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In this detailed study of inhomogeneous superBuid turbulence created in a spatially nonuniform
Bow, we measure the turbulent dissipation produced by thermal counterBow in a nonuniform rectan-
gular channel. The width of the channel increases linearly with position r along the channel length
to impose a known spatial nonuniformity on the velocity in the Row direction, V oc Q/r, where

q is the heat current. Because the channel widens gradually, this divergence is weak, producing a
small deviation from uniform Bow. Probes embedded in the channel walls allow access to the local
temperature at several positions r. We employ sensitive differential thermometry to measure the
temperature difference between any two of these locations to high precision. The single turbulent
state we observe is clearly the analog of the T-II state of fully developed, homogeneous turbulence
present in uniform Bows. Making an approximation of local uniformity, we attempt to extend the
theoretical description of turbulence in uniform Bows to our results by replacing the uniform ve-

locity with the local velocity in the expression for the temperature gradient. When applied locally,
the Schwarz model of homogeneous turbulence, so successful in describing the T-II state in uniform
Rows, has the wrong dependence on both r and q to characterize our results. The Geurst three-Ruid
model, which extends to situations where a gradient is present in the line density in an otherwise
uniform Bow, likewise does not agree with our observations when used in the local approximation.
We therefore find that even a small perturbation imposed on a uniform Bow radically changes the
nature of the T-II state, and the inhomogeneous T-II state we observe is markedly different from
that of homogeneous turbulence. This rather surprising result points to the need for a proper theory,
or direct numerical simulation, of inhomogeneous turbulence in nonuniform Bow. By introducing a
substantial modification to the Schwarz line density, we identify a modified line density that consti-
tutes a three-parameter fit yielding excellent agreement with our results. Finally, we find that the
transition from laminar to turbulent Bow occurs at a stationary front. Observations of the location
of this front as a function of q show that the critical condition for maintaining turbulence is more
consistent with a minimum line density than a critical velocity.

I. BACKGROUND AND MOTIVATION

Our picture of liquid He at absolute zero is that of
a pure superfluid of density p = p„capable only of ir-
rotational flow, and having no viscosity. Motion of this
superfluid is described by a velocity field v, . At finite
temperatures, a gas of elementary thermal excitations is
also present, which on the macroscopic level manifests
itself as a normal, viscous Quid with density p„. The
average drift velocity of the excitations determines the
velocity field v„of the normal Quid component. In this
two-Huid model of superHuid helium (helium II), the mass
transport of the total Quid can now be described as the
sum p,v, +p v„of these two separate motions, where p,
and p are functions of temperature, and the total fluid
has a density p = p, + p .

Being the easiest to create experimentally, thermal
counterflow of superfluid helium is the type of channel
Bow most &equently studied. One end of the channel is
open to a large reservoir of helium maintained at a con-
stant temperature, while the other end is connected to a
small chamber containing a heater. Introducing a heat
current Q in the sealed end causes the normal Huid to
Bow toward the reservoir end at an average velocity

p

where S is the entropy per unit mass of Huid and ( )
denotes temporal and spatial averaging of v„over the
cross sectional area A of the channel. While the normal
fluid convects the heat away from the sealed end, the
superHuid Hows in the opposite direction with average
velocity V„ in accordance with the constraint that no net
mass be transferred, p„V„+p, V, = 0. The rate of this
internal convection between the two fluid components is
given by the average relative velocity V = V„—V„where
for thermal counterflow

p, STA

Although the underlying vector fields v, and v are un-
known functions of position, the average relative veloc-
ity V has a simple position dependence. For a uniform
channel, meaning a channel with constant cross sectional
area A, the relative velocity V is constant everywhere in
the channel, at least as long as the overall temperature
variation over the length of the channel is small enough
that p, ST remains essentially constant throughout the
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channel. In a nonuniform channel, A varies and there-
fore V becomes a function of position along the channel
length.

At low relative velocities the Qow is laminar and the
viscous dissipation creates a laminar temperature gradi-
ent VTg in the Quid. At a large enough relative veloc-
ity V the Quid enters a new dynamical state characterized
by a dense, random tangle of quantized vortex lines in the
superfluid. The mutual &iction of the normal Quid exci-
tations scattering off the vortex cores creates additional
dissipation manifested as a large, nonlinear temperature
gradient V'T'. This state of superfluid turbulence was
first described by Vinen in terms of the amount of vor-
tex line length per unit volume, called the line density L,
where V'T' is proportional to both L and V.

Over the years, extensive experiments have been con-
ducted in uniform channels of many cross sectional
shapes and aspect ratios and a wide range of overall sizes.
As well as thermal counterflow, more general Hows with
all possible combinations of v„and v, have also been
studied. For such flows in uniform channels, V is still
constant throughout the channel, but is no longer given
by Eq. (2). Several distinct turbulent states are observed
in uniform channels under these various conditions. '

Limiting our attention to thermal counterflow, a state
of fully developed turbulence known as the T-II state is
observed in uniform channels of either circular or rect-
angular cross section at high enough relative velocities.
Ion trapping experiments have been successful in prob-
ing L to a 1-mm accuracy in large rectangular channels
with a width of 1 cm, confirming that the T-II state is
spatially homogeneous to within 1 mm of the channel
walls. The T-II state is modeled accurately by the the-
ory of homogeneous superfluid turbulence developed by
Schwarz. Starting with an equation of motion describ-
ing the appropriate dynamics for a vortex line element,
including mutual &iction, Schwarz computes by direct
numerical simulation the final steady-state of an initially
small, arbitrary arrangement of vortex lines evolving un-
der the influence of a uniform driving velocity V. In
either the Vinen or Schwarz formalism, this theory of
homogeneous turbulence predicts the steady state line
density L as a function of V, and how the mutual fric-
tion yielding the temperature gradient VT' depends on
L and V. In contrast with the earlier Vinen model, all
parameters characterizing the predicted turbulent state
are computed within the Schwarz model; none are ad-
justable. The predictions of the Schwarz model are in
very good quantitative agreement with the observed T-II
state in uniform channels. This state of fully developed,
homogeneous turbulence is thus fairly well understood.

In uniform channels of certain geometries at more mod-
erate relative velocities, the T-II state is preceded by an-
other turbulent state, known as the T-I state, with a
much lower line density than would be characteristic of
the T-II state at the same V. This lower level of turbu-
lence has only been observed in channels of fairly small
circular and low-aspect-ratio rectangular (square) cross
section, and is conspicuously absent from high-aspect-
ratio rectangular channels. Schwarz and Rozen recently
conjectured that the anomalous T-I state may be a state

of inhomogeneous turbulence which represents a "spa-
tially patchy precursor" to the fully developed, homo-
geneous T-II state. Another long-standing speculation
holds that spatial inhomogeneity in the turbulence could
also result &om a nonuniform cross-channel profile in the
normal Quid velocity. Several difBculties arise in trying to
determine whether the T-I state is actually one of inho-
mogeneous turbulence. First, the cross-channel v„pro-
file cannot be measured directly in such small channels;
nor has it been predicted theoretically in the presence
of the vortex tangle. In laminar Qow, the v„profile is
computed easily enough by treating the normal Quid as
an incompressible, viscous Quid and applying the appro-
priate boundary conditions; however, once vortex lines
are present, the v profile is also influenced by their fric-
tional interaction with the normal Quid, in a way that
is not well understood and cannot presently be modeled.
Second, it is equally difBcult to observe any resulting
spatial inhomogeneity in L in the T-I state. Channels in
which the T-I state has been observed range in diameter
from only 100 pm up to about 1 mm, well under the limit
of resolution for an ion trapping experiment.

Once L becomes large enough, the presence of such
a dense vortex tangle presumably influences the nor-
mal Quid velocity profile so significantly that any cross-
channel spatial variation in v„ is obliterated. If so, the
T-II state would thus conform to the condition of uni-

form relative velocity assumed in the Schwarz model of
homogeneous turbulence. This scenario suggests a rea-
son behind the transition from the T-I to the T-II state,
but does nothing to predict the value of the relative ve-

locity at which this transition occurs. Why the T-I state
is not observed in rectangular channels is also unclear.
One possibility is that the T-I state does in fact exist
in rectangular channels, but over such a narrow range of
velocities that its presence before the onset of the T-II
state is indiscernible. The lack of axial symmetry in the
rectangular channel How may also play a role, making v„
renormalize to a Qat profile more readily in this geometry.

The idea that inhomogeneous turbulence could be the
result of a spatially nonuniform normal Quid velocity field

provided one impetus for the present work. Our exper-
iment was designed to study the efFect on homogeneous
superfluid turbulence of a small but mell-controlled devia-
tion from a spatially uniform driving velocity. Any cross-
channel variations in the local relative velocity v„—v,
cannot be controlled, but by constructing a channel
which opens up gradually along its length, the average
relative velocity V can be varied in a known way along
the channel length. The primary question explored in
this research is whether the character of the T-II state
would remain largely una8ected or be radically altered
by this small perturbation imposed on a uniform flow.

We used a channel of high-aspect-ratio rectangular
cross section because we wanted to isolate the influence of
a nonuniform velocity on homogeneous turbulence from

any ambiguity introduced by the presence of the T-I
state. Moreover, we wanted to measure the temperature
of the helium at several positions along the length of the
channel, not just at the channel ends, in order to map
out the position dependence of the temperature gradient.
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For simplicity, we also wanted the cross sectional area to
vary in a precisely controlled and well-defined manner.
A rectangular channel could be constructed by machin-
ing, permitting both exact control of the channel shape
and easy incorporation of local temperature probes. An
analogous set of experiments conducted by Murphy, Cas-
tiglione, and Tough uses a Baring circular channel made
from drawn glass tubing, in which the channel diameter
could not be as precisely controlled, and no temperature
probes could be inserted along the channel length. The
width of our rectangular channel increases linearly along
its length, and so the cross sectional area A increases lin-
early with position r down the channel. This geometry
produces a small, known divergence in the downstream
velocity: V oc q/r. This experimental design emulates
the radial heat transfer problem of a heated wire or cylin-
der imxnersed in a large bath of superQuid helium.

