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We provide the electrostatic solution in mean field theory to the electrical response of heteroge-
neous systems in which the inclusions have arbitrary structure and permanent multipole moments
of all orders. The system is placed between two parallel electrode plates, and all the resulting multi-
pole moments of the inclusions and their images are taken into account. By performing a statistical
average over the orientations of the inclusions, we obtain the effective dielectric function, depending
on temperature and applied potential at the electrode plates.

I. INTRODUCTION

The study of the electrical response of heterogeneous
systems has played a substantial role in the development
of modern physics, and it encompasses to this day a vast
area with ramifications and applications in many fields.
Prom the theoretical point of view, the complexity of
the problem is inherent with its many-body structure.
This has basically two aspects: one is the arrangement or
the statistical distribution of the constituents, while the
other is their detailed electrical interactions. Generally,
the two are intertwined and influence each other.

The statistical aspect can be rigorously formulated to
various orders of approximation, in terms of successive
n-particle distribution functions. ' We consider the so-
called mean field theory (MFT), which involves only two-
particle distributions. Its precise definition consists in re-
placing all the multipole moments of the inclusions sur-
rounding a given one by their thermal averages, see Eq.
(9) in the following. We have recently obtained solutions
to all multipole orders of the electrical problem within
MFT for heterogeneous systems without permanent mul-

tipole moments. 3 This has shown the crucial role played
by nonspherical two-particle distributions and its precise
connection to various orders of multipolar interactions.
Previously, spherical distributions have often been im-
plicitly assumed, although anisotropic distributions have
been considered in applied fields that inherently deal
with anisotropic systems, such as electrorheology6 or
ferrofluids.

We have now succeeded in extending our first-
principles MFT solution to the case where the inclu-
sions have arbitrary structure and carry permanent mul-
tipole moments of arbitrary order, and in solving self-
consistently the problem of the electrostatic interactions
with that of the statistical distribution of the inclusion
orientations. In this situation, the total multipole mo-
ments of the inclusions depend on both their perma-
nent multipole moments and the polarization coeKcients
which describe their response to the local field. Since
the inclusions change their orientations (and distribu-

tion) under the infiuence of the applied field, the response
of the system is inherently nonlinear, and the permanent
multipole moments and the polarization coefficients con-
tribute to both the linear and the nonlinear part of the ef-
fective dielectric function. With a nonlinear response, the
choice of configuration that we have consistently made,
namely that of a slab-shaped sample placed between two
parallel electrode plates, has a decisive advantage, be-
cause the knowledge of the absolute value of the electric
field inside the system is required. Previous theories have
considered only the linear response and included only
dipole moments (permanent and induced). We provide
the effective dielectric function up to the first nonlinear
order (higher orders can be obtained with the same pro-
cedure) and find again that the pair distribution of the
inclusions determines the contribution &om each order
of the (permanent and induced) multipole moments. We
present these results in this paper.

The results of this paper are quite general. They can
be applied to systems containing inclusions of arbitrary
structure and arbitrary order of permanent multipole mo-
ments. These may include composites where the inclu-
sions are small particles yet containing many atoms or
molecules, liquid crystals where the inclusions are large
polar molecules or complexes, down to the systems where
the inclusions are simple molecules. However, our results
apply with precise restrictions. First, only electric classi-
cal interactions are considered (plus whatever core repul-
sions are inherently included in the distributions). Sec-
ond, the inclusion volume &action must be low enough
to satisfy a nonoverlapping condition, namely that each
inclusion is surrounded by a minimal sphere excluding
any part of other inclusions (this equally applies to theo-
ries and computer simulations based on multipole expan-
sion). Third, the inclusion volume fraction must be low
enough to justify MFT. The last point is invariably hard
to assess a priori for any particular system. Anyway, the
knowledge of the rigorous MFT solution is always valu-
able in determining to what degree the experimental data
reflect fluctuation efFects, and in providing a reference or
starting point for theoretical estimates of such efFects.

