'(H) for H parallel to the layers occurs at H 100 G,
a factor of 10 loioer than the parallel field resistive
transition at 17 T. (2) The form of y'(H) is quali-

tatively different for the two orienations, with a roughly
Gaussian shape for perpendicular H, and positive curva-
ture throughout, and a long tail at high fields for parallel
H. (3) The peak in the imaginary part g"(H) is larger
for perpendicular H. (4) The field above which y'(H)
is reversible (for H increasing and decreasing) is much
lower for the perpendicular orientation. In this section,
we present data in both orientations over the tempera-
ture range 2.4—9 K, and focus on the interpretation of
features (1) and (2) in terms of the anisotropy of the mi-

croscopic pinning mechanism and of the shear modulus
for parallel and perpendicular vortices. The differences

A =A (T)+
4~k~II (T)

(4.1)

with the pinning force constant kz a constant for each fit.
The fit is very good at all temperatures, and the values of

k~ extracted from these data sets (and others not shown)II

are showa in the inset to Fig. 7(a). The typical value

of the restoring force constant is k„~10 dyn/cm .

in dissipation and reversibility will not be discussed in
detail.

In Fig. 7(a) we show —4xy'(H) for several tempera-
tures between 2.4 K and T„with H parallel to the layers.
The susceptibility for H = 0 is determined by A~ (T)/L„,
where A~(T) is the Josephson penetration depth (as in
Fig. 5), while the decay of y with increasing field is
due to vortex motion (Sec. II). The vortices are par-
allel to the layers, and are driven by interlayer currents
Bowing at the edges of the sample. The resulting tilting
motion parallel to the layers leads to enhanced ac field
penetration aloag the y direction only, not along z [iaset
to Fig. 7(a)]. With reference to Fig. 2, A, = A~~(T) is in-

dependent of field and A, /L, « 1. We may therefore en-

tirely neglect ac field penetration from the faces, and use
the simple one-dimensional equation (2.1) for y(A„/L„).
The solid lines are fits to Eq. (2.1) with the field- and
temperature-dependent penetration depth given by Eq.
(2.6),
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obtained from power law fits are shown in Fig. 7(c), and
have an average value of 0.45. This is consistent with
the good quality of the fits shown in Fig. 7(a), for which

P is fixed at 0.5. The observation that A„~~H and

kz const for parallel H implies that the pinning forceII

for each vortex is independent of the total vortex den
sity, and is therefore unaffected by interactions between
vortices. This is the case of "single-vortex pinning, " in
the terminology of collective pinning theory. We will
discuss the self-consistency of this finding in Sec. IV A.

Figure 8(a) shows a similar data set for the perpen-
dicular field orientation. Again, the susceptibility in zero
field is determined by ac field penetration in the y di-
rection, due to the large Josephson penetration depth
A~(T) = A„.The vortices are now normal to the large
surfaces of the crystal, and interact with in-plane surface
currents; so the resulting tilting motion leads to addi-
tional ac field penetration in the z direction. The full
two-dimensional susceptibility formula (2.3) must there-
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FIG 7 (a) —4s A'(H) with H parallel to the layers, at »r-
ious temperatures (points). Fits are described in text. Inset:
values of k„(T)from fits. Vortices allow enhanced ac field
penetration along y, and A' is determined by A„/L„.(b) Vor-
tex motion contribution to the ac penetration depth vs Geld,
extracted from susceptibility data as described in text. Solid
line shows A„~Bbehavior expected for single-vortex pin-
ning. Fits to a power law Geld dependence, A ~ H~, give an
average power P 0.45 (c).

This is extraordinarily small compared to typical values
for the high-T, superconductor YBCO: k„(T= 0) 10
dyn/cm for single-crystal YBCO,si and k„1dyn/cms
for vortices trapped between gruin8 in granular YBCO.
We discuss the relationship of A:„to the microscopic pin-
ning mechanism in Sec. IVB.

We obtain the field-dependent part of the penetration
depth from the data by numerically inverting Eq. (2.1) to
obtain A„(H,T), using L = L„=0.8 mm. (We neglect
y" in determining the penetration depth, as discussed
in Sec. II.) This was done using an algorithm which
chooses successively better values of A„until finding one
which gives the correct value of y' to an accuracy of 10
From Eq. (4.1), the vortex contribution A„(H) is then

A„(H)= vt„(H,T) —Ai(T~). A„(H)is plotted onalog-
log scale in Fig. 7(b), and is well described by a power
law A„(H) Hr at all temperatures. The values of P
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FIG. 8. (a) —4s.y'(H) with H perpendicular to the layers,
at various temperatures. Solid lines through the data are Gts
to power law field dependence of A„;see text. (b) A vs H,
extracted from the data of figure (a) as described in text. A„
increases faster than ~H, indicating collective pinning effects.
(c) Temperature dependence of power P, obtained by fitting
high-field data in (b) to a power law, A„(H) HS.