We require a valid method by which to compare our ex-
perimental results with existing theory. It seems at least
plausible to expect that the turbulent state forming in a
Qow which is only slightly nonuniform xnight not differ
dramatically from homogeneous turbulence. The weak-
ness of the divergence in our nonuniform Bow suggests
that our data may be adequately described by applying
the theory of homogeneous turbulence locally. Indeed,
this approach seems the only logical recourse available in
lieu of a proper theory of inhomogeneous turbulence. We
make this "local uniformity approximation" as follows.
First, we not only assuxne that the density of vortex lines
L(r) at any point in this weakly nonuniform flow is de-
termined solely from the local value of the velocity V(r),
but further that L(r) bears exactly the same functional
dependence on V(r) as it would have in a uniform flow
at that velocity. Similarly, we assume that the turbu-
lent temperature gradient VT'(r) at each point r has the
same functional dependence on L(r) and V (r) as it would
in a uniform flow at equal velocity. The resulting local
V'T'(r)' predicted within the local uniformity approxima-
tion can then be integrated to obtain the temperature
difFerence between any two positions in the channel. The
local uniformity approximation is analogous to the local
equilibriuxn approximation of kinetic theory, where the
equilibrium distribution function appropriate to the lo-
cal values of the system thermodynamic variables is used
as a substitute at every point for the actual distribution
function in a nonequilibrium state, which cannot be de-
termined.

It is entirely possible that the local uniformity approx-
imation will fail to describe even a weakly nonuniform
turbulent Qow, for any number of reasons. All the pa-
rameters predicted by the Schwarz model are computed
using the homogeneous distribution of vortex lines result-
ing from a uniform velocity; therefore these parameters
may well take on quite different values in the case of
inhomogeneous turbulence, or even become spatial func-
tions. The relation between L and V for a nonuniform
Bow might also differ in some fundamental way &om that
predicted for a uniform Bow, or the dependence of VT'
on L and V might be altered. Underlying all these possi-
bilities is the fact that the dynamical scaling arguments
at the heart of the Schwarz model are worked out under

the assumption of a uniform driving velocity. The lo-

cal uniformity approximation consists of thumb-tacking
a prediction obtained under the guise of a uniform Bow
onto a situation for which the prediction xnight prove to
be quite difFerent. No such after-the-fact modification
should necessarily be expected to properly adjust the
Schwarz model of hoxnogeneous turbulence to describe
inhomogeneous turbulence. If the local uniformity ap-
proximation proves inadequate, perhaps altering the un-

derlying scaling arg»ments in the Schwarz model to in-
corporate the symxnetries of the nonuniform Qow appro-
priately and conduct a proper simulation of the vortex
dynamics is all that will be needed to extend the Schwarz
description to inhomogeneous turbulence.

On the other hand, perhaps a more fundamental
change in the underlying vortex dynamics will be re-
quired instead. New dynaxnic mechanisms which do not
come into play or are not discernable in uniform Bows
might be needed. One recent suggestion of Schwarz along
these lines seems worth further investigation. In being
convected Rom one region to another in a nonuniform
Bow, a vortex line, being an object which exists only as a
pattern in the flow itself, is "stretched, " becoming longer
or shorter as the Bow diverges or converges. Such a vor-
tex stretching represents a mechanism of line length pro-
duction different from that already present in a uniform
flow. A new line production term might need to be in-

corporated in the dynamics to account for this additional
vortex growth mechanism.

A suggestion of a quite different nature resides in a
new hydrodynamic model of superBuid turbulence re-
cently proposed by Geurst, which introduces the efFects
of a nonuniform line density explicitly by including a new
term in the internal energy that depends on the gradi-
ent of L.~ Because the Geurst model purports to shed
light on the very situation created in our experixnent,
we compared its predictions to our results. Our analy-
sis was of necessity limited to the version of the Geurst
model describing a one-dimensional Bow at constant ve-
locity. Despite allowing for the possibility of inhoxno-
geneous turbulence, this one-dimensional Geurst model
could only be applied to our nonuniforxn Qow in the local
uniformity approximation; therefore many of the same
caveats cited above concerning why the comparison may
not be fair still apply.

Finally, promising results have been obtained in a re-
cent vortex simulation of Aarts and de Waele. Using
a different numerical sixnulation technique than Schwarz,
they find, upon imposing a parabolic cross-channel v„
profile, that the line density is modified significantly as
the vortex lines respond in a surprising way to the inho-
mogeneous velocity field.

II. APPARATUS

This experiment follows a standard thermal counter-
Qow design. A schexnatic overview of the experimental
apparatus is presented in Fig. 1. The Bow channel con-
nects a large helium reservoir to a small chamber con-
taining a noninductively wound resistance heater. Intro-
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FIG. 1. Overview of apparatus. The Bow
channel and heater chamber are attached to
the helium reservoir held at To, and isolated
from the surrounding 4.2 K helium bath by
a vacuum space. The thermocouple is shown
connected across the entire channel, between
r~ (heated end) and rH (reservoir end), but
either side can be moved to be connected in-

stead to any other intermediate location, la-
beled B—G.
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ducing power to the heater establishes a heat current Q
in the channel. A regulator circuit controlled by an ac re-
sistance bridge and lock-in ampli6er holds the reservoir
at a constant temperature To + 20 pK. A vacuum jacket
thermally isolates the reservoir, flow channel, and cham-
ber from the surrounding 4.2 K helium bath. The ther-
mal conductivity of the channel material and all electri-
cal leads is small enough to ensure that the helium in
the channel provides the only signi6cant thermal path
between the heated chamber and the reservoir.

The flow channel is depicted schematically in Fig. 2.
Stycast 1266 epoxy is machined and assembled to form
a 10 cm long rectangular channel of constant height
6 = 0.025 cm, but varying width. The width increases
linearly with distance along the channel length &om
0.2 cm at the narrow end to 1.0 cm at the wide end. This
expansion of the aspect ratio &om 8:1 to 40:1 represents
a constant opening angle of 0 = 0.08 rad. Expressing
the location along the channel length as a radial posi-
tion r in cylindrical coordinates, the width at r is given by
to = 0 r. Counterflow in this geometry therefore emulates
a radially diverging heat Bow originating from a source
at r = 0, entering the channel at r = 2.5 cm and exiting
at r = 12.5 cm. The laminar or turbulent dissipation as-
sociated with this counterflow establishes a temperature
gradient throughout the channel, and so the tempera-

ture of the fluid at position r is raised above that of the
regulated reservoir by an amount b,T(r) = T(r) To. Al-—
though the present experiment studies diverging flow, the
apparatus is designed so that the flow channel could be
easily inverted to study converging Bow. Another heater
chamber is therefore located at the wide end of the flow

channel, identical to the one at the narrow end, but un-
used in the present experiment. Each heater chamber,
made of Stycast, is connected to a copper thermometer
block. Depending on whether it is to serve as the reser-
voir or heated end, respectively, the thermometer block
is then either attached to the large helium reservoir or
blanked ofF via a copper flange, using an indium o-ring
seal.

The temperature difFerence AT is measured with a
Au-Fe thermocouple. The current produced in the ther-
mocouple circuit is detected by a rf superconducting
quantum interference device (SQUID) used as an am-
meter, so that the voltage b,V output by the SQUID is

linearly proportional to AT. This technique has recently
gained favor over standard resistance thermometry
for situations requiring a very sensitive difFerential mea-
surement of temperature. In our experiment, the regula-
tion fIuctuations are sometimes larger than the smallest
temperature differences ET(r) to be measured; however,
because the regulation fluctuations cause the tempera-
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FIG. 2. Detail of the Sow channel. The ex-
panded view of probe and tab (drawn to ap-
proximate scale) shows how the copper wire

has been cut away during the machining step
that forms two adjacent walls of the Sow
channel, such that the exposed copper sur-

face lies Hush with these walls.

ture at every point in the channel to change simultane-
ously by the same amount, a measurement of the tem-
perature difference between two positions in the chan-
nel is impervious to this overall variation in the absolute
temperature. Following an innovation reported by Ya-
maguchi et al. ,

6 we filled the shielding tubes housing
the thermocouple wire and leads with Apezion-N grease
to prevent the wires &om vibrating, since motion of the
wires in any magnetic field present induces rf noise. With
this thermocouple-SQUID system, we can resolve a min-
imum temperature difference b,T of 1 pK from back-
ground Buctuations, and measure voltage signals corre-
sponding to temperature differences larger than 1 mK to
within a +0.1% accuracy.

To determine the temperature profile T(r), the ther-
rnocouple can be connected between any two of eight lo-
cations along the channel length, including the heated
chamber and reservoir at the respective ends of the chan-
nel. Probes made of copper wire embedded in the chan-
nel walls allow the temperature to be measured at six
additional radial positions. These probes are distributed
unevenly in position r, being concentrated near the nar-
row end of the channel where V'T(r) was expected to be
greatest. The probes are machined Bush with the channel
walls so that the exposed copper surface comes in direct
contact with the helium, but does not protrude into the
How. A small copper tab soldered to the end of each
wire outside the channel allows the thermocouple and/or
a resistance thermometer to be attached (see Fig. 2).

Germanium or carbon glass resistors are used for reg-
ulation, for monitoring the temperature of the helium
at various locations, and for calibrating the SQUID out-

put. These resistors are first calibrated at each oper-
ating temperature To against the 1958 He temperature
scale, the helium vapor pressure being measured with an
MKS Baratron system. The usual procedure is to find
the best linear fit to the resistance readings as a func-
tion of temperature, the slope dR/dT serving as a mul-

tiplicative constant to convert the measured change in
resistance into the corresponding change in temperature.
Because of the very large temperature difFerences gener-
ated across the channel in this experiment, a nonlinear fit
to R(T) had to be used here. The resistance calibration
data for each To was plotted "inverted" as T versus R,
and the best third- or fourth-order polynomial fit to was
found to T(R) rather than to R(T). The coefficients of
this inverted fit are then easily used to convert a mea-
sured change in resistance into the corresponding change
in temperature.