The determination of the pair distribution may require
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a combination of experimental analysis and theoretical
modeling. ' ' The permanent multipole moments and
the polarization coefficients of the inclusions must also
be measured or calculated. With these input values, the
application of the results derived in this paper is straight-
forward. In a following paper, we apply our results to
L = 0 and l pair distributions. In these cases, the mul-
tipole moments higher than dipoles have no contribution
(within MFT). That allows us to compare our results
with the macroscopic models of Debye and Onsager.

The rest of the paper is structured as follows. We Grst
establish in Sec. II the equations for the total multi-
pole moments of the inclusions, the interaction energy
between an inclusion and the local field acting on it,
and the effective dielectric function, in MFT. We then
perform in Sec. III a thermal average over the orienta-
tions of the inclusions, including the interactions among
all multipole moments. We thus obtain the effective di-
electric function to the Grst nonlinear order, in terms of
the polarization coefficients and the permanent multipole
moments of the inclusions, the parameters describing the
pair distribution, the temperature, and the applied po-
tential at the electrode plates. We provide in Sec. IV
the results for some particular systems, namely spheri-
cal inclusions, nonpolarizable inclusions, and polarizable

I

inclusions without permanent multipole moments. All
orders of multipole moments for all inclusions and their
images are retained throughout. In Sec. V we draw our
conclusions.

II. ELECTROSTATIC SOLUTION IN MEAN
FIELD THEORY

Consider a heterogeneous system in which the inclu-
sions have arbitrary structures and permanent multipole
moments of arbitrary orders, de6ned as those of an in-
clusion when isolated. The system is placed between two
parallel electrode plates at a distance d and subject to
an alternating potential Vqe ~ . We assume that the
frequency is low enough that the system can be solved

electrostatically. Let us denote by r„, q„&, and A"&

the position, the permanent multipole moments, and the
polarization coefficients of the nth inclusion. We assume
that the inclusions do not overlap, meaning that the min-
imum sphere circumscribing any given inclusion excludes
any part of other inclusions. Then, the local potential
acting on the nth inclusion can be written as [cf. Eq. (6)
of Ref. 5]

4'
Ui, l(r) = (Vp/2 —Ep r„) — —Ep~r —r„~Yi p(r —r„)

+4~) ) &l' '(r~, —r~)q~, i,~, ~r —r.~'Yl, ~(r —r~),
lm n1l1m1

where Ep = (Vp jd)e, is the applied field and the coefBcients Cl' '(r„, —r„) are defined in Eq. (14) of Ref. 3. The
total multipole moments of the nth inclusion q„~ are simply the induced multipole moments, which are given by Eq.
(7) of Ref. 5, plus its permanent multipole moments:

gntm = o —3 ) ).&.l (-"l„',(r-, —r.)q., i,-, +q„,
n, 1l1m1 L2m2

(2)

The permanent multipole moments q„& and the po-(J)

larization coefficients A„'&
' depend on the orientation of

the inclusion and have the rotational properties [cf. Eqs.
(A13) and (A15) of Ref. 5]:

inclusion, with permanent multipole moments q&" and

polarization coefficients A„'& '. In particular

Dio(~P&)=
(l )

( ) ) - Z)l~i*q(i) (3)
Dl' (~ 0 ~) = Dio (~ »&) =

and

plimi
( )

e ) (p —1)imp plqmseplqmq

m2m3

Hence,

» Eqs. (3) and (4), r = (o., P, p) denotes the Euler angles
of the rotation relative to the original orientation of the and

The electrostatical interaction energy between the nth inclusion and the local field is
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mn= pn r U~«~~ r d r

qq310@O + 4)r ). ) qqo[qlo+~ qqq (rqo rqo)qqq l qlo

lm njl1my

where p„(r) is the total charge density on the nth inclu-
sion. On the right-hand side of Eq. (8), the first term
represents the electrical interaction between the nth in-
clusion and the applied field, while the rest represents
the interactions between the nth inclusion and the other
inclusions and all the images.

The results so far are exact, and can be applied to
systems where the positions and orientations of the in-
clusions are known; for example, they can be used in
molecular dynamics simulations. In the following, we

concentrate on disordered systems treated statistically,
and focus on orientation effects. Namely, we assume that
the positions or the distribution of the inclusions do not
vary with the applied field. For simplicity, we consider
a single species system, in which all the inclusions are
identical and distinguished only by their orientations.

