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A Monte Carlo method for finite-temperature studies of the two-dimensional quantum Heisenberg
antiferromagnet with random ferromagnetic bonds is presented. The scheme is based on an approx-
imation which allows for an analytic summation over the realizations of the randomness, thereby
significantly alleviating the "sign problem" for this frustrated spin system. The approximation is
shown to be very accurate for ferromagnetic bond concentrations of up to 10%. The effects of a low
concentration of ferromagnetic bonds on the antiferromagnetism are discussed.

Monte Carlo studies of &ustrated quantum spin sys-
tems are diKcult since positive definite weight functions
cannot be constructed in general (the so-called "sign
problem" ).~ 2 For random models, on the other hand,
averaging over a large number of realizations of the ran-
domness is necessary, which considerably increases the
computational effort over what is required for nonran-
dom systems. Both the above difhculties are present for
the antiferromagnetic Heisenberg model with random fer-
romagnetic bonds. The two-dimensional (2D) version of
this model is of current interest as a possible model of the
copper-oxygen sheets of lightly doped, but still insulating
high-T superconductor materials. The idea, stressed by
Aharony et al. , is that in the doped insulating phase,
the holes introduced into the Cu-0 sheets are localized
at individual oxygen sites. The coupling between the
copper and oxygen spins results in an effective ferromag
netic coupling between the copper spins adjacent to an
oxygen spin. Due to the computational problems men-
tioned above, this picture has not yet been tested by di-
rect numerical calculations of experimentally measurable
quantities of the proposed model Hamiltonian.

Previous numerical work on random quantum spin sys-
tems has been largely limited to 1D systems and non-
f'rustrated 2D models. s Quantum Monte Carlo simula-
tions of random systems with &ustration have been car-
ried out in cases where the sign problem is not present,
such as the Ising spin glass in a transverse field. For mod-
els with random long-range interactions, recent progress
has been made using field-theoretic methods. 7

In this paper a Monte Carlo method for finite-
temperature studies of the 2D Heisenberg model with
mixed antiferromagnetic and ferromagnetic nearest-
neighbor couplings of equal strengths is presented. The
scheme employs an approximation which corresponds to
an annealing of the quenched disorder. This approxi-
mation is argued to be very accurate in the regime of
interest for the high-T cuprates; a concentration of fer-
romagnetic bonds of less than 10%. The summation over
all realizations of the annealed randomness can be car-
ried out analytically for each Monte Carlo configuration,
thereby significantly alleviating the sign problem. Fur-
thermore, in a single simulation, calculations can be car-

ried out for several concentrations of ferromagnetic bonds
with essentially no additional computational cost.

Below, the method is described and tested for small
systems. Results are presented for the eHect of an in-
creasing concentration of ferromagnetic bonds on the
staggered structure factor and the uniform susceptibil-
ity.

The model is defined by the Hamiltonian

(A) = —Tr(Ae ~~), Z = Tr(e ~~).z (2)

The starting point for the generalization of Handscomb's
method is to Taylor expand e ~~ and to write the traces
in (2) as sums over diagonal matrix elements in a suitably
chosen basis (~n)), giving for the partition function

For the Heisenberg model, the basis (~Sf, . . . , S~)), S; E
(g, $), is chosen, and the Hamiltonian (1) is written as

where (i, J') is a pair of nearest-neighbor sites on a square
lattice, and S; is a spin-2 operator at site i. The coupling
constants J;s are all of equal strength J, but their signs
are random, with a probability p for —J (ferromagnetic)
and 1 —p for +J (antiferromagnetic). In its current for-
mulation the method to be presented does not allow for
different ferromagnetic and antiferromagnetic coupling
strengths. The random kJ model should, however, ex-
hibit the general features associated with the presence of
a low concentration of &ustrating bonds.