The resistors at the two radial positions spanned by
the therrnocouple provide a direct measurement of AT
corresponding to the voltage reading AV output by the
SQUID. The SQUID output is thus calibrated by simul-
taneously measuring b,V and AT for various values of Q.
Only large values of Q can be used, since the resistors
cannot resolve small values of b,T with sufficient accu-
racy. Each measurement of AT is divided by the corre-
sponding AV, and the best average value of this ratio is
found. This voltage conversion factor decreases monoton-
ically with temperature from 0.59+0.02 mK/V at 1.3 K,
to 0.51+0.01 mK/V at 1.7 K, where the uncertainty has
been estimated generously to encompass slight discrep-
ancies measured among the various cooldowns and the
somewhat large scatter found about the average value.
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The uncertainty in this voltage conversion factor, which
constitutes an overall systematic error of 2—3.5%%uo depend-
ing on the reservoir temperature, provides by far the
largest single source of error in AT. We shall refer to
this systematic error as the absolute error in AT.

In comparing the various data sets for a given reser-
voir temperature, the relative measurement uncertainty
is much smaller, being limited by the SQUID sensitiv-
ity in measuring AV. Due to rf interference and ther-
mal noise, the SQUID voltage signal fluctuates by +1—
2 mV about a steady value (corresponding to underly-
ing noise Huctuations in the thermocouple current of less
than +O.l nA). Our SQUID-thermocouple system can
therefore measure a small AT signal to a relative accu-
racy of +1 pK. A different criterion determines the uncer-
tainty in the SQUID measurement for larger temperature
differences (6T ) 1 mK). The SQUID voltage signal AV
rides on top of a base voltage level. This base line shifts
up or down at random intervals by multiples of a char-
acteristic step voltage (2.124 6 0.001 V for our SQUID).
These jumps occur because the SQUID temporarily "un-
locks" and resets whenever it has exceeded its maximum
output voltage of 10 V, and also when the ambient rf
interference becomes too great. The measurement AV
must be extracted from the actual voltage reading by
adding or subtracting the appropriate number of voltage
steps, producing an uncertainty in b, V of +0.04%%up. The
actual relative uncertainty for a large AT signal is taken
to be somewhat larger, +O. l%%u pto account for a slight,
slow drift in the base line voltage which sometimes oc-
curs, another subtle effect of rf noise.

Two limits determined the maximum feasible heat
current at each To. To ensure that the heat Hux re-
mained well below the value sufBcient to initiate film
boiling at the heater surface due to Kapitza resistance,
we restricted our data collection to heat currents below

Q = 10 mW. We also did not extend our measurements
beyond heat currents for which the temperature of the
heated chamber exceeded that of the reservoir by more
than about 50 mK, for three reasons. First, calibrat-
ing the resistors and accurately converting the resistance
readings into temperature becomes increasingly diKcult
as the temperature range over which the calibration must
be valid widens. Second, extracting AV &om the voltage
reading output by the SQUID becomes more painstaking
due to the unlocking discussed. above. Finally, any com-
parison of the data to theory becomes much more compli-
cated if the temperature &om one location in the Huid to
another varies enough that the thermodynamic param-
eters describing the helium can no longer be treated as
having constant values throughout the Quid. Within the
temperature range studied, an increase in temperature of
10—20 mK is suKcient to alter the predicted behavior by
10%%. Extending our measurements beyond AT = 50 mK
seemed pointless in light of the ensuing computational
difhculty in performing an accurate theoretical calcula-
tion. Since no interesting new features were discovered
in the data at the highest heat currents used, we were
not compelled to relax these two self-imposed and some-
what arbitrary limits on the range of heat currents stud-
ied. Further details concerning the experimental appara-

tus and data collection method can be found in Refs. 17
and 18.

III. RESULTS

A. Notation

This experiment involved measuring the absolute tem-
perature at, and temperature difFerences between, sev-
eral locations in our diverging channel. Because keep-
ing track of the various temperature measurements and
many positions involved can become somewhat confus-
ing, a careful definition of the notation used to refer to
our measurements is in order before beginning a general
discussion of our results. The thermocouple can be con-
nected between any two of eight locations along the chan-
nel length. These radial positions are labeled alphabeti-
cally A—H in Figs. 1 and 2. The absolute temperature at a
radial position r; is denoted T(r;), whereas the tempera-
ture difference between two locations r, and r~ is denoted
AT(r;, r~) = T(r;) T(r~),—where i, j 6 (A, H) The.wide
end of the channel, located at rH, is connected to the
large reservoir held at temperature Tp,'so T(rH) = Tp.
The increase in temperature at a particular position r,
over that of the reservoir is the quantity of primary inter-
est, and so we shorten the notation AT(r;, rH) to simply
b,T(r;), with the caution that one must clearly distin-
guish between T(r;) and b,T(r;) = T(r;) —Tp.

B. Ceneral features

The local temperature gradient is a function of both
the position in the channel and the heat current Q. We
sought to map out these two dependences and understand
the interplay between them. We proceeded by measuring
the temperature difference over a fixed range in r, while
varying Q, then moving the thermocouple to span a new
range in r and repeating the measurement in Q. Be-
cause the thermocouple connection can only be moved by
warming up the apparatus, the data for this experiment
were taken in four series, each series corresponding to
a different thermocouple positioning. Initially, the ther-
mocouple was connected between the heated chamber at
the narrow end of the channel at r~ ——2.5 cm and the
reservoir at rH ——12.5 cm to measure the temperature
difFerence bT(r~) across the entire flow channel. This
series of measurements was conducted at five reservoir
temperatures, To ——1.3, 1.4, 1.5, 1.6, and 1.7 K. The data
for To ——1.5 K are shown in Fig. 3 and are representative
of data at other reservoir temperatures. Measuring AT
over other ranges in r yielded data with qualitatively the
same features as are shown here for AT(r~). These data
all reveal a laminar flow regime for sufficiently small Q,
where the laminar temperature difFerence

depends linearly on Q. Above a certain critical value of
the heat current Q, the system undergoes a discontinuous
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FIG. 3. Total temperature difFerence across the entire
channel, AT(r~), as a function of heat current for a typ-
ical data set, To = 1.5 K. Only data for q ( 2 mW are
shown here to emphasize features. The full data set extends
to AT 58 mK at q = 10 mW. The laminar Sow regime

(AT linear in q) is clearly distinguishable from the turbulent
regime (roughly cubic in q). For heat currents beyond Q„
the laminar state is metastable.

transition to a turbulent state characterized by a much
larger temperature difFerence with an essentially cubic
dependence on Q. This transition is hysteretic, as can be
seen in Fig. 3. The turbulent temperature difference AT'
is taken to be the excess dissipation beyond the laminar
value; so the total temperature difference is now

AT = ATg+ AT' (4)

That this division of the measured temperature differ-
ence into a laminar and a turbulent piece is appropriate
once the system is in the turbulent state is an assump-
tion, but one well grounded in convention and supported
by experimental evidence. 2 We therefore subtract LTL,
from our measured signal to obtain AT'. For values of Q
much greater than Q„ the linear laminar piece is so in-
significantly small in comparison to AT' that whether
or not ATL, has been subtracted becomes immaterial.
The general appearance of the turbulent state is qual-
itatively similar enough to that observed for a uniform
high-aspect-ratio rectangular channel to give one the
initial impression that the homogeneous T-II state ob-
served in uniform Bows remains largely unaltered by the
weak divergence imposed in this flow.

The same data displayed in Fig. 3 are graphed in a
more informative manner in Fig. 4. To reveal the ba-
sic cubic dependence of AT' on Q, the data have here
been plotted as (AT')i~s versus Q. Linearizing the data
in this manner immediately reveals two general features.
First, the line formed does not extrapolate to intersect
the origin, but rather is slightly offset, indicating that
AT' oc (Q —Qo) would be a more appropriate functional
form to describe the data. Second, rather than forming
a perfectly straight line, the data exhibit a slight down-
ward curvature at large Q, appearing to indicate that the

FIG. 4. Linearized plot of same data shown in Fig. 3. ATg
has been subtracted to yield the turbulent temperature dif-

ference AT'. The cube root of AT' is plotted here to reveal
the basic cubic dependence of AT' on Q.

power-law dependence is not exactly cubic. This curva-
ture can largely be attributed to the temperature depen-
dence of the thermodynamic parameters characterizing
the turbulent He-II, and would be present even if the
power-law dependence on Q proved to be exactly cubic.

For the second data series, one end of the thermocou-
ple was moved Rom the reservoir end, rH ——12.5 cm, to
an intermediate position in the channel, rD ——4.725 cm.
The other end was left attached to the heated end at
r ~ = 2.5 cm; the SQUID-thermocouple system then mea-
sured the temperature difference AT(r~, r~). To extract
AT(rD) from the measured quantity, since

AT(rz) = b,T(rz, rz)) + AT(rD), (5)

a polynomial fit was first obtained to the correspond-
ing data set of the previous series, AT(r~) as a func-

tion of Q, allowing interpolation of AT(r~) at the values
of Q for which AT(r~, rD) was measured; then the lat-
ter data set was subtracted from the fit to the former
to yield b,T(rD). It would have been more straightfor-
ward to measure AT(r~) directly, but without know-
ing a priori just how large AT(r~) would prove to be,
we opted for observing the complementary range in r to
ensure that we would have a detectable signal, even at
small Q and high To. Under the local uniformity approx-
imation, AT(r~, rD) is predicted to be about 75% of the
total temperature difFerence AT(r~). Measurements of
AT(r~, rD) were taken at the same five reservoir tem-
peratures as before.

The third data series again involved moving only one
end of the thermocouple, this time the one attached
at r~, to the new position r~ ——3.47 cm; so for this series
b,T(r~, rLi) was measured, from which the temperature
difference AT(rc) was extracted. We were interested in
examining a region of the flow far enough removed &om
the entrance and exit of the channel to avoid the influence
of any possible end effects. In this data series, measure-
ments were taken at only three reservoir temperatures
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C. Laminar How

One should be able to predict the laminar dissipation
ATr, (r) exactly by applying classical hydrodynamics in

10 I i I

T = 1.5K0

Q=5rnW

Tp ——1.4, 1.5, and 1.6 K. For the last data series the
thermocouple spanned the smallest region possible within
the entrance of the channel, &om r~ to r~ ——2.87 cm.
Unfortunately, the SQUID apparatus did not function
correctly after this final cooldown, but direct measure-
ments of the temperature at r~ were still obtained for
Tp ——1.5 K from a carbon-glass thermometer attached
to this probe location. Temperature difference data were
similarly gathered in these last two series by resistance
thermometers placed at two additional locations in the
channel, r@ ——6.5 cm and rF ——8.5 cm. Measurements
at r@ were taken at Tp ——1.3 and 1.5 K and at rF only
at Tp = 1.5 K. Resistance thermometers lack the sensi-
tivity of the SQUID-thermocouple system to discern a
small AT signal from background noise, in part because
they measure the absolute temperature rather than tem-
perature differences, and so the measurements at these
last three positions are useful only at the larger heat cur-
rents; nevertheless, the added information was gathered
simultaneously with the SQUID-thermocouple data and
proved valuable in quickly building a more complete pic-
ture of the temperature profile throughout the channel.

