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The macroscopic governing equations controlling the coupled electromagnetics and acoustics of
porous media are derived here from first principles. The porous material is assumed to consist of
a packing of solid grains that is saturated by an electrolyte. A sedimentary rock is an example
of such a material. The approach is to volume average the equations known to apply in the Quid

and solid phases while allowing for the boundary conditions that exist on the Quid-solid interface.
The coupling is due to a layer of excess charge adsorbed to the surfaces of the solid grains that is
balanced by mobile ions in the Quid electrolyte; i.e., the coupling is electrokinetic in nature. The
derived equations have the form of Maxwell's equations coupled to Biot's equations with coupling
occurring in the Sux-force (or transport) relations. The frequency-dependent macroscopic-transport
coefficients are explicitly obtained and related to each other. Onsager reciprocity is derived and is
not simply postulated.

I. INTRODUCTION

This paper is concerned with the macroscopic dynam-
ics of two-phase (fiuid and solid) porous media possess-
ing continuously distributed phases. A packing of grains
saturated by a Quid is an example of such a material.
The term "macroscopic, " as used here, means that the
wavelengths of the applied disturbances are much greater
than the dimensions of the grains. When a macroscopic-
mechanical disturbance propagates through such a mate-
rial, a small amount of relative motion is induced between
the fluid and solid phases. This relative Qow will carry
along the excess ions in the electric double layers near
the grain surfaces. Thus, a mechanical wave can act as
a current source for macroscopic-electromagnetic distur-
bances. Similarly, when an electromagnetic disturbance
propagates, the electric field will act on the charge ex-
cesses of the double layers producing pressure gradients
in the Quid and, in principle, macroscopic-mechanical dis-
turbances. Thompson and Gist have made field mea-
surements clearly demonstrating that seismic waves can
induce electromagnetic disturbances in saturated sedi-
ments in the Earth. It is believed that their observa-
tions can be explained by the electrokinetic mechanism
mentioned above. In this paper, the equations controlling
such behavior will be derived and the coeKcients defined.

There has not been much previous work in this direc-
tion. In 1944, Frenkel2 postulated equations that esti-
mated the amount of relative Quid motion induced by
a seismic wave. He attempted to allow for Qow-induced
electric Qelds by employing, incorrectly, the Helmholtz-
Smoluchowslo. equation. This equation assumes that the
total electric current in the porous material, which is a
sum of the mechanically driven streaming current (due
to convection of double-layer ions) and an electrically
driven conduction current, is everywhere zero. Thus, in
Prenkel's model, the generated electric field exists only
where there is seismically induced relative flow. Cor-
rectly, the total current should be present in Ampere's

law and the full set of Maxwell's equations utilized. This
is the more general result obtained here.

Neev and Yeatts also postulated a set of equations
that attempt to model the interaction between mechani-
cal waves and electric fields due to electrokinetics. They
also do not allow for the' full set of Maxwell's equations
which leads them to the erroneous conclusion that me-
chanical shear waves do not generate electromagnetic dis-
turbances. They only allow for electric fields generated
by charge separation. A mechanical shear wave, how-

ever, generates a divergence-free (no induced-charge ex-
cess) streaming current that will act as a current source
in Ampere's law, thus demonstrating the need to use
the complete set of Maxwell's equations. Both Neev and
Yeatts and Frenkel completely ignore the frequency de-
pendence of their proposed transport laws.

The central problem with both of these cited works
is that their equations are not derived from the under-
lying constituent properties. In this paper, the con-
tinuum equations known to apply in the solid grains
and fluid electrolyte are volume averaged to obtain the
macroscopic-governing equations. The final equations
have the form of Maxwell's equations coupled to Biot's
equations. The coupling arises naturally &om just two
postulates: (1) The solid grains have a uniform surface-
charge density adsorbed to their surface, and (2) prior
to the arrival of a disturbance, the net charge in a vol-
ume of the porous material is zero. The definition and
frequency dependences of the transport coefBcients will
be given. Onsager reciprocity will be derived and Dot
simply assumed.