15 936 PAUL A. MANSKY, P. M. CHAIKIN, AND R. C. HADDON 50

fore be used in analyzing the data. The form of y'(H)
varies qualitatively as the temperature is varied, and re-
sembles the parallel field data only at the lowest temper-
ature studied, 2.4 K. At this temperature, the suscepti-
bility can be fit using Eq. 2.3, with A„=A~(T) =const
and A, (B) = Bgo/4+k„, resulting in k„(2.4 K) 0.7

dyn/cm and k /kz 500 at this temperature. To
better understand how this anisotropy is implied by the
data, recall that the decay of the susceptibility is deter-
mined by A„/L„whenthe vortices are parallel to the lay-
ers, and by A, /L, when they are perpendicular. Thus for
a fixed value of the screening strength (e.g. , —47ry' = 0.3,
occurring at fields B~~ 80 G and Bz 1500 G), it must

be true that the vortex contributions to A, /L, and A„/L„
are equal, or

II (4.2)
L2kll L2k-L

Q p z p

The pinning anisotropy is thus determined by both
the ratio of field scales for the decay of screening,

and the square of the sample aspect ratio: k„/k~
II

(B&/Bl*)(Lz/L, ) = (1500/80) (0.8/0. 15) 500. We

will discuss the relationship of the measured kp to the
microscopic pinning mechanism in Sec. IV B.

At intermediate temperatures (about 3.5 —7.1 K ), a
different type of behavior occurs in perpendicular fields,
with a "bump" at low fields and a roughly Gaussian or
bell shape above this. Above 7.1 K, A" (H) again has

positive curvature everywhere (as at the lowest temper-
ature), but now goes to zero more abruptly, without the
gradual tail which occurs at other temperatures. The
field at which y' ~ 0 is much smaller than the resis-
tively determined critical field H, 2(T) at all tempera-
tures. A'(H) is reversible with increasing and decreasing
dc field above the low-field bump and irreversible in the
low-field region [Fig. 6(a)]. The magnitude of the re-

versibility field is about double that of reported values

of the lower critical 6eld H+z, as determined by dc mag-

netization experiments, ' and has similar temperature
dependence (with positive curvature). We focus on the

behavior at high 6elds, and do not discuss the low-field

region further.
With Az

——A~(T) determined from y'(H = 0), A„=
A, (H, T) can be determined from the data by numerically
inverting Eq. (2.3), using the same type of algorithm
used in analyzing the parallel field data. We again ig-
nore the imaginary part y". The results of this procedure
are shown in Fig. 8(b), on a log-log plot. The data for
T & 7.1 K appear to be approaching power law field de-
pendence A„H~at high fields, but with a temperature-
dependent power P. The asymptotic value of P is plot-
ted against the temperature in Fig. 8(c). A„(H) in the
reversible region was fit to the form A„(B)= a+ 6H~ for
T & 4.2 K, and the parameters obtained from the fits
were used to calculate the solid lines in Fig. 8(a). Note
that the largest values of A, correspond to the small-
est values of —4m'', and the sensitivity is greatest when

I, . The sensitivity of the measurement is lost when
A, becomes much larger than I, = .015 cm, and this is
why data are not available for higher fields at higher tem-

peratures.
We cannot at present quantitatively account for ob-

served field and temperature dependence, but can make
some general statements. One expects that A„yB
only if k„is field independent, and this implies single-
vortex pinning. Whether or not A, (H) is actually well

described by a power law, it is clear from Fig. 8 that the
penetration depth generally increases faster than ~B,
and this indicates that the average pinning force con-
stant k„becomes weaker as the field is increased. A likely
mechanism for the softening of the pinning strength at
higher temperatures is collective pinning, as first pro-
posed by Larkin and Ovchinnikov. Collective pinning
results from the competition between repulsive intervor-
tex interactions (elasticity), which favor long range peri-
odic order, and pinning by a random potential with no
long range order. If elasticity is dominant, the flux lines
are essentially randomly distributed with respect to the
pinning potential minima. The efI'ective restoring force
constant for each vortex will then vary in sign, depending
on whether the curvature of the pinning potential is pos-
itive or negative at the equilibrium location of the flux
line [e.g. , for a pinning potential of the form shown in

Fig. 9(c)]. This leads to a reduction of the average pin-
ning force constant when kp is averaged over the field-
dependent correlation volume V, . Because the elastic
constants increase with field at low fields, the correlation
volume grows and the average pinning force constant be-
comes weaker as the 6eld is increased. Collective pinning
is usually used to explain the decrease of the critical cur-
rent with increasing vortex density.

The data therefore suggest that at the lowest stud-
ied temperature of 2.4 K (and presumably below this
as well), perpendicular fiux lines are pinned individually,
while the pinning becomes collective at higher tempera-
tures, presumably due to the weakening of the pinning
potential by thermal fluctuations. The field dependence
of y' was similar in all samples studied for T & 4.2 K,
but only one sample was studied down to T = 2.4 K.
Thus our claim of a temperature-driven transition from
single-vortex to collective pinning is based on one sam-

ple only, but the claims of collective pinning for T & 4.2
K and single-vortex pinning in parallel 6elds at all tem-
peratures are based on results from several samples. A
temperature-driven transition kom individual to collec-
tive pinning was observed in YBCO single crystals for
H

~~
c, by Krusin-Elbaum et ol.ss They found that the

critical current 1, [deduced from the dc magnetization
M(H) using the Bean model] was field independent for
T ( 45 K, and decreased as 1, 1/H at high temper-
atures.