Once the temperature difFerence as a function of Q has
been mapped out over several diferent ranges in r for
a given reservoir temperature, the data can be graphed
in a manner that better reveals the dependence of AT'
on position r. The temperature profile throughout the
channel, AT'(r), is plotted as a function of r for a fixed
value of Q. Figure 5 shows this temperature profile at
Tp = 1.5 K for a representative value of the heat current,
Q=5mW.

the two-fluid model to the specific geometry of the flow.
Agreement of this theoretical prediction with the laminar
data provides several essential checks on the experimen-
tal operation and design. First, if the functional forms
of the predicted and measured laminar dissipation agree,
then one may be confident that the flow channel has the
shape expected and is not obstructed. Comparing re-
sistance thermometry readings among the di8'erent data
series independently verifies that the flow channel is not
obstructed, at least by frozen air, since the apparatus is
warmed up to room temperature between series. Second,
finding the value of the channel height h which makes
the predicted ATI. best fit the observed value provides
an experimental determination of this crucial channel di-

mension, which is dificult to measure exactly by other
means. Last, and most important to our purposes, the
laminar prediction tests the validity of making the local
uniformity approximation, in essence providing a mea-
sure of the weakness with which the flow diverges.

Although the geometry of our flow channel does not
readily lend itself to an analytic solution, an approximate
solution is easily derived from the result for a uniform
rectangular channel. An exact solution for the laminar
temperature gradient in a uniform rectangular channel is
obtained from the two-fluid equations of motion and is

given by

(6)

where the normal fluid flows in the direction r" through
the cross sectional area A = hm of height h and width
to [see Eq. (1)]. The negative sign indicates that V'Tl,

increases in the direction opposite to v„. The aspect
ratio m: h of the channel determines the value of the
geometric factor T, which ranges from T = 2.371 for a
square channel (tii: h = 1) to E = 1 for How between two
flat parallel plates (tU: h = oo).

For our diverging channel, where the width of the chan-
nel varies with position r as m = Or, we apply the lo-

cal uniformity approximation by assuming that the local
temperature gradient V'Tl, (r) at position r in our diverg-

ing How is given by Eq. (6) upon replacing the constant
value of V„ for uniform flow with the local value at posi-
tion r,

0 '

2 4 6 8 10 12

r (crn)
PIC. 5. Profile in r of the measured turbulent temperature

difference b.T'(r) at a typical heat current, Q = 5 mW. This
profile graph combines the measurements at To ——1.5 K from
all data series. For example, only one point on this graph,
that at r~ ——2.5 cm, is obtained from the data set depicted
in Pigs. 3 and 4. Error bars are shown when larger than the
size of points.

The local temperature gradient is then integrated over r
to obtain the laminar temperature difference between any
two positions in the channel. Other than V, the only fac-
tor in V'Tg that varies with position is T, which quanti-
fies the influence of the channel sidewalls. At the narrow
end of our channel, where m: h = 8, T = 1.086, and at
the wide end, where m: h = 40, T = 1.016. Because
the variation in T over the length of the channel is so
small, T is treated as a constant to simplify the integra-
tion. Since VT~ is largest at small r, we use T = 1.086;
therefore we may be slightly overestimating the actual
predicted value of ATl„but not by more than 7%%up at
most. Integrating the uniform rectangle VTI, (r) in the
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local uniformity approximation, we obtain the predicted
laminar temperature difference between position r and
the wide end of the channel at rH ——12.5 cm:

(8)

This "integrated rectangle" solution does not account for
the divergent nature of the flow, since the temperature
gradient appropriate to a uniform, one-dimensional flow
was used.

To determine whether the radial divergence alters the
above prediction for ATI, substantially, we compared the
above solution to two other approximate solutions, both
of which incorporate the divergence explicitly but neglect
the presence of the sidewalls. A solution for the laminar
radial flow of an ordinary viscous fluid between two par-
allel disks has been presented by Savage and expanded
upon by Elkouh. Our radially diverging Bow represents
an angular slice 8 of the full 2m geometry treated by Elk-
ouh. We generalized the Elkouh approach to the two-
Huid model, making the minimal additional assumptions
that the superfluid is incompressible, irrotational, and
only has a component of velocity in the radial direction.
The normal Buid velocity is assumed to have only ra-
dial and azimuthal components, and the solutions for v„
and VTL, are obtained via power series expansion. The
other approximate solution for b,TI.(r), which we term
the "parabolic v„" solution, is obtained by invoking rea-
sonable and minimal assumptions regarding the symme-
tries and properties of the How in order to solve the two-
Buid equations in closed form. First, it is assumed that
the normal and superfluid components are incompress-
ible (V'. v„= V . v, = 0) and that v„and v, have only
radial components. As before, v, is assumed to be irro-
tational (V x v, = 0). To obtain an analytic solution for
VTI„ the assumption that the cross-channel normal Buid
velocity profile is parabolic is incorporated as an ansatz.

The Elkouh and the parabolic v„solutions yielded
nearly identical results, which agreed with the integrated
rectangle solution for T = 1, demonstrating the validity
of using this simple expression [Eq. (8)] to compute b.TL,
in the local uniformity approximation. This integrated
rectangle solution is compared to the data in Fig. 6,
which shows the laminar thermal impedance b,TI.(r)/Q
as a function of the reservoir temperature To. Of the four
data series, only the first two measured AT over a large
enough range in r to obtain accurate laminar data. The
theoretical prediction is in excellent agreement with the
data for ATr, (r~) [see Fig. 6(a)]. For ETr, (rD) the agree-
ment is still very good, although, as seen in Fig. 6(b), the
measured values are consistently about 20% larger than
predicted. Since ATI. depends on the channel height ash, a slight variation in this dimension, within the error
limit of h = 0.025 +0.001 cxn, could partially account for
this discrepancy. It was not possible to directly measure
the channel height h, either optically or by any other non-
destructive means, except at the channel ends. Another
possible source of discrepancy not accounted for in the
theoretical prediction of ATg is that the normal fluid pro-
6le must develop over some entrance length, which could

0.15

0.10—
~~

~ 0.05—

0.00
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0.10
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(b)

0.05—
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1.8 1.4

{K)
1.e 1.8

FIG. 6. Temperature dependence of the laminar thermal
impedence ATr, (r)/q measured for (a) r ~ = 2.5 cm and (b)
r~ ——4.725 cm. Solid lines show the predictions of the "inte-
grated rectangle" solution. The laminar temperature di8'er-

ence DTI, is linear in q, and so division by Q yields a constant
thermal impedence at each reservoir temperature Tp. Error
bars are shown when larger than the size of points.

D. Schwarz model

Following the same prescription as for laminar How,
we apply the Schwarz model of homogeneous superfluid
turbulence to this diverging flow by making the local uni-
formity approximation. The vortex line density is given
in the Schwarz model as

2 QT2

2

where

4' ( c~ L ~~2ao j

alter b,TI,(r) slightly; however, no evidence for a signif-
icant laminar entrance region has been observed, either
in comparable experiments in uniform high-aspect-ratio
rectangular channels~s or in our results. We therefore be-
lieve laminar entrance eKects, if any, to be unimportant.
Overall, locally applying VTI, for a uniform rectangular
Bow satisfactorily predicts the observed laminar temper-
ature profile in this diverging flow, providing convincing
evidence that the divergence is indeed weak. It therefore
seems reasonable to employ the same local uniformity
approximation in modeling the turbulent state.
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Here cl, and cq are temperature-dependent parameters
predicted within the Schwarz model, e is the quantum of
circulation, and ap 1.3 x 10 cm is the effective core
radius of a vortex line. The excess dissipation predicted
by the Schwarz model,

K 0!
VT'(r) = —

(I(~
—cL, Ig) I V r

S
is in excellent agreement with the T-II state observed in
uniform flows. The friction constant a quantifles the fric-
tional force the normal fluid exerts on the vortex lines,
and I~~ and Ip characterize the anisotropy of the vortex
tangle; all are temperature-dependent parameters. We
emphasize that the Schwarz parameters n, cI„ I~~, and Ig
are computed for a spatially homogeneous vortex tangle,
and so any of these paraxneters may take on quite differ-
ent values were the tangle spatially inhomogeneous. In
the local uniformity approximation, L and V'T' become
spatial functions for our diverging Bow, since the local av-
erage relative velocity V = (p/p, )V„, where V„depends
upon position [see Eq. (7)].

For a fixed value of the heat current Q, the ex-
cess temperature difFerence AT'(r) is found by integrat-
ing Eq. (11) Rom r~ to r. This integration must be
performed numerically since the integrand contains Ps,
which depends logarithmically on r thro'ugh L. A FoR-
TRAN routine was written to iteratively compute Ps at
each r for a fixed value of Q, then integrate V'T'(r)
over r, and repeat the calculation for successive incre-
ments of Q. The temperature dependence of all param-
eters in Eq. (11) was self-consistently taken into account
throughout the integration.

Figure 7 compares the prediction of the local approx-
imation to the measured temperature difference across
the entire channel as a function of Q for each reservoir
temperature Te. Figure 7(c) contains the same data at
Tp = 1.5 K as were previously shown in Fig. 4. That the
theory lines in Fig. 7 curve slightly downward at large Q
is the result of the temperature dependence of the pa-
rameters and not a change in the functional dependence
on Q. Integrating V'T'(r) Ioithout self-consistently up-
dating all temperature-dependent parameters in the in-
tegrand to the local temperature (i.e., instead, leaving all
temperature-dependent parameters "&ozen" at the val-
ues appropriate to To) results in a slight upward curva-
ture with increasing Q rather than the downward curva-
ture seen here. This same downward curvature is evident
in the data, but the magnitude of AT'(r~) predicted by
the theory is consistently larger than the data at all tem-
peratures. Linearized graphs of AT'(r) versus Q at other
positions r show similar systematic discrepancies between
the observed and predicted values, with the data always
extrapolating to a positive intercept in Q. The Schwarz
model applied locally cannot account for this nonzero Q
intercept seen in the data.