A brief summary of the major assumptions and/or lim-
itations of the derived theory is now given. Only linear
disturbances are considered (i.e., those that obey super-
position). The fiuid is assumed to be an ideal electrolyte,
thus restricting salt concentrations to be less than 1
moliliter. Both the solid grains and all the macroscopic-
constitutive laws are assumed to be isotropic. All wave-
induced difFusion efFects (flux due to wave-induced ion-
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concentration gradients) are, in the end, ignored. It is
demonstrated that two conditions must be fulfilled in or-
der to make this assumption at the pore and grain scale:
(1) The dielectric constant of the grains must be much
less than that of the electrolyte (say a factor of 10 or
more), and (2) the thickness of the double layer should
be much less than the radii of curvature of the solid
grains. The specific class of porous media that are of
primary interest here are water-saturated sediments and
sedimentary rocks. For these materials, both of these
assumptions are valid. Last, no wave scattering &om
the individual grains of the porous material will be al-
lowed for. This ixnplies that wavelengths A are always
much greater than grain sizes (e.g., A & 1 mm). Thus,
the largest applied frequency that can be considered (for
mechanical waves) is on the order of 10s Hz.

The structure of the paper is as follows. In Sec. II,
the grain-scale equations and boundary conditions for
the Quid and solid phases are stated. In Sec. III, these
equations are volume averaged to obtain the macroscopic
equations of interest. However, several integrals present
in the macroscopic-transport equations require the local
electric and Quid-Bow fields in the pore space to be re-
lated to the macroscopic fields generating thexn. Thus,
in Sec. IV, the boundary-value problems controlling the
pore-scale fields are treated and in Sec. V, the remaining
integrals evaluated to give the macroscopic-transport co-
efficients. Last, in Sec. VI, the governing equations are
presented in final form and summarized.

II. PORE AND GRAIN-SCALE
GOVERNING EQUATIONS

There is assumed to be a layer of electrolyte ions and
structured (hydrogen-bonded) water molecules that are
chexnically and physically adsorbed to the surface of the
solid grains. This layer also includes the ionized surface
sites present on the grain surfaces. The molecules and
ions in this layer are assuxned to be immobile. In the
lexicon of the electric double layer, 5 this adsorbed layer
corresponds to the "Stern layer" or, equivalently, to both
the "inner and outer Helmholtz layers. " If there is a net
excess of charge in the adsorbed layer (the usual situa-
tion), it is balanced by an opposite axnount of excess mo-
bile ions distributed in the adjacent Quid. This region of
Quid balancing the charge of the adsorbed layer is called
the "diffuse layer. " The adsorbed layer and diffuse layer
together constitute the electric double layer. The surface
that separates the difFuse layer &oxn the adsorbed layer
is called the "shear plane" and will be the surface used
to define the fiuid-solid interface 8 in what follows (the
subscript m stands for the "wall" ). The adsorbed layer
is so thin (& 10 A) that it cannot be properly treated
as a separate phase. Thus, in the continu»m descrip-
tion that follows, the physical properties of the adsorbed
layer show up as boundary conditions on 8, namely, as
a uniform surface-charge density Q and as the no-slip
Bow condition.

A. Electromagnetic equations

The solid grains (e.g. , quartz) are assumed to be elec-
trically insulating while the Buid electrolyte is assumed
to possess L ionic species. Maxwell's equations for the
solid and Quid phases take the form, respectively,

V ~ B,=0,
V D, =O,

V xE, = —B„
V x H, =D„

(1)
(2)

(3)

(4)

and

V ~ By ——0,
L

V' Dy = ) ezgNg,
1=1

V xEy ———By,
V' x Hy ——Dy+ Jy,

(6)

(7)

(S)

where Jy is the ionic-current density and has contribu-
tions &om the diffusion, electromigration, and convection
of ions,

L

Jg = ) ezra [ kTbgV Ng —+ ezgbgNgEy + Nguy] .
1=1

uy is the instantaneous fiuid velocity (the fiuid may be ac-
celerating). The ionic properties are the valences zg (ezra
represents the net charge and sign on each species-E ion),
the number densities Ng (the number of species-I ions
per unit volume), and the mobilities bg (units of veloc-
ity per unit force). The Einstein-Stokes approximation
bg = I/(6z'@RE), where g is the fiuid's shear viscosity and
Bg is the effective "ion radius, " is often accurate and is
quite convenient. The mobilities are related to the ionic
diffusivities Dg as Dg ——kTbg. Note that soxne authors
employ an alternative definition of ionic mobility, say, ug,
given by ug = ]ezg~bg.