We now consider in more detail whether the above re-
sults are self-consistent, and consistent with theoretical
ideas about collective pinning and microscopic pinning
mechanisms.

A. Collective effects:
Anisotropy of the shear modulus

The observation of individual pinning of Josephson
vortices and collective pinning of perpendicular vortices
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may seem contradictory at first. Single-vortex pinning
occurs when pinning forces exceed elastic forces, but
Josephson vortices are 500 times more weakly pinned
than perpendicular vortices, according to the results of
our experiments. However, the anisotropy of the elastic
constants must also be taken into account. To de-
termine whether our findings are self-consistent, we can
make a crude estimate of the effective restoring force due
to the vortex elasticity in both orientations, and compare
this to the measured values of k„.We do this by consid-
ering a shear wave, with displacement amplitude u and
wave vector g t u. The &ee energy per vortex and per
unit length isss (in cgs units)

f = BCssq (4.3)

We take the coefficient of u to be an effective restoring
force constant due to interactions, and wish to compare
this to k„.

We first consider the case of fiux lines perpendicular
to the layers. Since we are interested in independent dis-
placements of neighboring vortices, we take q 1/a =
gB/@e, and 4.3 simplifies to Cssu . The shear modulus
for perpendicular fiux lines (for H, i « H « H,2) is the
same as for an isotropic superconductor with penetra-
tion depth A~~, Css —BC'p/(8z'A~~) . Using A~~ 1 pm,
we get C66 0.03 B with the magnetic field B in gauss.
(Css and k~ both have units of ergs/cms =dyn/cm2).
The pinning constant k 0.7 dyn/cm, and the elas-

tic energy exceeds the pinning energy for B & 30 G.
Thus, far &om it being surprising that collective effects
are observed, it is puzzling that single-vortex pinning is
observed at all in kG fields, even at low temperatures.

A temperature-driven transition &om single-vortex
to collective pinning was predicted by Koshelev and
Vinokur and by Feigel'man, Geshkenbein, and Larkin
(AGL), sr who predicted that that single-vortex pinning
should occur for sufBciently small B and T. However,
the crossover temperatures predicted by these models for
ET are on the order of T = 5 mK. This small value re-
sults from the use of k+(T = 2.4 K) 1 dyn/cm2 in
calculating the parameters which go into the the models:
the depinning critical current j, kz (~~(0)c/@e 25
A/cm2 (see next section) for the calculation in Ref. 56,
and the pinning energy per 2D vortex U„k„(~~s 1
mK for the calculation in Ref. 57. The reason for this
discrepancy is not understood. The observed crossover
temperature for YBCO in Ref. 53, 45 K. agreed fairly
well with estimates &om these models.

For vortices parallel to the layers, there is both a
"hard" and an "easy" shear modulus, corresponding
to shear parallel (Css) or perpendicular (Css) to the
layers. Ignoring the discreteness of the layers, i.e.,
in the anisotropic Ginzburg-Landau model, Kogan and
CamPbells obtained Css ——Css/P and Css PCss.
We have simplified Kogan and Campbell's equation (9)
using the identities for the reduced effective masses in
their model, mi ——1/p2~s and ms ——p4~s. Since the lay-
ered structure only affects the structure of the core, the

AGL result for C66 should also apply to layered mate-
rials. The easy shear modulus for Josephson vortices is
thus a factor of p 10 weaker than the shear modu-
lus for perpendicular vortices, and the anisotropy of the
shear modulus is much larger than the pinning constant
anisotropy, k+/kz 500.

Shear parallel to the layers should dominate the dis-
tortion of the lattice. We therefore take u parallel to
the layers and q perpendicular to the layers, and set
q gpB/@e to account for the anisotropy of the lat-
tice structure. Using this in Eq. (4.3), the prefactor of
u2 in the expression for f is pCss 8 x 10 B dyn/cm,
with B in gauss. We again identify this as an efFective
force constant due to vortex interactions in the presence
of shear. This does not become comparable to the mea-

sured pinning force constant k„10s dyn/cm until
B 1 kG. Furthermore, the calculation of Kogan and
Campbell was in the local limit, q = 0, while vortex lat-
tice elastic moduli can be highly dispersive. A numerical
calculation by Sudbo and Brandt54 showed that a very

significant further suppression of Cz~sl occurs for q near
the Brillouin zone boundary. It is thus not at all unrea-
sonable for the extremely weak measured pinning forces
to exceed the even weaker elastic forces which occur in
parallel fields.

B. Microscopic pinning mechanisms and critical
current: Condensation energy and coupling energy

We now relate the measured pinning force constants
to models of the microscopic pinning mechanisms for
Abrikosov and Josephson vortices, and to values of the
depinning critical current obtained &om remnant mag-
netization experiments.