The predictions of the local approximation are com-
pared in Fig. 8 to the measured temperature profile
AT'(r) at several values of the heat current for To
1.5 K. Figure 8(c) for Q = 5 mW contains the same data
as appeared in Fig. 5. Plotted in this way, the theoreti-
cal r dependence might not appear to be too dramatically

difFerent kom that seen in the data, but the discrepancy
between the two is actually quite large. The predicted r
dependence in V'T' is very close to r, since V (x r
and VT' (x. V . The only deviations &om a purely T

dependence come from the logarithmic r dependence en-
folded in Pg and the implicit r dependence introduced
through the temperature variation of parameters. These
latter two dependences add a gradual, smooth change in
V'T' with r to the basic r dependence. Integrating
'AT'(r) therefore yields an r dependence of AT'(r) close
to (r z —rH ). This factor is divided out from both the
data and the theory and the result displayed in Fig. 9.
The dashed line is the result of a parametric 6t to be
discussed later. In Fig. 9, V'T' oc r would appear as
a straight horizontal line. We can deduce from Figs. 8
and 9 that that the turbulent temperature gradient does
not depend on any single power of r throughout the chan-
nel. The data suggest that V'T' oc r * where at small r,
x & 3 and at large r, x 1. The small deviation from
a purely cubic r dependence inherent in the theory is
manifestly different &om the substantial and more com-
plicated bimodal deviation exhibited in the data.

Clearly, the Schwarz model of homogeneous turbulence

0 I I 0 I I I

0 1 2 3 4 0 1 2 3 4 5

2

0 I I 0 I I I

0 2 4 6 8 10 0 2 4 6 8 10
(mw)

0 2 ~ 4 6 8 10
(mw)

FIG. 7. Measured turbulent temperature difference
AT'(r~) (linearized by taking the cube root) as a function
of heat current Q for all reservoir temperatures To studied.
The measurement uncertainty is much smaller than the size
of points. Solid lines are the predictions of the homogeneous
turbulence (Schwarz) model applied in the local uniformity
approximation.
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(13a)

P—= ~Ie
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I

2'Y & P 9
(13b)

and o. is a second-order friction coefBcient in the Schwarz
model. It should be noted that in the case of a spatially
homogeneous L, the Schwarz (or Vinen) expression for
the vortex line density, Eq. (9), is recouped.

dependent parameters which must be determined either
by careful comparison to experiment or to a microscopic
numerical simulation. Geurst provides the relation be-
tween five of these parameters and the analogous set of
Schwarz parameters («, n, a', I~ ~, and Ir) in Ref. 10. The
remaining parameter, called pg, determines the strength
of the new VL term added to the internal energy and
therefore has no analog in the Schwarz model; so pg must
be treated as a &ee and tunable parameter.

Provided with this link to the Schwarz model, we at-
tempted to apply the 1D Geurst model to our results.
First, we generalized the 1D equations of motion to three
dimensions (as much as possible) by substituting for
all vector quantities the appropriate three dimensional
analogs in cylindrical coordinates. We emphasize that
this step alone falls far short of properly generalizing the
Geurst model to three dimensions, since all the parame-
ters involved, as well as their interpretation in the con-
text of the Schwarz model, were determined for a one-
dimensional, uniform flow. In fact, Geurst and van Bee-
len have recently provided a full three-dimensional (3D)
version of this three-6uid model. i By contrast to the 1D
version, the equations of motion in the full 3D model are
much more complicated and contain no less than 23 inde-
pendent parameters, which have yet be evaluated by com-
parison to an experiment or simulation. For the special
case of homogeneous turbulence, the 3D Geurst model
reduces to a slightly more general form of the 1D model,
with the Vinen equation emerging in its familiar form,
and the number of parameters collapsing to the above-
mentioned five. The 3D version for the most general
case of inhomogeneous turbulence in a nonuniform flow
is daunting in its complexity, and not usable until the
host of parameters it generates can be interpreted. The
best we can do, therefore, is to employ the 1D Geurst
model in the local uniformity approximation, cognizant
of our underlying assumption, now embedded in many
stages of the argument, that on a local level the turbu-
lence bears the characteristics of a homogeneous tangle.

Our three-dimensional version of the 1D equation of
state for the vortex line density in the presence of a large
gradient in L is (see Ref. 9)

OL
(Lv&) + K (V'L) ——V'—Lyg 2

Ot L

s2L i ivy —v—
i

——I/js

27

The Geurst parameters p and P are related to the
Schwarz parameters by

We seek the steady-state solution of Eq. (12) for the
case of zero net mass flow (v = 0). This highly nonlin-
ear second-order differential equation can only be solved
in some approximation which simplifies it. The simplifi-
cation we explored was to neglect the second derivative
term V' L in favor of the first derivative squared term
(V'L) /L. In justifying this approximation, we first ob-
serve that if the line density varied as a simple power of r,
L = Cr", then (V'L)2/L = V' L = n2Cr" 2. For such
a simple line density, since these two terms would have
the same functional dependence, each would introduce a
variation that decouples the Q and r dependences in L in
exactly the same way. The character of the line density
which is an exact solution to Eq. (12), if it is to fit our
data, must be such that these two terms still behave very
analogously to one another and the above remarks would
still largely hold true. Choosing which of these terms
to retain and which to discard seems more a matter of
computational convenience than a substantive issue, and
so it seems reasonable to replace the difference of these
two terms with a single term written either as V' L or
(V' L) 2/ L. Since the prefactor multiplying the expression
in square brackets in Eq. (12) contains the adjustable pa-
rameter pg, the choice of which one of these two terms is
used becomes absorbed in the magnitude and algebraic
sign of pg, therefore the entire possible range of positive
and negative pg values was considered.

Choosing to drop the Laplacian term in favor of the
(V'L)2 term yields a quadratic equation in VL of the
form

A(VL)2+ BV'L+ C = 0,
where the coefBcients A, B, and C are functions of L and
the Geurst parameters:

2K'
Lp

B = [vg/,

C = ' I.' — L'~—'[,~—
27

(15b)

(15c)

In this approximation, Eq. (12) is reduced to a first-order
equation that is relatively easy to solve. Being only first
order, Eq. (14) requires only one boundary condition,
the value of L at the entrance (or exit) of the channel,

I(r~) = L, . Equation (14) only predicts the derivative
of L at a given position r, not L itself. The two roots to
this equation are referred to here as the "plus" and "mi-
nus" roots, corresponding to choosing the plus or minus

sign, respectively, before the square root of the discrim-
inant (B —4AC). To solve for L(r), one root of the
equation is selected, and values of the two adjustable pa-
rameters L and pg are chosen. Having thus fixed both
I and V'L at r = r~ (or r~), an iterative procedure is
used to map out I (r) throughout the channel for the
particular combination of parameters and root specified.

Due to the highly nonlinear nature of Eq. (14) and the
resulting strong dependence of both the sign and mag-
nitude of V'L(r) on L(r) and qg, we were compelled to
explore the full range of parameter space for both roots.
In addition, there remains some question as to whether
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the vortex lines in fact drift in the same direction as, or
opposite to, the normal fIuid. Reversing the direction
of vi reverses the algebraic sign on the divergence term
BVL = v~. VL. Experiments which have attempted to
directly measure v~ have obtained somewhat ambiguous
and co~~icting results. We therefore allowed the value
of B in Eq. (14) to vary from +vi to —vi by introducing
a third adjustable parameter —1 & P & 1 multiplying B
In all, we had eight possible classes of the solution to
Eq. (14) to consider, corresponding to the eight combi-
nations of choices of the root of the equation (plus or
minus) and the algebraic signs of pg(+) and P(+). For
each of these eight regions in parameter space, only lim-
ited ranges of the values of L„p~, and P lead to a viable
solution for all r within 2.5 & r & 12.5 cm.

Of the eight classes, four lead to unphysical solutions
where L either decays immediately to zero, or diverges
equally rapidly, &om the starting L,. Two more classes,
for the case of P & 0 and starting from a small initial
value L„yield a solution where L increases very gradu-
ally over some length b within the channel entrance; then
over a very small range in r about r = rg+ b, L grows ex-
plosively to a value L &) L . With this increase in L, the
relative importance of the terms in A and B in Eq. (14)
diminishes in comparison to the role of C in determining
the steady-state line density; so for r ) r + b, L(r) is
nearly the same as is predicted in the Vinen or Schwarz
model. This solution reproduces a result first obtained
by Murphy, Tough, and Fiszdon, who added a term of
the form V .(L vi), with vi & 0, to the Vinen equation. 2s

The line density obtained in that solution matched that
given by the Schwarz (or Vinen) model of homogeneous
turbulence in the local uniformity approximation every-
where in the channel except within a distance h of the
entrance, where L decreased rapidly until it had "accom-
modated" to the much lower value outside the channel.
Upon completion of only the first two series of measure-
ments, we had only the two data points at r~ ——2.5 cm
and rD ——4.725 cm in Fig. 8, &om which it seemed that
AT'(r~) was correctly predicted by the Schwarz model,
but b,T'(r~) was much smaller than expected. Our ini-
tial findings could be explained by supposing that a fairly
large entrance region existed, on the order of 8 = 0.5 cm
in size, over which the vortex line density was suppressed
much below the value expected Rom the Schwarz model.
After obtaining a more complete picture of the tempera-
ture profile AT'(r), however, it becaine obvious that no
such pronounced entrance efFect exists, and the apparent
agreement between the Schwarz model and the data in
the vicinity of rD is serendipitous.