The above estimate for the current density is strictly
valid only when ions xnove independently &om each other
(an ideal electrolyte). By considering the ion-separation
distant at which electrostatic-interaction energies become
significant compared to the thermal energy kT, it can
be concluded that as long as ion concentrations are less
than, say, 1 mol/liter, the ideal electrolyte assumption is
(at least roughly) valid. Although the fiuid has a veloc-
ity uy, the Lorentz electric field uy x By that should be
added to Ey in the current density is completely negli-
gible if By is associated with the same disturbance that
produces Ey, i.e., the Quid velocity is dramatically less
than the speed of the electromagnetic disturbance. Al-
ternatively, if By is taken to be the maximum possible
value of the Earth's field at the Earth's surface ( 10
T), one has that ]ezgbguy x By]/]up ~

is of the order 10
i.e., the current generated by the Lorentz force is com-
pletely negligible compared to that generated by convec-
tion of the free double-layer ious (although, of course, the
Lorentz-force current will operate regardless of whether
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there are charge excesses in the difFuse double layer).
Last, although the grains are assumed to be a material
like quartz, no piezoelectric eEects will be allowed for.
This is because the grains of the material are assumed to
be oriented at random to one another so that the average
polarization of a group of grains is zero.

The boundary conditions that hold on the surface
S (obtained by volume integrating Maxwell's equations
over an infinitesimally thin disk that straddles S ) are

L

aptly%' Ey ——) ezrN&,
1=1

(20)

that E, must be zero (the net circulation of E, around a
closed path that runs along the surface of the grain and
then passes arbitrarily through the grain must be zero).

The only nonzero static fields are then Ef and N&.

The equations governing these fields are [&om Eqs. (6)—
(9) and (17)—(19)j

n (B, —By) =0,
n. (D, —Dy) =Q,
nx (E, —Ey) =0,

n x (H, —Hy) = Qu„
n Jy=Q,

(1o)

(11)
(12)

(i3)
(14)

V'x Ef ——0,

—kTV'N& + N& ezgEf —0,

with the boundary conditions on S

(22)

where n is the normal to S directed from fluid to solid,
u, is the instantaneous velocity of the solid (= uy on
S ), and Q is the &ee charge per unit area of the ad-
sorbed layer. Equation (14) follows, as usual, by taking
the divergence of Ampere's law and the time derivative of
Coulomb's law (i.e., it is a consequence of charge conser-
vation). The right-hand side of Eq. (12) follows only if
the charge of the adsorbed layer is uniformly distributed
along S . An additional current term could be added to
the right-hand side of Eq. (13) if it was assumed that con-
duction can occur in the adsorbed layer. Although this
possibility is ignored here, hydrogen ions may efBciently
conduct through the network of hydrogen-bonded water
molecules present in the adsorbed layer. This effect can
be included in future work.

Last, the above equations are closed by the constitutive
laws

epryn Ey ——Q,0 0 (23)

nx Ef ——0. (24)

The dielectric constant is assumed constant right up to
9 (Ref. 6 shows that there is at most a 1 lp Pdeviation in

ey across the diffuse portion of the double layer). Equa-
tions (21) and (22) are satisfied by

Ef ———V'4, (25)

epe = Ai exp (
— O ), (26)

where Afg are the bulk-ionic concentrations. Thus,
Coulomb's law leads to the so-called "Poisson-
Boltzmann" equation

B( = P,pH(,
Dg = cpKgEg,

(i5)
(16)

epode ~
- exe e e*e

Oo)
E0Kf kT

(27)

Q(t) =Q'+ Re(q((u)e ' '},
Nr(t) = NP+ Re(nr((u)e * '),
Ey(t) =EPy+ Re(ey(u))e * '),

(17)
(18)
(i9)

where ( = f or s and where e~ is the dielectric constant.
All the field variables will now be written in the form

4 = ( exp( —y/d), (28)

The solution to this problem completely solves the static
case.