The mean field approximation consists in replacing

q„,~, , on the right-hand side of Eq. (2) by the aver-

aged multipole moments (q~ (Eo)). Averaging over the
inclusions with same orientation, we obtain

q~ (r, Eo) = / 3, (r)Eo ——3 ) ) 3' (r) ) G, '(r„, —r„) (qo, (Eo)) +q, (r).
lyme lyme n1

(9)

The summation over nq in the bracket is now independent of rn. Similarly, we obtain the interaction energy for the
inclusions with orientation 7

ro(r, Eo) = —/ —qro(r, Eo)Eo+4q) ) q~' (r, Eo)C&" '(r„—r„)(qq, , (Eo)).
lm ngl1mg

(10)

Finally, ensemble averaging over 7 in Eq. (9), we obtain

(8 (Eo)) = /4 ( l (Eo))Eo —3 ) ).(3„& (Eo)) ).+I„,(ro, —r ) (qr, , (Eo)) + (qr (Eo)).
lyme lyme ng

The longitudinal effective dielectric function is

4~ o)(qio(@o)) 4~ 1 &'(qio(Eo))
3 p p 3 3e 0 0

(12)

(«-(—Eo)) = (—1)'+ («-(&o))
(&I '(—Eo)) = (-1)" ""'(&" '(Eo)). (13)

where ~p denotes the corresponding quantity evaluated
at Eo ——0, and N is the average number density of the
inclusions. We assume that the system has a macroscopic
reBection symmetry on z ', —z. In Appendix A we
show that this leads to

where K&' are the parameters describing the position dis-

tribution of the inclusions, as defined in Eq. (21) of Ref.
5. We then obtain

«0(& Eo) —
I

—IN) &io (~)(Kq)~.
&4~& - i, o

l1

) C," '(r„, —r„) = ——(b,'bi'+K, ')h
n1

(14)

As a consequence, all the even order derivatives in Eq.
(12) vanish.

Equations (9)—(11) are still expressed in terms of the
positions of the inclusions, while disordered systems are
described by the distribution of the inclusions. Given a
positional pair distribution with azimuthal symmetry, we
have previously obtained [cf. Eq. (A17) of Ref. 3]

and

4m
~(~, &o) = — —qlo(~ @0)EO

)'4~) '
—

~

—
~

N) q~o(7, &o)(Kq)~E3)
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(q (& )) —
I

—
I
~) (&'l'(@ ))(Kq),

li

4
(&"(&o))&o+ (q o'(&o)) (17)

In Eqs. (15)—(17), we have used the short notation

(«)t = ).(~t'~t'+ Kt')(qt, p(&o)).

III. ENSEMBLE AVERAGE OVER
ORIENTATIONS

We assume that the electrical interactions and the
thermal fiuctuations are the only effects acting on the
system. The electrical interactions tend to align the in-
clusions as to minimize the total energy, while the ther-
mal motion tends to make them randomly oriented. We
assume in equilibrium the Boltzmann distribution for ori-
entations

Due to the macroscopic azimuthal symmetry,
(qt (Ep)) = 0 for m g 0, and the applied field (in the z
direction) excites only the longitudinal response (12).

+(r g )
~(7-,—Ep)/(kT)

Substituting Eq. (15) into Eq. (16), we obtain

2 3/2

~(~ @p) = — —qio (T)&p —
I

—
I &) «o (T)(Kq)t —&io(T)&o —I—4x (p)

/'4x ) . (p) t p 3 (4lr )
t

3

& ) A'tp (T)(Kq)t(Kq)t, .
lli

&) [&i'o(T) + &t'p (T)](Kq)t&o

(20)

Equation (17) is now closed by

/ lip( )
lO(T Ep)/(kT)d

l0 7 8

(A,
" (E )) =

where the integrals have been carried out in. Appendix B.
These results are used in the subsequent derivation.

Taking Ep ——0 in Eq. (17), we have

and

(P)
( )

m(~, Ep)/(kT)—
d

f —m(~, Ep)/(kT d'T

where dT = sinPdPdndp. Equations (17) and (20)—(22)
determine (qtp(Ep)) implicitly as functions of Ep. How-
ever, (qtp(Ep)) cannot be solved in closed form. On the
other hand, it is possible to obtain the derivatives of
(qlp(Ep)) at Ep = 0 hence the effective dielectric func-
tion (12), as follows.