Only one class of the Geurst solution, corresponding
to choosing the minus root to the quadratic and P ) 0,
pg ) 0, produced a line density pro61e which had a suit-
able functional form and overall magnitude to potentially
describe our data. zs The resulting Geurst L(r) was in-
serted into the Schwarz expression for VT', which was
integrated to obtain b,T'(r) The correspond. ing Geurst
expression for V'T' yielded nearly the same result for the
range of parameter space in question, and so using the
simpler Schwarz expression for VT' does not introduce
any inconsistency. In seeking a fit to the data, the line

density L, at the channel entrance will of course increase
with Q, but pg should depend on temperature only, and
so the same value of pg should provide a reasonable 6t to
the teinperature profile b,T'(r) at difFerent Q values for
a given To. No such overall 6t to the data was found. At
best, for a given Q, a combination of L, and pg could be
identified that yielded a reasonable 6t to our tempera-
ture profile data at small r (r & 3.5 cm). This "close fit"
proved untenable upon changing Q slightly while holding
the value of pg fixed, since no new value of L, could be
found to similarly 6t our results over any range in r at
the new Q.

The calculation performed and assumptions adopted in
applying the Geurst model were thoroughly checked for
accuracy and sensibility. Inputting the line density at
the channel exit as the boundary condition to iteratively
map out L(r) while decreasing r yielded the same result
as did starting at the entrance and increasing r. As a final
check on our assumptions, we estimated the size of the
neglected V'2L term in comparison to the (VL) /L term
kept. For the "closest fit" obtained at a given Q, V2L was
of the same order of magnitude, but somewhat smaller
than, 2(VL)2/L. More important, these two terms ex-
hibited nearly the same functional dependence on r. It is
interesting to note that a comparable fit at small r to the
"closest 6t" achieved with the Geurst model can be ob-
tained from the Schwarz model by decreasing cL, by 16'.
(The dashed line in Fig. 10 depicts precisely this scaling
of cL, .) Despite the proinise of handling a nonuniform line
density, the 1D Geurst model, when applied as we have
here, at best yields a solution which does not differ much
in functional form from that obtained using the Schwarz
or Vinen model in the local uniformity approximation.

F. Modi8ed line density

Since none of the existing theoretical models ade-
quately describe our results, we present an empirical
6t that succinctly summarizes our data. The following
modi6cation to the vortex line density captures the gen-
eral features of our observations and constitutes a three-
parameter fit to our data. By scaling the local homoge-
neous line density L = L» [Eq. (9)] and adding to it a
polynomial in Q, we obtain the modified line density

L = goL»+ giQ+ giQ, (16)

to be inserted in the Schwarz expression for VT'(r) given
in Eq. (11). For each reservoir temperature, we were
able to identify a unique set of parameters go, gi, and
g2 that provide excellent agreement with our data. Al-
though these parameters depend only on temperature,
it is possible that enfolded in their values is some "hid-
den" dependence on the specific geometry of our exper-
iment. By hidden we mean some factor which remains
6xed throughout our experiment, such as the opening an-
gle 8 or the channel height h. Any forthcoming model of
inhomogeneous turbulence, or any generalization or al-
teration of existing theory purporting to address nonuni-
form 8ows, ought to yield a line density in agreement



15 922 J. F. KAFKALIDIS, G. KLINICH III, AND J. T. TOUGH 50

with the above form when applied to our Bow geometry.
The addition of the polynomial function of Q to the line

density adjusts both the Q and r dependences of 'VT'(r)
appropriately. Since L is multiplied by V in forming V'T,
and V = CQ/r, the functional form of 'VT' becomes

&T' = —F(T) goC'
l

—I, +gi +gz
Q' Q' Q'

t&, )
{17)

where all other temperature and geometric dependences
are contained in F(T) and C. At sufficiently small r, this
modi6ed temperature gradient is dominated by the lo-
cal homogeneous contribution, which varies as r s For.

r less than 4 cm, the r dependence of Lg follows
that of the data, but the Schwarz model results in a
temperature diH'erence that is always much too large in

magnitude at small r (see Figs. 8 and 9). We there-
fore multiply LI, by go, where 0 ( go ( 1, to scale
back the contribution of this local homogeneous piece.
Adding the polynomial in Q to Lr„ introduces an r de-
pendence in V'T' which allows the bimodal dependence
on r observed in the temperature pro6le to be 6t reason-
ably well throughout the channel. Upon integrating V'T'

&om rH to r, the resulting AT'(r) is now a polynomial
in Q with a quadratic as well as cubic term. Together
these two terms act as the two highest-order terms in
the expansion of (Q —Qo)s. The added quadratic piece,
AT' oc gi ln(r~/r)Q, accounts for the nonzero Q inter-
cept seen in Fig. 7, provided that gq ( 0. The new cubic
piece AT' oc gz ln(rH/r)Q combines with the local ho-

mogeneous piece, also cubic in Qs; therefore increasing

gz increases the slope of DT' i~z versus Q.
The following procedure was used to obtain the values

of go, gq, and g2 which best fit the data. First, we fo-
cused our attention on the linearized plot of AT'(r~) ~

versus Q. Picking a value of go in the range 0.25—0.75
and temporarily 6xing the value of gq, we tuned the value
of g2, selecting the value of g2 that yielded the best rnatch
to the slope of the data for that go. Since g~ controls the
Q intercept of the curve, we then identified the value of gi
needed for each combination (go, gz) to fit the intercept
as weH as slope.

From this first data series, we therefore matched the
"candidate pairs" of (go, gz) values to their gi "running
mates. " A sample of the modified AT'(r) profile result-
ing &om four such combinations of all three parameters
is compared to the data for Q = 5 mW at Tp = 1.5 K
in Fig. 10, curves (a)—(d). For comparison, the result of
using the local homogeneous line density alone, scaled to
fit AT'(r~) for Q = 5 mW, is displayed in curve (e). Al-

though using the local homogeneous line density scaled
by gp = 0.70 (setting gi ——gz

——0) appears to fit the
temperature profile data fairly well at small r, this fit
bears the wrong Q dependence, and so it does not agree
with the data at other Q. Examining the four candidate
trios for the modified line density, we see that the effect
of adding the polynomial in Q to Lr, is to increase AT' at
large r. As g2 is increased, go must be correspondingly
decreased to maintain the fit at r~.

2 4 6 8 10
r (crn)

FIG. 10. Curves (a)—(d) (solid lines): Testing four candi-
date trios of fit parameters (go, gi, gz) for the modified line
density formula at To ——1.5 K. All four match the measured
AT' equally well at rz ——2.5 cm. Data and fits are shown here
for Q = 5 mW, but the same fit parameters in (a)—(d) agree
equally well with b,T'(rz) over the entire range in Q. Only
curve (c) also fits the data at ro = 4.725 cm for all Q. Curve

(e) (dashed line): Using only the homogeneous line density,
scaled to fit the measured DT'(r~). This fit agrees with the
data at small r, but only for Q = 5 mW.

To identify the best 6t to the actual temperature pro-
file, the particular trio (go, gi, gz), which also provides a
good fit to the second data series, ZT'{rD) versus Q,
is selected. A quick glance at Fig. 10 suggests that
the best combination is apparently that of curve (c),
namely, gp = 0.51, gz ——4.8 x 10 (mW cm), and
g& ———7 x 10 mW ' cm, but this graph is for a fixed
heat current, Q = 5 mW. That this trio of parameters
indeed provides the best overall 6t can better be seen by
comparing the Q dependence of this fit to that of the ob-
served temperature differences AT'(r~) and AT'{rD), as
shown in the linearized graphs in Fig. 11. The parame-
ters were chosen speci6cally to 6t the slope and intercept
of the first data series, and so the excellent agreement
obtained in Fig. 11(a) is nothing more than what was
demanded fxom the outset. In fact, all four candidate
trios identified [curves (a)—(d) in Fig. 10] yield equally

good fits to AT'(r~) over the full 10 mW range in Q.
Only one of these, the combination of go, gq, and g2 dis-
cussed above and displayed in curve (c) of Fig. 10, also fit

DT'(rrr) equally well over a wide range in Q, as shown
in Fig. 11(b). The same temperature profile data dis-
played in Fig. 10 are shown in Fig. 9(c), where the dom-
inant r dependence has been divided out. In Fig. 9, the
best-fit modified line density prediction (dashed lines)
is compared to the Schwarz homogeneous model (solid
lines) for several values of Q. Although our empirical fit
only matches the data closely at positions rA and rD,
as demanded, it clearly tracks the both the Q and r de-
pendences of the data much better than does the local
homogeneous model.

The best-fit trio of parameters for each reservoir tem-
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perature is listed in Table I. This parametric 6t works
as well at the other reservoir temperatures as has been
illustrated here for To ——1.5 K. Our measurements at
any T0 can therefore be quickly and easily reconstructed
with reasonable accuracy by inserting the appropriate
trio of parameters from Table I into the modi6ed line den-

sity formula [Eq. (16)]. The measurements of AT'(r~)
and b,T'(r~) can be rendered with great precision, and
the temperature differences at other positions r approx-
imated with only small systematic variations &om the
actual measured values, provided that the same proce-
dures as we used are followed in the computations, as
several subtleties of the modi6ed line density calculation

FIG. 11. Linearized b,T' versus Q at Tp = 1.5 K, shown for
two positions in r: (a) r~ = 2.5 cm [same data as shown in
Fig. 7(c)] and (b) ro = 4.725. Solid lines are the predictions
of the modi6ed line density formula, using the best-fit set of
parameters (go, gi, g2) [listed in Table I and also shown in
Fig. 10(c)]. Inset (c) shows an expanded view of the data in
the boxed region in (b). The arrow marks the change in slope
caused by the turbulent-laminar front exiting the channel.

are important to the outcome. Anyone employing the
contents of Table I to recoup our results should consult
Ref. 18 for further details regarding these procedures.

As a check on our methodology, we instead used the
uniform local line density L = Ig and corresponding

Ps and modified VT' directly, by scaling the homoge-
neous temperature gradient (resulting from Lp, ) by go

and adding to it the same polynomial in Q as before,
to once again obtain Eq. (17) for VT'. This latter ap-
proach therefore modi6es the expression for VT' in the
same manner as before, but does not introduce the modi-
fication through L itself. The only distinction in practice
between these two approaches lies in the values of Ps
computed and inserted in Eq. (17). An equally good fit
to the data can still be achieved, but with different val-

ues of g0, gq, and g2 than are listed in Table I. Whether
the modi6cation to the local uniformity approximation
is introduced in the line density or only in the tempera-
ture gradient is immaterial inasmuch as either way this
method is no more than a parametric fit to the data, but
it seems more sensible to modify the line density from
the local homogeneous expression than to alter the basic
relation V'T' (x L V.