In Appendix A, solutions to the Poisson-Boltzmann
equation are considered. The potential near a plane wall

has, approximately, an exponential distribution given by

and so on. The first term in these expressions represents
the static-equilibrium field prior to the arrival of any dis-

turbance, while the second term represents the deviation
in the fieM due to a time-harmonic disturbance. It will

be assumed, here, that no free charge q is induced on the
surface (note that the &ee charge q does not include the
polarization charge dielectrically induced on the surface).
The only way for the free charge of the adsorbed layer
to change is if chemical reactions occur and, thus, such
chemical reactions are ignored here. It is assumed that
no steady currents operate prior to disturbance and that
there are no static magnetic fields present. Because Q
is assumed to be uniform over the grain surfaces, it can
be shown using a simple argument based on Stoke's law

where y is a local coordinate measuring distance normal
to the wall surface, d is called the Debye length and is
defined as

1 ).(ezra) JVg

60KykT

and g is called the zeta potential and is the static electric
potential at the shear plane (i.e. , the surface S ). Va-

lidity of the simple exponential distribution (the Debye

approximation) and the relation between Qp and ( are
discussed in Appendix A. Here it is emphasized, that the
Debye lexigth, which is a measure of the thickness of the
diffuse double layer, is much smaller than any geometri-
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cal length associated with the porous material. For ex-
ample, a»~ivalent electrolyte at room temperature gives
d = 3 x 10 M/~C (m), where C is the bn~&-electrolyte
molarity. In practice, it is uncommon ever to work with
electrolyte more dilute (in the pores) than 10 4 mol/liter
which corresponds to d & 3 x 10 8 m. In sedimentary
materials, typical sand-grain radii are on the order of
10 4 m, while clay particles have characteristic lengths
of the order of 10 m. The point is that for porous me-

dia of interest, the double layer can be modeled as being
planar relative to the grain surfaces. This "thin-double-
layer" approximation will be made throughout the entire
analysis.

The time-harmonic disturbances are governed by [from
Eqs. (1)—(9) and (17)—(19)j

The s»mmation on the right-hand side of the Buid bal-
ance is the electrical body force acting on any excess
charge (with products of disturbances again neglected).
The Lorentz force jy x By has been neglected in the Buid
balance for the same reasons that the Lorentz electric
field is negligible. The nonlinear convective accelerations
u Vu have also been ignored as justified by Pride, Gangi,
and Morgan. The Buid and solid stress tensors are given
by

2
Tf = KfV ' UfI —usia

~

Vuf + Vuy V ' UfI
3 )

(48)
l 2

~, =K,V u, I+G~ Vu, +Vu, ——V u, I ~,3 )
V b, =o,
'I7 d, =0,

V' x e, =i~b„
V xh, = —i~d„

(3o)

(31)
(32)

(33)

(47)

where —iuu(u) = u(u). Finally, the boundary condi-
tions on S are

n ~ (T —Ty) = —q e (48)

V. by ——

V dy ——

V'x ey ——

V'xhy ——

where

0,
L

CZQAg )

Gaby ~

—indy + jy,

(34)

(36)
(37)

llew
—lly = 0. (49)

III. AVERAGING THE GOVERNING
EQUATIONS

The right-hand side of Eq. (48) represents the electrical
body force (per unit area) acting on the excess charge of
the adsorbed layer.