The basic principle of normal core pinning by a defect
is shown in Fig. 9(a). It is energetically favorable for
a defect which suppresses superconductivity to be situ-
ated in the center of a vortex normal core; separating
the vortex &om the defect causes further suppression of
superconductivity by the defect and an increase in the
energy. An upper limit on the pinning energy per unit
length of a perpendicular vortex line is given by the total
condensation energy in the core, which is approximately
U (H, /87r)(~~~. The range of the pinning potential is

(~~, and so an upper limit on the linear restoring
force per unit length is kz U/r„H, /8vr. For ET,
H, (0) 500 G (Ref. 47) and H, /8x 10 dyn/cm .
The measured pinning constant for perpendicular vor-
tices is about 1 dyn/cm at 2.4 K, and so the observed
pinning force constant is a factor of p = 104 times weaker
than the maximum core pinning value. The coherence
length (~~(0) 80 A, and the weakness of the mea-
sured pinning constant thus seems to indicate that pin-
ning is due to very weak, atomic scale (d « (~~) defects.
In single-crystal YBCO, strong pinning is observed
(p 1), due in part to the fact that the coherence length
f s(0) 10 A. is similar in size to the atomic scale de-
fects. Values of p 10 3 are typical for conventional
superconductors.
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4ii d weaker than average coupling, and act as pinning sites. If
~f ~

&& 1, the additional energy due to f can be calculated
perturbatively:
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In a similar spirit, we may estimate an upper limit for
the pinning constant of a Josephson vortex in a layered
material, for motion parallel to the layers. We first con-
sider a simpler and previously studied case, pinning of a
Huxon in a single Josephson junction. ' The coupling
energy E, (per unit area) between the superconductors
depends on the gauge-invariant phase difference Ay be-
tween them, and is given by

E, = U~(1 —cos Ap), (4.4)

where U~ ——5Jp/2e gives the scale for the coupling en-

ergy, and the phase difFerence is related to the Josephson
current by J = Jp sin 4y. The spatial variation of the
phase for a Quxon is given by the phase soliton solu-
tion, App(y) = 4 tan [exp(y/A~)] [Fig. 9(b)], and the
Josephson penetration depth Ag gives the scale for both
the decay of the tunneling current at large y and the size
of the "core" region near y = 0, in which the tunneling
current is comparable to and limited by Jp .

Translational symmetry in the y direction is broken by
random variations of the coupling Jp, e.g. , of the form
Jp(y) = [1 + f (y)]Jp. Regions with f & 0 correspond to

FIG. 9. (s) Schematic of core pinning mechanism. Sepa-
rating the vortex snd defect by s distance u ) ( raises the
energy per unit length by st most (H, /8m)( (b) Spat.ial
variation of the phase and tunneling current of a Huxon in
a single Josephson junction. Az is the only length scale. In
s layered superconductor, J Jp for ~y~ Lz = ps, while
for large ~y~ the current decays as exp(ky/A~). (c) Pinning
potential for s perturbation 8Jp/ Jp = nh'(y), for s Huxpn in s
single junction. The depth of the well is ~ 4a.U& A z and the
range of the potential is Ag .

UJ y cos Q(ppdy. (4.5)

One then expects the total pinning energy to be on the
order of (UgAg) (f ),per unit length. The upper limit1/2

for the pinning energy is thus rp ——Up Ag, and that for
the restoring force constant is eg/A& ——U~/A~. This is
in agreement with more detailed calculations. For a line
defect, with f (y) = ab(y) and o. « 1, the pinning energy
is 4o e~. Figure 9(c) shows the pinning potential for this
case. If f (y) is random, with correlation length l, then
the scale for the pinning energy iss@ eg[(l/A~) (f2)]i~2.

The structure of a Josephson vortex in a layered mate-
rial differs &om that of a Quxon in that there are tao
length scales parallel to the layers: the penetration
depth A~, which governs the exponential decay of the
field and current at large distances, and the Josephson
length Lg ——ps, which governs the behavior of the core
region in which J Jp . The core region should account
for most of the pinning energy, due to the large currents
and small length scale. Considering only the contribution
of the central junction (z = ns = 0) to the pinning, the
upper limit on the pinning force constant is

Lq ps 2e 16vrsp q sA~ )
(4.6)

where we have used 4p ——hc/2e and Jp ——c@p/8vr sA&.

Using p 250, s = 15 A, and A~ 200 pm gives k„&
3 x 10 2 dyn/cm2, and this is only a factor of 30 higher
than the typical values ( 10 dyn/cm2) measured in
ET at low temperatures.

The pinning force constant can be approximately re-
lated to the depinning critical current J, if one assumes
that the force is linear over most of the range r„ofthe po-
tential. The critical current is then defined by the force
equation for a single vortex, I" „=J,@p/c = k„r„,
which gives

CJ

kyar~

p
(4.7)

For perpendicular vortices, with k„(2.4 K) 0.7
dyn/cm and r„(~~(0) 80 A, this gives J,(2.4 K)
25 A/cm . For parallel vortices, using k„10
dyn/cm and r„Lg= ps 5000 A. results in J 2.5
A/cm . The critical currents were estimated by Mots et
al. f'rom remnant magnetization measurements, with

the results J, (4 K) 250 A/cm2 and J, (0) 3 A/cmz,
in fair agreement with our estimates. The nature and
concentration of the pinning sites will significantly affect
k„and J, and so considerable variation with the condi-
tions of sample growth and purity is to be expected.