Using Eqs. (6) and (7), we obtain

= (qIp'(&p))lo (24)

It is easy to verify that

(qto(&o))lo = 0 «r all t (25)

(qtp(&p)) Io
—

I

—
I ).(&Io'(&p)) lp(«lo) t.

(, 3)

A,
" (r)dr = 8x I' b,",

q ()(tp)dT~ = 0,

Atp (T)At p(T)d~ = 8vr r)tt

At p (~)q, p (~)dr = 4m

qto (T)«,o( )d = ~t t~t
(~) (~)

lo ( )«o(r)qt, o(T)« = 2'trAt, t, ~

qlo ( )q , (t~o)q . (to) r= 27r —, t ll l.(J ) (J )

f qto ( )qt, o(r)qt, p(r)qt, o(+)d+ = &ltxlplp&
(I ) (J ) (J ) (J ) (23)

is a solution to Eq. (24): the left-hand side of Eq. (24)
vanishes, and [from Eq. (20)]

~(& @p)lp =o (26)

hence [&om Eq. (23)]

1
(qIo'(&p)) lp = 8, qt'o'(T)« = o. (27)

Equation (25) represents the situation when there is no
spontaneous polarization. We assume that to be the case
in this paper.

Using Eq. (26), we obtain the following results:
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2

(,Eo)/(kT) 1 (i«l( ) +
I

N ) ( )(r)
I

~ (28a)

2

N) q'"'(r)
I
z

I
+ 2qio(r) +

I

ti q~(n~)(r)q~(~~)(r)

3/2

83 —m(~, Ep)/(kT) 1 4x 1 (4~1—6&"o( )q'"o'( ) +
I

—
I

q'o'( )q'"o ( )q "o ( )
BE03

—
(kT), 3 io io kT ( 3)

I'"'I'N)-I'x " 'I
(kT)' E3&, E BEo o

x 2A', o(r)qio (r) + 2A,o (r)qio (r) + 2A, o(r)q, o (r) +
I

—
I q, o (r)qio (r)qio (r)

N2)- i~/
(kT)' g3& „q BE, y, q BE,

x 2A, o(r)q, o(r) +2k, (o)rq,
"

(o)r+2AIo (r)q, o (r) +
I

—
I q, o (r)q, o(r)q, o (r)

+k I

—
I N). ~i (o r)+~t o( r) +k I

—
I qto (r)qio (r)

(4~) /, 1 /4+It („l („l ( B2q

kT i3) kT (3) BEo o) &

3

+kT I

—
I

N') ~I'o'(r) + ~I', o(r) +
kT I 3 I ho'(r)%, O(r)

BEo o)~ E BEo o)~,

~'—'I N') IZ ' 'I i~a ' 'I IZE3) $/$ E BEo oil E B o oJ/, E BEo oi/,

(28c)

and so on. From Eq. (28a), we immediately obtain

—Q7(T Ep)/(kT) d O
0

(29)

(J) E—(~':(E.))I. + " (30)
0

Equations (28) and (29) will be needed in the subsequent
derivation.

Taking the first-order derivative of Eq. (17), we have

—
i

—iN) (A,
" (E))i i

K

(31)

B(«o"'(Eo))
OE0

0

(P) ( ) —m(7-, Ep)/(kT)
8 2 ~l0 K ) gE

where (KB q/BE& Io)~ are defined similarly to Eq. (18).
Using Eqs. (21), (23), and (26) we obtain

(«,'."(z.))~. =,', f «,
' (.)~. = r,«,

' .