L

jy = ) ezra kTbr Vnt +—ezrbr (N& ey + ngEy)

+Nr uy(ld) (38)

The notation u y (t) = Re(u y (u) e ' ~ ) is being employed.
Products of disturbances have been neglected in jy. The
neglect of these terms linearizes the equations. The
boundary conditions on S are

1
(ag) = aydV,

A VC

(5o)

The above microscopic (i.e., pore and grain scale) equa-
tions will now be volume averaged to obtain the macro-
scopic equations of interest. The averaging volume V~ is
assumed to be larger than the grains but much smaller
than the wavelengths of the applied disturbances. If the
volume average for some microscopic field a~ associated
with the (th phase is defined as

n (b, —by) =0,
n (d, —df) =0,
nx(e, —ey)=0,
n x (h, —hy) = q u, (~),

n. jy ——0.

(39)
(4o)

(41)

(42)

(43)

where Vg represents the volume of the (th phase within
V~, then the following theorem due to Slattery is easily
established:

1
(Va~) = V( ~)a+ n~a~ dS,

A S

where ng is the normal to S and is defined as

B. Mechanical equations ny ——n, (52)

L

iupfuy = V . ry + )—ez& (N&ef + ngEf) (44)

—mop, u, = V (45)

The conservation of linear moment»~ governs the dy-
namics of both the Buid and solid phases and is expressed
for time-harmonic disturbances as

n, =-n, (53)

with n directed &om the Buid to the solid. When apply-
ing the averaging theorem to the porous material, it will
be ass»~ed that the Buid and solid phases each have ho-
mogeneous material properties throughout VA. Further-
more, it is ass»led that macroscopic-material properties
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ae = (at)/0'e (54)

such as porosity P (—:Vy/V~) vary slowly as V~ is moved
over distances the size of V~ or less. Boundary conditions
at singular jumps in the macroscopic-material properties
are treated as part of another paper.

It is convenient to define two other averages that are
simply related to (at),

where B, D, E, H, and J are "total" averages [Eq. (55)]
while ng is a phase average in the fluid. The macroscopic-
current density J has four distinct contributions:

(64)

Jp is part of the average "diffusion" current density in the
Huid (the total difFusion current will have a contribution
from J„aswell),

A = ) (ae) = ) (pgag,

where pg is the volume &action of the (th phase,

(55)
L

Jg = —) ezebekTV'ne,
X=1

J, is the average "conduction" current density,

pt. = V(/V~., (56)

i.e. , py = P (porosity) and y, = 1 —P. ag may be called
the "phase average" because it represents the average
value within the (th phase, while A may be called the
"total average" because it represents the average value of
a given Geld type throughout all of Vg.

J, = — ) (eze) beNe ey dV;
rve (e=i

J, is the average "streaming" current density,

('.
J, = — ) ezeNe vdV;

f v& (e i )

(66)

(67)

A. Averaging the electromagnetic equations

To start with, the static field Ef ———V4 is averaged
to give

(Ey) = —V(C ) — ne dS.
V~ s

v =uf —uq, (58)

where u, is the phase-averaged velocity of the solid phase;
and (6) the electroneutrality condition prior to distur-
bances is applied,

L

) eze(Ne)Vg+ Q, S = 0. (59)

Such a procedure directly results in the following macro-
scopic form of Maxwell's equations:

Because O (= () is assumed to be constant over S, the
surface integral vanishes. Thus, if the material has uni-
form macroscopic properties so that (Co) = const, then

(E&) = 0; i.e., there are no macroscopic static fields.

The equations governing the disturbances [Eqs. (30)—
(38)] are now averaged in the following manner: (1) The
volume average is applied; (2) Slattery's theorem is used;

(3) the corresponding solid and Huid equations are added;
(4) boundary conditions (39)—(43) are applied; (5) the
relative fluid-solid flow vector v is introduced,

and J„is the average current density due to locally in-
duced diffusion currents normal to the pore walls,

L

) eze [i~ne + bekT& ne] = & (J~ + J~ + J~). (69)

Comparing the first term on the left-hand side (the net
rate of ion accumulation) to the second term (the diffu-
sion Rux) gives the dimensionless ratio

1 V'N]0J„=——) ezebekT nnedS —
o ne dV

Vf S v, &g'

(68)

In this last expression, the equilibrium condition Ef ——

(kT/eze)VNe /Neo has been employed in the volume in-
tegral. In general, a complete description would retain
all four of these contributions to the current density.
In practice, it will be argued in Sec. IV that J„is
neglibile for the problem at hand of modeling acoustic-
electromagnetic wave propagation in porous media. The
electromagnetic description will be complete once these
current densities have been expressed in terms of the
macroscopic fields generating them.