Just as the anisotropy of the collective effects initially
seems to contradict the pinning force anisotropy (k„&)
kr ), it also seems surprising that the onset of reversible
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(nonhysteretic) behavior in y'(H) occurs at much lower
fields in the perpendicular orientation (Fig. 6). Further-
more, the peak in the imaginary part y"(H), which is re-
lated to dissipation, is also larger in perpendicular fields.
These results taken together seem to indicate that Hux

creep occurs much more easily in perpendicular 6elds,
despite the much weaker linear (small amplitude) restor-
ing force for Josephson vortices. This is in agreement
with the measurements of the creep rate —c}ln M/o} ln t of
Mota et al.zs They found that the creep rate was roughly
a factor of three smaller for parallel fields at all temper-
atures. There is thus a complicated interplay between
the pinning force constant, the length scale r„,collective
efFects, and thermal efFects in determining the magnetic
behavior.

V. LOCK-IN EFFECT
AND ANGULAR DEPENDENCE

Figures 10(a) and 10(c) show the screening strength
—4m y'(H) for H applied at an angle 8 with the layers, for
a series of angles from (}= 0 (H parallel to the layers) to
8 = 64', and for temperatures of 2.4 and 4.2 K. A striking
nonmonotonic behavior is observed, as reported in Ref.
24. Regardless of the angle, the screening strength ini-
tially decays in exactly the same way as for parallel fields
((} = 0). At an angle-dependent threshold field Hti, (8),
the screening at 6nite angles begins to deviate &om the
parallel field value, reaches a minimum, and then recov-
ers (to nearly the zero field value for larger angles). This
is extremely unusual in that increasing the field strength
leads to the enhancement of screening, a property charac-
teristic of superconductivity. A maximum of the screen-
ing occurs at a field roughly double that of the screening
minimum, and y' decays monotonically with H above
this.

We repeat here the interpretation of these features in
terms of the lock-in efFect, 6rst given in Ref. 24, with
reference to Fig. 11. A magnetic 6eld applied at an an-
gle initially enters the sample only in the parallel direc-
tion, and the vortex lattice consists only of weakly pinned
Josephson vortices. The susceptibility therefore decays
rapidly with field, just as for 8 = 0 [Fig. 11(a)], due to a
large vortex penetration depth A„&om the edges of the
sample. At the threshold 6eld Hqh, the Qux lines unlock
&om the layers. Although the vortex density continues to
increase, the rapid increase in the pinning strength due
to the proliferation of strongly pinned 2D normal cores
causes the reduction of A„and the recovery of screening
[Fig. 11(b)]. Finally, well above the lock-in threshold,
B

~~
H [Fig. 11(c)]. Both penetration depths A„and

increase with 6eld as the vortex density continues to
increase, leading to the monotonic decrease of the screen-
ing.

In Figs. 10(b) and 10(d), the data of Figs. 10(a) and
10(c) are plotted against the perpendicular field compo-
nent H~ ——H sin0. The scaling of the lock-in threshold
with the perpendicular 6eld component is immediately
obvious when the data are plotted in this way. Another
feature of the data, not described in Ref. 24, is also ap-
parent: The susceptibility is determined only by H~ for
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FIG. 10. y'(H) ~s data sets at temperatures of 2.4 K (a),(b),
and 5 K (c),(d), plotted against both the total field and the
perpendicular Seld component. Insets show the experimental
geometry.

field strengths well above the lock-in threshold and for
suKciently large angles, 8 & 5 —10 . That is, the screen-
ing is the same as would occur for a 6eld of total strength
H~ applied normal to the layers, (} = 90'. (The failure of
this scaling at small angles is obvious in the 4.2 K data;
this is not seen in the 2.4 K data because the smallest
angle studied was (} = 2', and' the maximum value of
H~ was 2000 sin2 = 70 G.) The scaling behavior in-
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FIG. 11. Schematic representation of the dc field configu-
ration (left) and the ac field distribution (right), in the lock-in
state (A), just above the lock-in transition (B), and well above
the transition (C), corresponding to the labeled portions of
the curves at bottom.

k~(P) kll + k„sin (5.1)

eludes the changes in the form of the field dependence
which were associated with a temperature-driven transi-
tion from single-vortex to collective pinning (Sec. IV).

Scaling of the in-plane resistivity and critical
current with H~ has previously been observed in the
cuprates, and was initially taken as evidence for a purely
two-dimensional model, in which H~ leads to the creation
of perpendicular vortices and the parallel field compo-
nent Hi~ passes freely between the layers, without creat-
ing vortices. A purely 2D model is clearly inappropriate
to describe our experiments, since we observe the effects
of Josephson vortex motion in parallel fields. The sus-
ceptibility is determined by both penetration depths A,
and A„,and the breakdown of scaling at small angles is
due to the easy motion of slightly tilted vortices and the
resulting large penetration depth A„.We therefore inter-
pret the scaling with H~ as being due to scaling of the
vortex penetration depth A for tilted vortices, together
with a negligible contribution of A„to ac field penetra-
tion in the range of fields and angles for which scaling is
observed.