Although we hesitate to assign physical significance to
the form of the modified line density, it is interesting to
note that since the polynomial giQ + gzq contains no
r dependence, this piece of the modified line density is
a constant everywhere in the channel for any given Q.
It is as if the local homogeneous line density, which is
determined by the local velocity, is superimposed on top
of a constant or average background line density. In fact,
spatially averaging the local homogeneous part of the
line density g0Lp over the channel volume yields a result
about equal, at each q, to this added constant piece. It is
worth pointing out that in the case of a uniform flow the
local homogeneous line density is itself constant through-
out the channel, and therefore would be indistinguishable
from a constant background line density. In our modi-
fied line density formula, Lh was scaled by g0. It would
be entirely consistent with the data for uniform Qows to
similarly rescale the local homogeneous line density, and
then add to it a spatially averaged contribution to make
the total line density once again equal to the original Lh
predicted by the Schwarz model. Although it would be
presumptuous to push this speculation too far, the fact
that in a uniform flow one cannot distinguish between a
vortex line density governed solely by the local velocity
Beld and a line density representing some sort of spatially
averaged background level bears some consideration.

TABLE I. Best-6t values of parameters go, gq, and g2 at
each reservoir temperature. G. A Stationary turbulent front

TQ

(K)

1.3
1.4
1.5
1.6
1.7

go

0.50 + 0.02
0.49 + 0.01
0.51 + 0.01
0.47 + 0.01
0.39 + 0.01

gx
(mW 'cm )

(—8.0 + 2.0) x 10
(—7.0 + 1.0) x 10
(—7.0 + 0.5) x 10

(—6.0 + 0.5) x 10
(—4.0 + 0.5) x 10

gg
(mW cm )

(1.4 + 0.1) x 10
(8.6+ 0.2) x 10
(4.8 + 0.2) x 10
(2.6 + 0.1) x 10
(1.5 +0.1) x 10

Our measurements of the temperature profile along the
channel length give us insight into one final question:
How does the onset regime for superHuid turbulence in
a nonuniform Bow compare to that in a uniform How?
At heat currents just above the minimum needed to sus-
tain turbulence, we observe the formation of a stable and
stationary turbulent-laminar front within our diverging
channel. At such moderate values of Q, we measure a to-
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tal temperature difference in excess of the laminar value
at small r, whereas at larger r, bT(r) = GATI, (r), indi-
cating that at some intermediate position in the channel
the flow undergoes a transition from a turbulent to the
laminar state. Not unexpectedly, at the minimum Q for
which the turbulent state persists, only a small region of
the flow near the narrow end of the channel —where the
local velocity is largest is turbulent. As the heat cur-
rent is increased, the turbulent-laminar front moves out
to larger r, until eventually the &ont reaches the wide
end and the entire channel is filled with turbulence.

We identify the critical value of the heat current at
which the &ont reaches each probe location r by graphing
bT(r) versus Q for each position probed. For example,
as shown in Fig. 3, at the channel entrance Q, = 0.55 +
0.05 mW for To ——1.5 K. Figure 12 displays the critical
heat current Q, as a function of r for To ——1.5 K. The
measurements at r = 6.5 and 8.5 cm were made with
resistance thermometers, which are far less sensitive than
the SQUID-thermocouple apparatus; therefore, only an
upper bound for Q, could be determined from these data
sets. As a logical lower bound, Q, must be larger at these
locations than the value observed at smaller r.

Rather than being directly measured as for the other
positions, the point in Fig. 12 at the wide end of the chan-
nel, rH ——12.5 cm, is inferred &om the linearized graph
of AT'(rD) versus Q, which exhibits a subtle but dis-

tinct change in slope in the region around Q = 1.4 mW,
as shown in the inset (c) in Fig. 11. For Q ( 1.4 mW,
the slope is steeper than at large Q, and b,T' is smaller
than would be estimated &om an extrapolation of the
high-Q behavior. This change in slope presumably oc-
curs at the heat current at which the turbulent-laminar
&ont is located at the wide end of the channel. Below

Q = 1.4 mW, part of the channel is still in the laminar

TO

Vh = .072
C

L h= 4

1,5K

cm /s

II

0 P & l & I i I I l I l & I
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FIG. 12. Critical heat current as a function of r, indicat-
in0; the formation of a stable, stationary turbulent-laminar
front. Points with error bars are obtained from the
SQUID-thermocouple measurements; resistance thermome-
ters yield only upper and lower bounds for Q, (no points).
Solid line: curve of constant line density. Dashed line: curve
of constant critical velocity.

state and AT' is correspondingly smaller than if the en-
tire flow were turbulent. Above Q = 1.4 mW, the entire
channel is in the turbulent state.

To test our interpretation of this change in slope, we

simulated the presence of a turbulent-laminar &ont using
the modified line density model described in the previous
section. Although the exact critical condition causing
the turbulent state to collapse is not known, a simple
assumption is that turbulence cannot be maintained once
the average relative velocity V falls below some minimum
critical value V, . Adopting this criterion, we adjusted
our model to arbitrarily set L = 0 for all positions r for
which V was less than a chosen value V, . The modified
line density model, supplemented in this manner by a
front, yields a cusp in the slope of b,T' ~~a versus Q at
precisely the value of Q corresponding to the velocity at
wide end of the channel being at V, . Without a front, the
model predicts a uniform slope over the whole range in Q.
Rather than a critical velocity, the condition determining
where the turbulent-laminar transition occurs could be
a minimum line density below which turbulence cannot
be maintained. This criterion was also easily modeled
using our modified line density formula, resulting again
in an abrupt change in slope in the linearized AT' graph
similar to that generated by assuming a critical velocity.

For a reasonable value of V„ this shift in slope is dis-
cernable in the modeled behavior of b, T'(r) ~ versus Q
for any position r, but for small r becomes a very sub-
tle e8'ect, too small to resolve in the data. That we do
not observe a change in slope in the linearized graphs
of ET'(r~) or AT'(r~, r~) versus Q is explained by the
highly nonlinear nature of the turbulent temperature gra-
dient. The overwhelming contribution to the tempera-
ture difference across the entire channel is coming &om
the large VT' at the narrow end. Whether the flow far-
ther down the channel is laminar or turbulent makes little
difference since AT (r~) is so dominated by the action
at the narrow end. For a range in position near the wide
end of the channel, the laminar region beyond the &ont
plays a larger relative role in reducing AT' and a more
noticeable change in slope results. We could only distin-
guish the cusp in graphs of AT'(r~) Since this d.ata set
is obtained by subtracting measurements of DT(r~, rD)
from a fit to AT(r~), generous error bars are assigned

to the exact location of the cusp, and hence to Q, at
rH ——12.5 cm. Careful error analysis confirms that the
change in slope is a real, albeit subtle, feature of the data
and not some numerical artifact of the process used to
extract AT'(rD) from the directly measured quantities.

Thermal counterfIow in uniform channels exhibits a
similar critical heat current corresponding to the laminar-
turbulent transition. Whether the transition is from the
T-II or the T-I state to laminar flow depends on the size
and geometry of the flow channel, but in either case the
turbulent state abruptly ceases at some well-defined Q„
below which only the laminar state is observed. In very

long channels, the turbulence has been observed to origi-
nate in one location, but such a turbulent-laminar &ont is
not stable, and quickly propagates through the channel.
Once the flow reaches a steady state, the entire channel
is filled with turbulence. When possible to measure, the
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temperature gradient in such long channels has proven
to be constant along the channel length, indicating that
the turbulent state entered is homogeneous and no sta-
tionary turbulent-laminar &onts are present within the
channel.

Only in one experiment has a stable and stationary
T-II—laminar &ont been directly observed in a uniform
channel, in a flow regime far &om thermal counterflow.
Over a very narrow range of relative velocities approach-
ing the condition called "co-flow, " where V„= V, and
the average relative velocity V = 0, Slegtenhorst, Ma-
rees, and van Beelen observed such a stationary T-II—
laminar &ont in one circular glass channel, but not in
other channels of comparable geometry. In general, this
flow regime exhibits very low dissipation in the turbulent
state, since only extremely small line densities can be
sustained at such small relative velocities, and displays
complex and anomalous behavior that is not as yet well

understood.
Restricting our attention to thermal counterflow, the

following simple picture of the criterion determining the
turbulent-laminar transition is consistent with all uni-
form channel data. The transition occurs at constant
V, d, where d is the narrowest channel dimension. This
observation implies that the line density reaches a criti-
cal minimum value below which the vortex tangle is not
self-sustaining. Using the appropriate model for the T-I
or T-II state, as applicable, the line density at V, can be
estimated. A wide range of experiments in uniform chan-
nels is consistent with a critical condition of L ~ d 2—3,
independent of temperature, and regardless of whether
the transition to laminar flow proceeds &om a T-I or a
T-II turbulent state. Since L ~ represents the average
local radius of curvature of a vortex segment, thinking in
terms of the simple geometry of a vortex ring yields the
appealing picture that, at Q„a vortex of average size
would just "fit" within the channel in any orientation.

For a uniform fiow, one cannot truly distinguish which
is the more fundamental condition, that V or L reaches a
critical minimum value, since these two criteria are essen-
tially synonymous. Our nonuniform channel data ofFer
the possibility of distinguishing between these two con-
ditions. For our diverging fiow, V, h being constant does
not correspond to constant L ~ h, since the local uni-
formity approximation does not hold and the local line
density is found to be not proportional to V . By using
the modified line density formula we may predict "isoden-
sity" curves of constant L ~ h by finding, for a given heat
current Q, the location r at which L [Eq. (16)j reaches a
value corresponding to the chosen cutofF value of L ~ h.
This procedure is at best questionable, since it pres»mes
that the modified line density formula accurately char-
acterized the true local average line density at very low
heat currents just above the onset of turbulence. We
point out that estimating L at V from»+~form channel
data involves a comparable set of ass»mptions.