It will now be argued that the macroscopic-diffusion
current induced by wave fields, Jp, is negligible in
homogeneous-porous media. Taking the divergence of
Ampere's law gives the macroscopic statement of charge
conservation:

V'x E=
V'x H=

ZCdB
q

—i~0+ J,

V B=o,
L

D = P) ezene,

(60)

(61)

(62)
(63)

~bekTVzne
~

16bekT f
~i~ne~ 2~c2

where c is wave speed and f is frequency in hertz and
where it has been assumed that ng varies over distances
of a quarter wavelength of the macroscopic field inducing
ne (either acoustic or electromagnetic). Using values of
T = 298 K, be = 3 x 10 i Ns/m (a typical inorganic ion
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~br&TV'no
I

b

]i(unr
~

2m fh2
' (71)

If h = 1 mm (perhaps the smallest macroscopic length
that can be considered in a volume-averaged theory—
this, of course, depends on the grain sizes), then difFusion
will be negligible if frequencies are much greater than
10 s Hz. This will almost always be the case as well.

It should be noted that the actual macroscopic difFu-

I

such as sodium), and c = 10 m/s (acoustic waves) gives
the condition that if frequencies are much less than 10i
Hz, macroscopic-difFusion currents can be neglected in
homogeneous media. This condition will always be met.

Alternatively, if the porous material is assumed to pos-
sess macroscopic heterogeneities that vary (significantly)
over distances h, then the above dixnensionless ratio is

L

og = ) (ezra) brhfg, (72)

the conduction-current density becomes

sivity (obtained by allowing for J„aswell) is always less
than brkT so that the above conditions are overestimat-
ing the actual difFusion currents. Because we are only
interested in xnacroscopic deviations ng that are induced
by wave fields (not those, for example, that are due to
injected contaminants), it is safe to assume that difFusion
currents associated with these deviations are negligible.
This assumption will be made throughout what follows.

It is convenient to rewrite the current-density integrals
under the assumption of a thin, uniform, double layer.
With the definition of bulk-fiuid conductivity,

D L

J, = — ey dV + — dS ) (ezra) br(N& —JVr) ey dy.
Vf v, Vf s o

The coordinate y represents distance measured normal from the wall surface S (into the fiuid) and D represents the
distance over which the charge excess N& —JVr associated with the diffuse double layer is significant (say, a few Debye
lengths). In practice, it will be argued that ey can be taken as constant across the double layer.

If Coulomb s law for the static field [Eq. (20)] is substituted into the streaming-current integral [Eq. (67)], then

CpKf

Vy

CpKy

Vy

CpKf

Vy

(V E', ) vdv
Vy

f V (E&v) —E& Vv dV
Vy

f n E&v dS + n Efv dS — dS Ef V'v dy
S, S S p

W

(74)

(75)

(76)

In the last equation, S, is the surface of intersection be-
tween the fiuid and the averaging-volume surface and n,
is the outward normal to S,. We can expect that, on av-
erage, the weight n, . E& is as often positive as negative
on S, so that the integral over S, vanishes (this integral
will also vanish if there is no macroscopic variations in
the xnaterial properties). The second integral also van-
ishes because v = 0 on S . Thus, only the last term is
retained:

J, = dS VC Vvdy.
Vf s p

(77)

Note that, in general, it should not be assumed that Vv
has constant components across the thin double layer.

Finally, although J„willbe neglected later, it is con-
sistent here to also rewrite it under the thin-double-layer
assumption. The volume integral within J„canbe writ-
ten as

(78)

D

s

o B (nremnnrdS+ ndS Nz
~ o ~

dy,
S s„o By ENc )

(79)

(so)

so that the final expression for J is

1J„=— n dS ) ezrbi&TNr o B t'nr~
Vy s p By (Nq~)

(s1)

Perhaps, now, J„is more clearly seen to be the aver-
age value of the difFusion currents induced normal to the
grain surfaces because of local deviations ng.