The computational scheme will be discussed in the con-
text of a generalization of Handscomb's quantum Monte
Carlo method, s but the same idea should be applicable
to "world-line" methods as well. Consider the expec-
tation value of an operator A at inverse temperature
P = 1/k~T:
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H = ——) cry Hg b
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where

(4)
and the average over the realizations of the randomness
1S

1 ~ (AcSc(R))
X„„(Sc(R))

H& ~ —— 2(4 —
Sal(bl S82(b) )

1(b) 2(b) + 1(b) 2(b)

Here sl(b) and s2(b) are the sites connected by bond b,

Nb ——21 is the number of bonds of the lattice, and ob is
—1 if 6 is a ferromagnetic bond and +1 otherwise. The
partition function can now be written as

z ~"-~-~-( ~) (pz"/'2't ("
n=0 S„ i=1

where S„denotes a sequence of n index pairs,

b&) 2 (b„j
with a; 6 {1,2), b; E {1,. . . , Xs) referring to an opera-
tor H s. The matrix element in (6) is equal to 0 or 1,
and the sign of a given term is determined only by the
number nJ; of operators H b with b being one of the fer-
romagnetic bonds. This sign rule is valid for a bipartite
lattice, in which case an operator string contributing to
Z must flip each spin in ~n) an even number of times,
and therefore the total number of operators H2 b must
be even. Note that the only dependence on the realiza-
tion of the randomness in (6) is in the number nF This.
is crucial in what follows.

The actual Monte Carlo scheme has been described
elsewhere, and will not be discussed here. It suffices
to note that, as has been shown above, for a given re-
alization R of the 6J bonds on the lattice, an operator
expectation value can be written as

((S )) = ~ ) (Sc(R)),
R

((AcSc)) = ).(AcSc(R))
NR R

The realization-dependent averages can be written in
terms of their deviations &om the respective realization-
averaged quantities as

(Ac Sc(R)) = ((Ac Sc)) + Ags (R),
(S (R)) =((S ))+&.(R) (12)

where N~ is the number of realizations. If (Sc(R)) && 1,
accurate determinations of (Sc(R)) and (AcSc(R)) be-
come very time consuming. Since (Sc(R)) in most cases
approaches zero exponentially as the temperature is low-

ered, the sign problem is a severe limitation of the quan-
tum Monte Carlo technique for models where one cannot
construct (e.g. , using symmetries) a weight function with
a sign identically equal to one.

Since the weight Wt.- does not depend on the realiza-
tion of the randomness, an estimate of ((A)) can be ob-
tained by carrying out the measurements of AcSc(R)
and Sc(R) on a set of pregenerated realizations in a sin-

gle Monte Carlo simulation. Hence, the randomness av-

eraging does not pose a problem. However, this by itself
does not alleviate the sign problem, as the evaluation of
the individual terms of (10) still becomes unstable when

Sc(R) « 1. The approximation introduced next will be
shown to significantly reduce this sign problem.

Consider the expectation values (AcSc(R)) and

(Sc(R)) averaged over the randomness:

P Wc Ac Sc(R)
'"'"= z (8) A realization-averaged expectation value can then be

written as

where W~ is a positive definite weight for the config-
uration C (( here belongs to the space {o., S„,n
0, 1, 2, . . .) of states and index sequences), Sc(R)
(
—1)"z'(+l is a sign which depends on the realization R as

P

well as C, and A~ is a function measuring the operator A

(the construction of Ac for various types of operators is
discussed in detail in Ref. 8). Here only operators with-
out explicit dependence on the particular realization of
the randomness will be considered, e.g. , bulk susceptibil-
ities and magnetic structure factors.

In a Monte Carlo simulation the configurations C are
generated using W~ as a relative probability distribution,
and the quantities Sc(R) and AcSc(R) are measured
with regular intervals. The expectation value of A is
then given by

(Ac Sc(R))
(S (R))

where O(6 ) denotes terms of order b,~s(R)b, s(R) and

(As(R)) . [Note that (13) would be exact if As(R)
would be zero for all R, even with A~s(R) g 0.] If
the concentration of ferromagnetic bonds is low, the ap-
proximation (13) can be expected to be a good one, since

the main contribution to ((A)) is from realizations where
the ferromagnetic bonds are far apart Rom each other.
The signs (Sc(R)) should then typically be insensitive to
variations in B. Note, however, that the approximation
does contain collective impurity effects, as the averages
in (13) depend in a nontrivial manner on the number of
ferromagnetic bonds present.