Figure 12 displays curves for both constant V h and
constant L ~2h. The value V, h = 0.072 cm /s is ob-
tained from Q, = 0.55 mW measured at the narrow end
of the channel. The isodensity curve of L ~ h = 4 was se-
lected as having the best overall agreement with the crit-

ical heat current data. Taking all the evidence together,
including the inferred Q, at the wide end of the channel,
our results clearly favor the interpretation that a mini-
mum L ~ h is the more fundamental criterion. Given the
substantial differences apparent in the turbulent states
involved, we consider our value of L ~ h = 4 to be in
excellent agreement with the uniform channel result of
L~/2h

It is worth pointing out that determining Q, in our
nonuniform channel geometry is somewhat more dificult
than in a uniform channel experiment for the following
obvious reason. Just above Q, in a uniform channel,
the entire channel is filled with a low level of turbulence,
and the measured signal AT is measurably larger than it
would be were only laminar fiow present. Right at Q, this
turbulence vanishes throughout the channel, and a dis-
crete and highly reproducible step can often be discerned
between the turbulent and laminar states. By contrast,
for any position r in our diverging channel, as Q, (r) is ap-
proached &om above the turbulent-laminar &ont is mov-

ing towards r; so very near Q, most of the fiow beyond r
is laminar, and only a diminishingly thin slice beyond r
is turbulent. As Q is decreased, the measured signal AT
smoothly approaches ATi„as the contribution AT' &om
this shrinking turbulent slice becomes vanishingly small.
The greater difficulty in deterinining Q, is refiected in
the size of our error bars in Fig. 12.

Last, we compare the temperature dependence of V, h
obtained from Q, at r~ with results of two experiments in
uniform high-aspect-ratio rectangular channels, the clos-
est uniform analogue to our channel. ' Our results ex-
hibit a monotonic temperature variation similar to these
uniform channel data, but our values of V, h were con-
sistently greater, by as much as a factor of 2. Taken to-
gether, the larger V, h and the agreement with L ~ h = 4
suggest that a larger minimum line density is needed to
sustain turbulence in a diverging flow than in a compa-
rable uniform flow.

IV. CONCLUSIONS

Our investigations have established that inhomoge-
neous turbulence in a weakly diverging rectangular chan-
nel differs markedly &om the homogeneous turbulent
state (T-II) observed in uniform channels. The Schwarz
model of homogeneous turbulence, so successful in de-
scribing the T-II state in uniform flows, when applied
in the local uniformity approximation to our nonuni-
form flow predicts the wrong functional dependence to
describe the observed dissipation in the inhomogeneous
analog of the T-II state. An even more complicated hy-
drodynamic model of Geurst, purporting to treat the case
of a nonuniform vortex line density existing in a uniform
flow, yields predictions that differ only slightly from those
of the Schwarz model, and likewise fails to characterize
our results.

We achieve a remarkably good parametric fit to our
data by severely altering the line density from its expres-
sion in the case of uniform flow. Most compelling and
most puzzling is the revelation that the modified line den-
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sity fitting our data consists of two parts, a local piece
(the homogeneous vortex line density rescaled) and a
nonlocal piece that does not have any spatial dependence,
being a polynomial function only of the drive parame-
ter Q. The nonlocal piece may therefore be thought of as
an average or background line density present throughout
the channel. One might argue that this separation of L
into two pieces is artificial, just as is any expansion of one
function into a sum of other functions. One might there-
fore caution against assigning too much meaning to the
division. This modified line density is, after all, only an
"effective" line density —it yields the correct behavior
for T(r) upon integration, but L has not been measured
directly. We reiterate the point that in the case of ho-
mogeneous turbulence in a uniform flow, there is no way
to distinguish whether the line density has a solely local
character or is comprised of two pieces, one depending
on the local velocity and the other constant throughout
the channel at any given heat current, since in a uniform
flow these two pieces would be indistinguishable.

Our results underscore the need to simulate the vor-
tex line distribution resulting from a nonuniform velocity
field. A comparison of the inhomogeneous superfluid tur-
bulent state predicted by direct numerical simulation of
our nonuniform How to our experimental results is needed
to determine how and why applying the homogeneous
model locally is inadequate to the task of describing our
results. Because the functional dependences of the mea-
sured dissipation differ so markedly from the predictions
of the homogeneous model used in the local uniformity
approximation, we suspect that some new contribution
to the underlying vortex dynamics must be at work in
the inhomogeneous T-II state.

The vortex stretching which necessarily takes place as
a vortex filament is transported from one region to an-
other in a nonuniform flow is one mechanism not incor-
porated in the homogeneous model. The form of the new

production term in the line density equation of state re-

sulting from such vortex stretching can be predicted by
simple arguments. Unfortunately, the resulting line den-

sity does not have the correct functional dependence to
agree with our data, but our simple argument does not
self-consistently couple the new stretching term to the
vortex production present even in a uniform flow, namely,
the growth of line length due to the self-induced motion
of a vortex filament. While a more careful treatment of
vortex stretching might shed some light on the charac-
ter of inhomogeneous turbulence, we do not believe that
vortex stretching contributes significantly to altering the
T-II state so dramatically from the homogeneous case.

Also unlikely to account for the difference is any simple
adjustment or extension of the parameters in the Schwarz
model needed to extend it to nonuniform flow. Although
the anisotropy of the tangle may be quite different from
that seen in a uniform flow, and the Schwarz parameters
might even become more complicated spatial functions,
no longer depending solely on the local temperature, it
is dificult to see how any extension the homogeneous
turbulence model to a nonuniform flow would alter the
dependence of the line density on the local velocity dras-
tically enough to agree with our observations.

Recent simulations by Aarts and de %'aele exhibit
some interesting new features. When they simulate the
steady-state line density in a uniform circular channel
while constraining the normal Quid cross-channel profile
to be parabolic, they find that the vortex line density is

largest close to the walls, where the normal fluid velocity
(and hence the relative velocity) is low. The spatial varia-
tion in the predicted line density exactly compensates for
the variation. in velocity so that the local mutual friction
force, which depends on the product of the local line den-

sity L and the local relative velocity v, remains essentially
constant everywhere except very near the channel walls,
where it decreases to zero. For uniform channel Hows, the
homogeneous model only asserts that AT' oc L V, where
V is the cross-channel average of v, and L is constant
on statistical average. The Aarts —de Waele simulations
seem to suggest that this basic relation is even more ro-

bust, holding locally even in situations where L is not
constant and does not depend on v . The situation they
impose is somewhat artificial, in that the normal fluid

velocity profile is not allowed to be influenced by the
vortex tangle. Nevertheless, their results bear some sim-

ilarity to our findings, a point which may require closer
examination in the future.

According to our modified line density formula, L is

much larger than would be predicted by the homoge-
neous model (Lq oc V2) at the wide end of the channel,
where V is lowest, and correspondingly smaller than Lh
at the narrow end of the channel, where V is highest.
This situation bears at least a superficial resemblance to
the simulation results of Aarts and de Waele, but the
similarity may be deceptive. Since the relative size of
the local homogeneous piece to the total modified L is

a strong function of both position and the heat current,
whether the local value of L is dominated by the local ho-

mogeneous piece or the nonlocal piece depends strongly
on both r and Q. Thus within some region in our chan-

nel, L oc V, while elsewhere this relation no longer holds.
This situation is quite different from that treated in the
Aarts —de Waele simulations, which still pertain to Hows

that are uniform in the downstream direction.
Last, our data suggest that the laminar to turbulent

transition is precipitated by the local velocity reaching a
value sufhcient to sustain a minimum line density. Un-

like a uniform flow, the velocity at which this critical line

density is achieved is not itself a constant, because of the
complicated dependence of the line density on the local
velocity and the underlying drive parameter Q. A sta-
tionary turbulent-laminar front is clearly produced, but
many outstanding questions remain about the character
of this front. A higher line density is needed to sustain
turbulence than is observed in uniform flows. We observe

the critical condition to be L ~ h 4, as compared to
L ~ 6 2.5 for most uniform flows. This observation
that the inhomogeneous turbulent state becomes unsta-

ble at a higher line density provides another hint towards
understanding the underlying vortex dynamics.

One particularly interesting question is whether or not
the transition to the T-II state proceeds directly from
the laminar state, or is precipitated by a laminar —T-I
transition. Since in low-aspect-ratio uniform channels,
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the laminar —T-I transition is hysteretic, behaving like a
first-order phase transition, but the T-I—T-II transition is
continuous, it has always been puzzling why the laminar—
T-II transition seen in high aspect ratio channels is hys-
teretic. The suggestion has been made that the T-I state
actually forms first, but for whatever reasons is not sta-
ble and gives way immediately to the homogeneous T-II
state. One would like to probe the characteristics of the
&ont region itself in a nonuniform flow, since a station-
ary &ont can be created and moved at will back and
forth within a narrow spatial region. Even if one could
achieve extremely good spatial resolution with, for exam-
ple, two very closely spaced probes, the turbulent tern-
perature signal in the vicinity of Q is on the same order
in size as the measurement fluctuations in the laminar
signal. Rmthermore, since it is not known how abrupt
the T-II/laminar transition ought to be, any information
gleaned from even the most careful experimental observa-
tions of the &ont itself would be subject to interpretation
as to whether it showed evidence for a small precursor T-I
region, or simply a spatially broad transition directly to
the T-II state. Much more promising is to experimentally
determine only the gross behavior of the transition, such
as the Q dependence of the front location, and deduce
what such easily measured features indicate about the
transition to turbulence, based on a theoretical analysis
of such transitions.

Future investigations using the same nonuniform rect-
angular channel will examine the case of converging
rather than diverging flow. Although we expect the fully

developed turbulent state to be largely unchanged, how

the transition to turbulence will be affected by reversing
the flow velocity is of great interest. Some significant
differences have already been observed in the nature and
stability of the front between the cases of diverging and
converging flow in a nonuniform circular channel. In-

terpreting the behavior of these laminar-turbulent &onts
is an ongoing focus of present and future investigations.
We believe the question of understanding the transition
to turbulence is closely linked to that of understanding
the observed states of inhomogeneous turbulence, and
how and why the inhomogeneous T-II state seen in our
nonuniform rectangular channel, and in similar nonuni-

form circular channels at sufBciently high heat currents,
is so different &om the state of homogeneous superfluid
turbulence.
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