Using Eqs. (22), (23), (28a), and (29), we obtain
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Substituting Eqs. (31) and (32) into Eq. (30), we obtain H)(1) = b, g(l)b,'. (36)

) - i, ~(«,.(&.)) 3
( )aE. l 7

l1

(33) Equation (33) has solution

where the system configuration matrix is defined as

G," = b,
" —

I

—
I
N(b, b,"+ KI')A)(1),

4+i

with

(34)

O(qio(Zo))
OEp

—) (G '),"H,

3—(G ')i'&~(1).
4x

and

6)(1) = I')+
3kT

(35)
Taking the second-order derivative in Eq. (17), we

obtain

ct'(qio(&o)) f&m ''t ),,p ( & q l (4vr l ).8(&Io (@o)) ( &q

Using Eqs. (21), (23), (28a) and (29), we obtain

3 0(A,'~ (Ep) )
4~ QE0

~'(q'."'(@.))
BE2

o

8(A', o (Ep))
BE0

pl y 0 7-3
—tu (7,Ep ) / (kT)

87r ' ')M
(z~&'",, ( Oq

2kT ll 2kT I 3 ) ng

2

(39)

Froxn Eqs. (22), (23), (28b) and (29), we obtain

a'(q'o'(Zo))
OE02

(I ) ( ) —Qp(T Ep)/(IcT)
8~2 lp k J gE20 0

t'4~) f 0'q l 3
3zr'Y' ' az' ' 4 sT("+ssT)

&4~& '
+kT Ii 3)

Substituting Eqs. (39) and (40) into Eq. (38), we obtain

) - (, ~'(«,'o(&o)) 3
H (2)OE2 4'

l1 0

(40)

(41)

3/2~4~~
H~(2) =

kT hi + 4i +
3kT

+ kT I 3 I
N ). 4, + (~l + 4'~ + (i, i + 2 3k'TkT q3y kT ( BEo p)

3

l1l2

Hence, we obtain

g2 (&)
(qio ( o)) )-(G-i)i, H (2)BE2 4 l 11 2

0 l1

(42)

(43)
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Taking the third-order derivative in Eq. (17), we obtain

ct (qlp(Ep)) (47r) ) ~ p
/' 8 q ) /'4vr) ).0 (AI (Ep)) /' Oq

/47r) ).B(AIp (Ep)) ( 82q 5 3 8 (A(p (Ep))

Using Eqs. (21), (23), (28b), and (29) we obtain

/i ~ 1 (i)0 i &i,o& &
—~(~,Z.~y(I.r~ —m(~, Ep)/(kT)

(8n2)2 'P ' ' BE2

3/2

(44)

- 2

p,';, l
kT all + SIT)

- 2

3—
i

X2) 2r ""i iZkT q 3 ) ,
- ' 3kT& g BEp py,

2

(4

From Eqs. (22), (23), (28c), and (29), we obtain

~',— (, .)/( )

0
3 8(P)

( )
ur(~, Ep)/(k—T) g

—m(v, Zp)/(kT)8
(8~2)2 io gEp t9E

p~ /4m ) t 8 q l 3 pl + pl

~

(kT)2 &
'

3kT& i3) ( gEp p),
' (kT)' ' 3kT i 3y g Mp pp,

(kT)
5/2

- 2

~)(kT)2 ~ 3 ~
- ' 3kT& ( &Eo pj, ,

2 3 /ill ) 2 ~4~~
P,rl + „ I +,kT, 2 I 3 I ). Plil + Primal + Au. + 3kT7r o o)i,

2 &4vr ) 2 - ~, l &, Ki&, 4l & 6 Bq
5/2

+ —, —
i

N ). Pl'n, +~i,n. +Pi, il+

(kT)' ( 3 ) "'" 9kT & c)Ep o) ) E c)Ep o) i, &

02

Bq

OEp oj t

&q'l
BEp p),

(46)
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Substituting Eqs. (45) and (46) into Eq. (44), we obtain

where

)- ), ~'(~I,"o(&0)) 3
H( )OE 4'

I1 o

( 3/2

kT 1+ 3kT
' 1+ 3kT 3

3/2

~&0 0J, '

- 2

9/2

kT 3kT 3

l 1 1

0 0
1 1

x) iz
o@0 0) g,

alq ~l

1 1 3/21 q~ Pq(q P)q~ K)gag 1 (4' )
kT " kT kT 9(kT)2 kT 3

~ 9/2 ~lg

1 2 3

0)f, k 0 0) l. 4 o 0) l.
3 (4~i"