Under the above approximation, the averages over the
Monte Carlo configurations and the realizations of the
randomness have been put on an equal footing. This
corresponds to going &om quenched to annealed disor-
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der. The computational advantage is that the averaging
over the randomness can be performed analytically for
each Monte Carlo configuration, which in effect means
that each Monte Carlo measurement step corresponds to
measuring on a very large number NR of configurations,
which for a fixed number Ny of ferromagnetic bonds is
given by

(i4)

One might hope that this averaging enables a stable eval-
uation of the expectation values ((Sc)) and ((AcSc))
far beyond the point where estimates of (AcSc(R)) and
(Sc(R)) become too noisy.

Denoting by I"(R) the set of ferromagnetic bonds in
the realization R, the sign of a Monte Carlo configuration
can be written as

Sc(R) = (-1)"'= ac(b)
SqS(R) bye(R)

Ny

NR
& o & f ) kNy —f) (16)

The (approximate) Monte Carlo estimate (13) for the
disorder averaged (A) can now be written as

where ng is the number of operators acting on bond b,
i.e., the number of index pairs (&') with b; = b in S„.
Hence the sign is a product of "local signs" ac(b), with
ac(b) being positive or negative depending on if ns is
even or odd. Note that the local signs depend only on the
Monte Carlo configuration C, and the full sign Sc(R) is
calculated using only the local signs of the ferromagnetic
bonds of R. Denoting the total number of local minus
signs by n and the total number of local plus signs by
n+ ——Ng —n, the randomness averaged sign Z~ ——

g& Sc(R) of a Monte Carlo configuration is given
by

where all effects of the randomness is contained in Z~,
which can be easily calculated for each Monte Carlo
configuration.

Next it will be demonstrated that this estimate of ((A))
is indeed considerably less noisy than (13), and that the
approximation involved is very good, at least when the
concentration of ferromagnetic bonds is low. Results will
be shown for the staggered structure factor

(i8)

and the uniform susceptibility

P
X(0, 0) = —) d~((S'(~) Sq(0)))

j,k 0

In order to test the accuracy of the "annealed" approxi-
mation, simulations of L x L systems with L = 4 and 8
were carried out, and S(z, z ) and y(0, 0) were calculated
using both (10) and (17) [with (10), the averaging over
R was done for using several hundred randomly gener-
ated realizationsj. Figure 1 shows results for L = 4 at
temperatures T/J = 0.4, 0.6, and 0.8. The maximum
ferromagnetic bond concentration for which the averages
can be evaluated decreases rapidly as the temperature is
lowered. As expected, the approximate averages are eas-
ier to obtain than the exact ones. Perhaps surprisingly,
no deviations of the approximate averages &om the exact
ones can be seen within statistical errors, even for rather
high p. The antiferromagnetism is strongly suppressed
by the disorder; the staggered structure factor decreases
with p and the uniform susceptibility is enhanced. The
effect becomes stronger as the temperature is decreased.
Figure 2 shows similar results for 8 x 8 systems. Here the
suppression of the antiferromagnetism is even stronger.
Again, no differences between the approximate and exact
results can be seen up to the maximum p for which they
can both be reliably calculated. One might expect the
errors of the annealed approximation to become larger at
lower temperatures, where comparisons are difBcult due
to the sign problem.