As discussed in Sec. II, the vortex penetration depth
in the z direction A should have the angular dependenceA„Bsin P/k„(P). The observed scaling therefore sug-
gests that the pinning constant for tilted vortices in ET
obeys k„(P) sing for large P. This is exactly what
one would expect for a vortex consisting of a tilted stack
of coupled pancake vortices, since the line density of 2D
normal cores is proportional to sing, and kz is the pin-
ning force per unit length. The Josephson core segments
only exist for P ( tan i(1/p) 0.3, and simply pro-
vide the limiting pinning force as P -+ 0. We therefore
propose the simple expression

for tilted vortices moving parallel to the layers and trans-
verse to the vortex axis. The second term dominates as
long as P ) k„/k„0.1', leading to the observed scal-
ing of A, . The observation of collective pinning effects in
the scaled susceptibility at 4.2 K indicates that the inter-
actions between pancake vortices affect their pinning in
a way which depends only on the two-dimensional den-
sity of pancake vortices, not on the tilt angle. In other
words, the coefficient k in Eq. (5.1) depends only Bz.
Besides being consistent with the observed scaling of A,
Eq. (5.1) can be used to construct a simple phenomeno-
logical model which qualitatively reproduces many of the
features of our data, including the nonmonotonic behav-
ior associated with the lock-in effect; we describe this
model in the Appendix.

The lock-in effect has a simple theoretical
explanation. Keeping the flux lines locked to the
layers causes the distortion of the magnetic Geld around
the sample and raises energy of interaction between the
sample and the external field. On the other hand, al-

lowing the flux lines to unlock leads to the introduction
of pancake vortices or vortex "kinks" wherever a flux
line crosses a superconducting layer, and this raises the
internal energy of the superconductor. When these en-

ergies are balanced against each other, it is found that
the lock-in state is favorable as long as the perpendicu-
lar field component H~ ——Hsing is below a threshold
value,

~ 1n(ps/(Ii)

"1n(AII/(ii)
(5.2)

(as long as ps ( Aii, which seems to be true for ET). H, i
is the perpendicular lower critical field. The lock-in ef-

fect does not occur in the anisotropic Ginzburg-Landau
model because the normal core is present for all orien-
tations. The core contribution to the internal energy is

quadratic ( gP) in the AGL model, while for Josephson
coupled layers it is linear ( ~P~) and there is a cusp in
the energy at P = 0. The lock-in effect and the large
anisotropy of k„thus have a common origin, in the ab-
sence of the normal core for Josephson vortices.

Depending on the values of p and Aii used in Eq. (5.2),
and with (Ii(0) = 80 A. , Eq. (5.2) gives Hg (0.7-

0.95)H, i for ET. We showed in Ref. 24 [Fig. 4(b)] that
our Hg(T) has a similar magnitude and temperature de-

pendence to the demagnetization-corrected lower critical
field H+z(T) measured by Mota et al. When properly
corrected for the demagnetization factor of our sample,
our H~(T) actually exceeds the lower critical field of Mota
et al. by about 20%. However, the definition of the
threshold field used in Ref. 24 corresponds roughly to the
minimum of screening, and is somewhat arbitrary. Defin-

ing H, i, by the first measurable deviation of y'(H) ~s from

y'(H) ~s o would give a value nearly a factor of 2 smaller.
We can at most say that our HJ(T) and the H i(T) of
Mota et al. agree to better than a factor of 2. We also
note that H+~ (0) 300 G in Ref. 26, while the Ginzburg-
Landau expression H, i = (4'o/4vrAII) [ln(XII/(Ii) + 0.5]

gives 0 ~ 12 G for ET. This, and the anomalous pos-
itive curvature in the temperature dependence, leads us
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to the conclusion that both our Hg and the H, &
mea-

surements of Mota et al. are signi6cantly enhanced at
low temperatures due to pinning.

VI. NONLINEARITY IN PARALLEL FIELDS
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FIG. 12. Nonlinear efFects. (a) X'(T) with JI = 0, for vari-
ous h (ac field amplitude). Geometry is as shown in Fig. 5(b).
(b) The induced ac magnetic inoment m appears to saturate
at h 0.6 G. X' is taken from (a) with T = 4 K. (c) The
nonlinearity persists in the lock-in state, but the penetration
of the perpendicular Geld component restores linear response.

We have studied the linearity of the real and imaginary
parts of the susceptibility by varying the ac 6eld ampli-
tude h, with f = 2.5 kHz. In the presence of a magnetic
field perpendicular to the layers, we find that both y' and
y" are linear for a factor of 10 increase in h. When h is
reduced by a factor of 10, both y' and y" appear to be
linear, but the poor signal to noise ratio did not permit
an unambiguous result for y".