2kT q3)
2

~). (ii + «', i + «'i, + «l + 2 k'

1 ((4 &) ~ )-((~ ~~
kT & 3) & oE0 0)i & '9@0 0)l

~l nl Ql
1lg l y l g l y 1 ~11l p +l & l l p l & l 1 ll p 1 l l & l p l l & l Px 6'&,'+6rhi'+6rhi, +2

kT
+2

kT
+2

k
+2

kT
+

kT +23(kT)2

+2kT I 3 1

& ) . «,'i+«,' +t«z. +(«', +2»T' (46)

Hence, we obtain

~'(«0(&0))
OE03 ).(& ')I'H~, (3). (49)

In principle, one can continue with this procedure to obtain even higher-order derivatives. They generally have the
form

(5o)

where H~(n) contains lower order derivatives. It is clear that the central quantities for the whole problem are the

H~(n). With given AI' ', qI, and K&', one calculates the derivatives of the averaged multipole moments recursively
&om Eq. (50).

Substituting Eqs. (37) and (49) into Eq. (12), we obtain the effective dielectric function
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e, = 1+4vrN(G )~by(1) + 4vrN )— (G )~'IIr, (3)Eo + 0'(Eo),
lg

which represents the central result of this paper.

IV. RESULTS FOR SOME PARTICULAR SYSTEMS

A. Nonpolarisable inclusions

If all the inclusions are nonpolarizable, A„'l ' ——0. This results in

lg ls lg lg
~~ = %t.

' = ~it. = At. 4 = 0

and

&~(1) =

Then, &oxn Eqs. (36), (42), and (48)

BqN) v«,

HAIK

BEo o) &,

t&4

(4'E i 3/2

'(') -3(kT) '3(kT) ' 3 '

%(3) =— NIK '
I

S' — "'
I

—
I

NIK
3(kT) ' 3(kT) ( 3 ) ( BE() o), ' 3(kT) ( 3 )

3(kT) g3) g M ), g M ), 3(kT) g3)

Bq

Mo o),
Bq

BEo o) r,

- 2

p) (4m ) '~'

3(kT)' g 3 ) BEo o) $ ~, & BEo )ot,

- 2

2«gyes 2 (47l l ( Bq

9(kT) 3(kT) T ' M
1 1

2 /47r lt 2 - f Bq l ( Bq
+3(kT), I 3 I

N'). «~, ~.i I(K BE )I I( BE,
1

)4~& '"
9(kT)' T)

(4~1 '~'

(kT)2 g 3 )

):«z, z, z.
I

K Bq i t' Bq i f Bq

BEo o)i, & BEo o)t, &

( B'q ) 1 t'4~ & 2 . f B'q ) ( BqN). &« i I K,
I +, I

—
I
N'). &«, ~, I

K BE2

In this case, the electrical response purely arises from the rotations of the permanent multipole moments.

(56)

B. Inclusions without permanent multipole moments

In this case q l
——0, and we have

&l 1
&l —I l4ls &llew 4ls &llew &llx4 (57)
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Then, &om Eqs. (36), (42), and (48)

a, (1) =r, .

H, (1) = rls,',

(58)

H;(2) =O, (60)

or', , 12r', (4~1 "'

- 2

Bq t, 6r1rl (4~1' ' ( &q

12r1rl (4~) 2 ( Bq & ( Bq ) or1 (4x& '
2 . ( Bq

3(kT)' & 3 )

1l 11 I 1N). (gI, '+ALII, +ril,' ) l
&

0) li

+
I I

~ ).(9II,'+UI1'+ALII, ) I

&(4+~ 2 ll I I I 1 ( I9q

0 0)l I 0 0 OJ I

67/" 6 (47r i
+kT +kT

9/2

(61)

In this case, the electrical response arises from both the direct polarization and the rotation of the inclusions (for
nonspherical inclusions) .