Figure 3 shows the average sign versus the number of
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FIG. 1. The staggered structure factor
and the uniform susceptibility vs the ferro-
magnetic bond concentration for L = 4 at
three difFerent temperatures. Results ob-
tained using (10) are shown as solid squares
(T/J = 0.8), open circles (T/J = 0.6), and
solid circles (T/J = 0.4). The solid curves
are drawn through points obtained using the
"annealed" approximation (17).
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FIG. 2. Same as Fig. 1 for systems of size
Sxs.
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ferromagnetic bonds for L = 4 and L = 8 at T/J =
0.4, 0.6, and 0.8. There is very little size dependence,
confirming that the average sign at a given temperature
depends essentially only on the number of ferromagnetic
bonds present. Note that (Zc) can be accurately eval-
uated for the larger system even when it becomes ex-
tremely small. io Using the exact expression (10) is not
feasible if (S~(R)) becomes smaller than = 10 . This
limits the maximum number of ferromagnetic bonds that
can be studied. An accurate calculation of (Zc), on the
other hand, is possible up to some maximum p, which is
essentially independent of the system size. The evalua-
tion of the expression (17) still becomes more difFicult as
the system size increases for operators such as the stag-
gered structure factor, for which the autocorrelation time
grows with the system size and fluctuations in (Ac Zz)
become problematic.

The model (1) has antiferromagnetic long-range order
at T = 0 for p ~ 0 and ferromagnetic order for p ~ l.
At intermediate p there is presumably a spin-glass phase.

An important open question is the critical concentration
of ferromagnetic bonds needed to destroy the antiferro-
magnetism. In principle finite-size scaling of the stag-
gered structure factor can answer this question, which
however is beyond the scope of this paper. Here some
initial results for the effect of an increasing fraction of
ferromagnetic bonds on systems of size 10 x 10 are pre-
sented.

In Fig. 4 the staggered structure factor is graphed ver-
sus the temperature for various concentrations of ferro-
magnetic bonds. For p = 2.5% and 5%%up, S(7r, vr) is sig-
nificantly suppressed, but still has a temperature depen-
dence similar to the clean system. For p = 10'Fp the struc-
ture factor becomes almost temperature independent at
T = 1/2. This might be an indication that no long-range
order exists for this concentration.

Figure 5 shows the enhancement of the uniform sus-
ceptibility as the disorder is increased. For comparison,
p = 0 results for L = 64 are also shown. The finite-size
eKects for the uniform susceptibility are apparently quite
small. The enhancement due to the presence of ferro-
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FIG. 3. The average sign vs the number of ferromagnetic
bonds for I = 4 (open symbols) and I = 8 (solid symbols).
Circles are for T/ J = 0.8, squares for T/ J = 0.6, and triangles
for T/ J = 0.4.

FIG. 4. The staggered structure factor for I = 10 vs the
temperature for p = 0%, 2.5%, 5%, 8%, and 10% (S decreas-
ing with p).
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FIG. 5. The uniform susceptibility for L = 10 vs the tem-
perature for p = 0%, 2.5%, 5%, 8%, and 10% (y increasing
with p). The dashed curve goes through p = 0 results calcu-
lated for a system of size 64 x 64.

It is unclear whether low enough temperatures can be
reached for determining the critical concentration using
the scheme presented here. It should be possible, how-

ever, to carry out detailed studies for larger systems at
temperatures above T J/4 for concentrations of a few
percent. This should enable an assessment of the rele-
vance of the model to the high-T, cuprates. The high-
temperature regime is also important in view of the re-
cent work on 2D quantum antiferromagnetism based on
the nonlinear 0 model.

In summary, a scheme which alleviates the sign prob-
lem in quantum Monte Carlo simulations of the 2D quan-
tum Heisenberg antiferromagnet with random ferromag-
netic bonds has been presented. Results for the staggered
structure factor and the uniform susceptibility show that
the presence of a few percent of ferromagnetic bonds
substantially suppresses the antiferromagnetism. The
method discussed here can easily be extended for 3D sys-
tems.

magnetic bonds is significant already for p = 2.5%%uo. As

p is increased one would expect y(0, 0) to eventually di-
verge as T -+ 0. There are indications of such behavior
for p ) 5%, but unfortunately the sign problem limits
the accuracy in this regime.
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