A dramatic nonlinearity is observed. in the absence of a
dc 6eld or whenever the internal field B is parallel to the
layers. In Fig. 12(a), we show —4m''(T) with H = 0, for

diferent values of h. The screening response is linear for
h & 0.3 G, but the susceptibility is strongly suppressed
for h = 1 G and 4.7 G. In fact, in the temperature range
T 4—6 K, increasing h &om 1 to 4.7 G suppresses the
susceptibility by about a factor of 4.7, indicating that the
induced ac magnetic moment has saturated [Fig. 12(b),
which shows m = yh vs h]. Figure 12(c) shows the dc
Beld dependence of y' for a drive amplitude of h = 4.7
G at T = 3.3 K, for angles of 8 = 0 and 8 = 10 .
The points are data, and the solid line is a 6t of Eqs.
(2.1) and (4.1) to the 0 = 0 data. The fitting parameters

are A~ ——910 pm and k„=1.7 x 10 4 dyn/cm2. Thus
the 6eld-dependent part of the penetration depth obeys
A ~B in both the linear and nonlinear regimes, for
B parallel to the layers. When the perpendicular field
component penetrates above the lock-in threshold, the
absolute value of the screening —4xy' recovers to values

0.5, typical of the linear (low h) regime. In other
words, the strong nonlinearity only occurs in the absence
of perpendicular flux.

Two explanations immediately come to xnind. First,
the screening response should be limited by the interlayer
critical current Jo, and become nonlinear for ac 6elds
larger than that given by V' x h hNL/A~ = 4' Jp/c&
or hN1, = 4it'JpA~/c. This explanation is appealing be-
cause of the observed saturation of the ac magnetization
above the threshold. However, the penetration of the
perpendicular 6eld component largely restores the linear
response, and this would imply that the interlayer super-
current can exceed Jo in the presence of perpendicular
flux. Also, using the relationship Jo ——c@o/8ir2sA~& for a
layered material, hNL = @p/2vrsA~ 10 G, about factor
of 20 larger than the observed threshold. These observa-
tions argue against this being the correct explanation for
the nonlinearity.

The reduction of the nonlinearity by perpendicular flux
suggests another possibility: that the ac field exceeds the
lower critical 6eld parallel to the layers, leading to the in-
troduction of weakly pinned Josephson vortices and an-
tivortices in alternate parts of the ac field cycle. The
motion of these in response to the ac field then leads
to the reduction in screening, while the introduction of
perpendicular flux either damps their motion or prevents
ac-6eld-induced nucleation of Josephson vortices from oc-
curring. Measured values of the parallel lower critical

Beld, &om dc magnetization experiments, are H y: 0 6II

G at T = 5 K (Ref. 50) and an upper limit of H, i & 0.5
G, while the value calculated &om the formula of Clem
et al. is 0.06 G. Thus it is quite plausible that an ac
field of amplitude 6 & 1 G would lead to the introduction
of Josephson vortices.

Beyond this, the details of the mechanism for the non-
linearity are unclear at present. From Fig. 7, it can be
seen that a parallel dc field of several hundred gauss is
needed to produce a suppression of —4vry' equivalent to
that achieved by an ac field of 4.7 G, implying that a
very high net density of vortices must be present for the
above explanation to work. This is presumably deter-
mined by the balance between vortex nucleation at the
edges of the sample, and vortex-antivortex annihilation
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in the bulk. The picture is further complicated by the
fact that a Geld of only a few tenths of a gauss is sufficient
to induce interlayer currents comparable to the depinning

critical current, J, 3 A/cm2 (Sec. IVB), so that this
should play a role as well. The frequency dependence
in the nonlinear (large h) regime is still weak, however,
comparable to that observed in the linear regime, and
this is inconsistent with viscosity-limited motion of com-
pletely depinned vortices. Thus while the nonlinearity
provides another striking demonstration of the qualita-
tively difFerent behavior observed when the vortices are
parallel to the layers, this effect is not well understood at
present.

VII. CONCLUSIONS

We have described ac susceptibility measurements on a
single crystal of (BEDT-TTF)2Cu(NCS)2 which provide
strong evidence for the existence of Josephson vortices
in this material, and clearly show that their properties
are difFerent than those of tilted or perpendicular vor-
tices. The lock-in efFect and the anomalously weak pin-
ning force for Josephson vortices are direct consequences
of the absence of the usual normal core region. The pin-

ning force anisotropy is on the order of k„/k~ 500,
and the force constants could be related to the appropri-
ate energy and length scales for Abrikosov and Joseph-
son vortex cores, and to the observed depinning critical
currents. k„is field independent up to H = 3 kG atII

~

all temperatures, while k+ decreases with field (except
at T = 2.4 K). We have attributed these observations
to single-vortex pinning and collective pinning, respec-
tively. This is consistent with theoretical calculations
which show that the parallel Geld shear modulus C66 is a
factor of p 10 weaker than for perpendicular Gelds,
due to the anisotropic structure of the vortices and the
vortex lattice. The susceptibility scales with the perpen-
dicular Geld component H~ for sufficiently large fields
and angles, showing that the dynamics of tilted vortices
are determined by the pinning and interactions of the 2D
pancake vortices. We have also observed a highly non-
linear response to the ac field in the lock-in state, with
a threshold of 6 0.5 G, but linear response is largely
restored when the Bux lines unlock from the layers. Fi-
nally, we have measured the Josephson penetration depth
to be A~{T = 5 K) 200 pm, consistent with the result

p ) 200 from torque measurements.
Our experiments show that motion of Josephson vor-

tices in the direction parallel to the layers can have an
enormous effect on the electromagnetic properties of a
layered superconductor, and that it is the interaction
of Josephson vortices with interlayer currents which is
most significant. Several studies of the angular de-
pendence of in-plane transport properties have shown
anomalous enhancements of the resistance near the par-
allel orientation, ' and we suggest that these may be
due in part to interlayer currents which occur near cracks
or twin boundaries. There have been proposals to uti-
lize intrinsic pinning in applications of high T super-
conductivity, e.g. , by winding an oriented polycrystalline
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APPENDIX:
A SIMPLE MODEL POR THE SUSCEPTIBILITY