C. Spherical inclusiens

I et us consider now spherical inclusions with radius a and dielectric function ez. The corresponding polarization
coefficients are [cf. Eq. (4) of Ref. 5]

Then

) lyme )(2) + 1) P 2l+lbly /mal
3 le~+ (I y1) (62)

g
p 2E+1

lap+ (l+ 1)

g,"," = I'lI'l, b,"b",;,
~l'I',

lg l1 ls
AI', I. = rll I*~I'~I,' (63)

Hl(1) formally remains the same as in Eq. (36), while Hl(2) and Hl(3) reduce to

2 (4m) i' . ( Oq

3(kT)2 3(kT)2 3 ~ - "'
i gE

1

1 (4vr1 2 . ( Bq ) ( gq
+3(kT)2 I 3 I

~ ) ~«, I, I
~ ~E

1 2
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IIz(3) =—
3(kT)s ' 3(kT)s ( 3 ) ( BE() p) i
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—
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In this case, the electrical response arises &om the direct
polarization and the rotation of the permanent multi-

poles.
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V. CONCLUSIONS

We have presented the mean field theory solution to
the electrical response of heterogeneous systems, where

the inclusions have arbitrary structures and permanent
multipole moments of arbitrary orders. All orders of the
total multipole moments of all the inclusions and their
images have been taken into account. We have obtained
explicitly the first three derivatives of the average multi-

pole moments with respect to the applied field. Higher
derivatives can be obtained with the same procedure.
We have then obtained the efFective dielectric function.
These results are readily applied to disordered systems

with given AI' ', q&~"~, and Kz' (position pair distribu-
tion for the inclusions). With these input values, one cal-
culates recursively the quantities Hz(n) and the deriva-
tives of the averaged multipole moments with respect to
the applied field, and thus obtains the efFective dielectric
function. We have also provided the particular results
for spherical inclusions, inclusions with only the perma-
nent multipole moments, inclusions without permanent
multipole moments.

APPENDIX A

Q( Ep, r) = Q(Ep—, r), (A1)

where r = (z, y, —z) is the mirror image of r about the
z = 0 plane. To prove Eqs. (13), it is possible to con-
struct a virtual system, equivalent to our original system
in any macroscopic aspect, but also endowed with micro-
Scopic reQection syxnmetry. Taking the nth inclusion at
the origin, its xnultipole moments are given by

In this appendix, we prove Eqs. (13) for systems with
macroscopic reflection symmetry. When the applied Beld
is reversed Ep,' Ep, inclusio—ns change their orienta-
tions until a new equilibrium is reached. A systexn with
macroscopic re6ection symxnetry is such that, when the
applied field is reversed, the inclusions rotate and read-
just so that any macroscopic quantity obeys

q r (Eo) = / 1„, (Eo)Eo —3 ) ) 1 P'(Eo))—C,' '(r„,)q,q, (Eo) +q r (Eo)(.
lyme lyme

flan

Since the system has microscopic refiection symmetry, we have from Eqs. (13) and (14) of Ref. 3

) g 1 o~l
( ) ) QIZ3 rqqll

(
—

) (
1)Z3+qqql+ZE+qq33 ) Qf 1 o~l

( )

(A2)

After the applied field is reversed, the multipole moments are given by
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q„i (—Ep) = — —A„, (—E())Ep10

—3 ) ) (—1)"+ 'A„'i '(—Ep) ) t i' '(r„,)(—1)"+ 'q„, i, , (—Ep) + q„i ( E—p), (A4)

where we have used Eq. (A3). Since the system has
microscopic reBection symmetry, when the applied field
is reversed, each inclusion rotates and readjusts so that
the charge distribution on each inclusion satisfies

I

Changing the integration variable to r and noticing that

r=r, d r=d r, and Yi' (r) =(—1)'+ Yi" (r),

p ( Eor—)=p (Eor)
Hence, we obtain

(A5)

we obtain

q„s ( Eo) = —f p„(—So, r)r Ys' (r)d r

p„(Ep, r)r'Yi' (r)d r.

qnim( Eo) = ( 1)'—+ q im(EO)

Substituting Eq. (A8) into Eq. (A4), we obtain
A6

(A8)

q m(So) =
)fq ( l)'+ +')m —

( &o)&o-
—3 ) ) (—1)'+ +"+ 'A'„; '( E())) —Ci'" '(r„,)q„,i, , (E()) + q„", (E()). (A9)

In order to recover Eq. (A2), it is necessary and sufBcient
that

APPENDIX B
In this appendix we carry out the integrals in Eq. (23).

We use the relation
piqmq

( E ) (
1)i+m+iq+mq plqmq (E (A10)

Yi (O)Yi, , (A) = ) (l, m, l), m). IL, M)YI, ,M(Q) (B1)
LM

where the coefficients are expressed in terms of the 3j
symbols:

(B2)

Averaging Eqs. (A8) and (A10) over all inclusions, we ob-
tain the corresponding equations for macroscopic quan-
tities as in Eqs. (13), which hold for our original system.

I

(2l+1)(2l) +1)(2L+1) )' l li L i ( l l) I, )
4m )0 0 0) (mm M)'

Using Eqs. (6), (7), and (Bl), we obtain

A'io (r)d7 = 8+2 ) i", ' f Y,
'

(B)Yi, , , (B)dB
(2l + 1)(2l, + 1)

2 ) elm jig —8&21' jiq
i i i i (B3)

(B4)

f
8vr2

plop�(

mls p PL1rn1 y Pl g m, s

Q(2l + 1)(2l + 1)(2l + 1)(2l + 1)
™ ™~'

x Yl* QYi, ~, OY,', OYi, m, ONl

8'
s) is my plsms

Q(2l + 1)(2l g + 1)(2l2 + 1)(21s + 1)

x ) (tt , ~LMm, ) )sm(sl m l m )i,sMs)sf Ysoors(B)sYo, sr, (B)dB
LM L1M1

pl qmq plsqns

Q(21 + 1)(2l) + 1)(2l2 + 1)(2ls + 1)

x ) (l, m, l2, m2i L, M) (l), m), ls, ms iL, M)—:8' ri,",,",
LM

(B5)
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47t A$~ 'gi ~ Yi ~ $ p jy ffjl y ) p i ~ )

(2L + 1)(2Lr + 1)(2L2 + 1)

= 8m
(2l + 1)(2lg + 1)(2l2 + 1) ) (—1) ~'r qI,"').(™ ~ ml& M) Yz', M(O)Yr„o(O)dO

) (—1) AI' qi 0(l, —m, Lr, m~L2, 0)—:4~ 6r, (B6)

8'~
qr0(&)qr, o(r)dr = ). qi qi, , Yi', (O)Yi (O)dO

(2l + 1)(2lr + 1)

(B7)

47t h

( 1 m), ri~. (s) (s)

Q(2L + 1)(2l g + 1)(2l2 + 1)(2l3 + 1)

x Yi, m )p Yi,~,p Yj )a,' Yi,a d cos dydee

2~(4~)'

Q(2L + 1)(2Lg + 1)(2L2 + 1)(2l3 + 1)

2~{4~)'
Q(2L + 1)(2l + 1)(2l + 1)(2l + 1)

x ) (l, —m, Lr, m~l, 0)(L2, m2, L3, —m2~L, O):—2m''r' i,
L

(BS)

q(P) (z)q(P) (z)q(P) (&)d&

) qr
~

qr qr Yi,~(O)Yi„~,(O)Yr„~,(O)dO
(2l + 1)(2Lg + 1)(2l2 + 1)

qi"'qi,"',qr'.".).(L m L~ m~ll M) Yr'. ,M(O)Y!„(O)dO
2l + 1 2Lg + 1)(2l2 + 1)

2m 4''3~'
(B9)
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f Q(2l + 1)(2l + 1)(2l + 1)(2l + 1)

x ) qi tli qi, ,qi, , f Yi, (B)Yi.. .(B)Yi.. .(B)Yi.. .(B)dB
mm1mg m3

2~(4m) 2
(i)~ (i)q (s) (r)

Q(2l + 1)(2li + 1)(2l2 + 1)(2l3 + 1)

x P (l, m, li, mi~L, M)(lq, mq, lz, mii~di, Mi) f Yq' (MB)Y„qi(xB)dB
LML1 M1

2m(4n) 2

Q(2l + 1)(2li + 1)(2l2 + 1)(2ls + 1)

x ) (l, m, li, mi~L, M)(l2, m2, ls, ms~L, M) = K~~, (,~, .
LM
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