Beyond simply providing an explanation for the scaling
of A, (H~) for tilted vortices, Eq. (5.1) can also be used
to calculate A&. By combining Eq. (5.1) with Eq. (2.3)
for y(Av/Iz, A, /I ), and a simple relationship between
B and 0 which at least qualitatively describes the lock-in
efFect, we can construct a simple phenomenological model
which captures most of the essential features of the data.
With reference to Eqs. (2.7) and (5.1), and to Figs. 2(b),
3(b), and 13(a), the penetration depths from the edges
and surfaces of the sample (A„and A„respectively) are

B@0cos
+A~

47r (k~~' + k~ sin &j))

(A1)

tape into a solenoid with the copper oxide planes tan-
gent to the surface, so that the field will be parallel to
the layers. This orientation gives the minimum resis-
tance even without intrinsic pinning. The efFectiveness of
such an application might be limited by the occurrence
of stray interlayer currents and the resulting Josephson
vortex motion, and a detailed understanding of the na-
ture of Josephson vortex pinning and the type of defects
responsible is therefore potentially of some practical in-
terest.

It is hoped that this work will stimulate further re-
search on the properties and behavior of Josephson vor-
tices. Besides the absence of the normal core and the
weak and highly anisotropic elastic forces, vortex motion
and fluctuations are essentially restricted to one dimen-
sion by intrinsic pinning, and entanglement is impossible
in the absence of thermally activated kinks. All of these
factors should have a significant efFect on the statistical
mechanics of Josephson vortices, and the consequences
for the controversial issue of the vortex lattice melting or
vortex glass phase transition have recently begun to be
explored experimentally. sr

(BEDT-TTF)2Cu(NCS)2 is an excellent candidate for
such experiments, and in general for further work on vor-
tices in layered superconductors. Not only is L ( s
over virtually the entire temperature range [for T/T, (
gl —((~~/ps)2 = 0.9996], but the entire (H, T) phase di-

agram is experimentally accessible, since= H, 2(0) = 20
T. Large single crystals are easily grown, and the pinning
is extremely weak, allowing the efFects we report here to
be observed so readily by ac susceptibility. An important
issue for future work on this and other organic supercon-
ductors is the characterization of the defects responsible
for pinning.
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The angular dependence of A& annd A &with B=const,
A = 0 for simplicity) is shown in

Fig. 13(b). The penetration depth anisotropy in e

A /A = k+/ki /500 = 22, is much

larger than the typical sample aspect ratio I,„/I,, 5.
We do not show experimental data for the angular de-
pendence o y a ef ' t fixed field in this paper, but Fig.

~ ~ ~ ~

3 in Ref. 24 shows that there is a deep minimum in
—4vry'(8)~~ at 8 = 0', due to the peak in A„(P),and
the half width 8th of the minimum depends on H as

data also scale with H~ for H~ )) Hg (not s own .
In order to model the lock-in efFect, we need to know

the relations p e weenh l t hi between B and H near the transition.
Although this has recently been studied in detai y

H~ will probably penetrate as in the Bean critical state
model. In the absence of a detailed model for this, and
in the interest of simplicity, we use the approximation

II II
h t B = H for allH while B~ ——0 for H~ ( Hg

and B~ ——H~ —HJ for H~ & HJ. This is certainly not
accurate, but at least qualitatively models the behavior
near the lock-in threshold and gives the correct limiting

FIG. 14. Results of model calculation of susceptibdzty,
plotted against (s) the applied field strength H snd (b) the

snd (b), respectively.

behavior (B = H) for H~ )) H~.
Equation (2.3), when combined with Eq. (5.1) for

k (P), Eqs. (Al) and (A2) for A„and A„and the
above approximation for B(H, g'ives the results shown
in Fig. 14(a). This is meant to simulate t e =2.4K
data of Fig. 10(a). The parameters used are Hg = 50 G,

of the model are plotted against H~ in Fig. . is
e model that' t t th most serious deficiency o t e m

8=32'the scaling behavior is not observed until about
for smaller angles, the scaled screening strengt —aery' is
less than the value for perpendicular fields. Because
clearly scales with H~ for large P in the model, this must
occur because the model predicts much larger values of A„

Multiplying the vortex term in Eq. y
form exp( —~P/Po[), with Po a few degrees [dashed line
in Fi . 13(b)] leads to improved scaling of the model re-
sults, but this procedure is arbitrary. The reason for this
discrepancy is no un ers oot d stood. A less serious de6ciency
of the model is that the recovery of screening above t e

relationship etween anh b t B nd H used in the model near
the transition.
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