In Sec. IV, the actual induced fields ef and v will be
expressed in terms of the macroscopic forces generating
them (namely, the macroscopic-electric field and pressure
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D = ep [fryer' + (1 —P)r.,e,]. (82)

From the definition E = Peg + (1 —P)e„wethen have

D = ep P(ry —r, )ey + ~,E . (83)

Once ef has been expressed in terms E, this law will be
complete.

Because the magnetic susceptibilities are assumed neg-
ligible in both the fluid and solid phases (iron, nickle,
and cobalt are not assumed to be major constituents),
we simply have

gradient). Then, in Sec. V, the above integrals will be
carried out and the anal macroscopic ion-flux-force law
will be obtained for J.

It remains, here, to average the electromagnetic con-
stitutive laws. Averaging dg ——eprgeg gives

fluid per unit time and per iinit area of porous material)
and where a subscript B stands for "bulk. "

In this work, f„will be assumed negligible. The con-
ditions of validity for this assumption are essentially the
same as ignoring the J„contribution to the current den-
sity and will be discussed in the next section. Using the
charge-balance condition

L
Q' = — ) .«re'(X) dX,

e=l

where y is the same coordinate used previously to mea-
sure distance normal to S and where D is several Debye
lengths, the body forces f + f~ within the thin uniform
double-layer approximation become

=1 D L

f + f„=— dS ) ezra~ [ey —e, (0)] dy.
f s 0 1=18= goH

B. Averaging the mechanical equations

(84) (98)

It will be seen that for thin double layers and when ~, &(

zy (e.g. , quartz and water), ey(y) e, (0) throughout
the double layer so that

—a~ (pgii, + pyw) = V' ~g + P(f~ + fg+ f„),
where the three electrical body forces are de6ned as

(85)

qpf = edS,
f s„ (86)

The force balances on the fluid [Eq. (44)] and the
solid [Eq. (45)] are averaged and then added to give a
macroscopic-force balance on the bulk material (i.e. , fluid
and solid taken together),

f. + f& —o. (94)

This states that the force acting on the adsorbed-layer
charge is balanced by that acting on the diffuse-layer
counter charge.

Next, the average-force balance on the fluid in relative
motion is obtained. The relative-Bow velocity v = uf-
u, is substituted into the fluid-force balance [Eq. (44)]
along with the fluid-stress tensor and the assumption that
the local relative flow is incompressible (7' v = 0) with
the result

1 pf~ = — ) ezgN& ey dV,
& v~&,=, )

—g(dpf v = —Vp + l(dpf ua —gV x V x v
L

+) ezra

(Nosey

+ nrEy) .
E=l

f„=— ) ezrnr E& dV.
~~ (e=i )

(88)

Here, f comes &om the boundary conditions and rep-
resents the average force acting on the excess charge of
the adsorbed layer, fg represents the average force acting
on the disuse layer, while f„is the average force acting
normal to S due to any induced-charge excesses in the
double layer. In the above force balance, we have intro-
duced the definitons

The incompressibility assumption for oscillatory flow is
justified as long as fzr2/c~& && 1 where f is frequency in
hertz, r is a characteristic grain size, and cf is the speed
of sound in the fluid. This condition is roughly equivalent
to the no-grain-scattering condition underlying the entire
analysis. Upon averaging over the fluid, we have

—iupfv = —V'p+iupfu + f~+ d —gV' x V' x v,

(96)

where d, the drag force, is de6ned as

W = fv = $(lip —lie), (89)

where

gform + afric (»)

Tg = Q'rf + (1 Q)T~,

Pn = /PE + (1 —p)P„

(90) f 1ufo —np dS,
Vf s

where w is called the "filtration velocity" (volume flux of
—nx V'xvdS.

Vf
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Another application of the averaging theorem gives

1
V x v = V x v+ — n x vdS.

&f s
(100)

Since v = 0 on S, we have that

gVx Vxv=gVx Vxv. (101)

The importance of this macroscopic-shear term is deter-
mined by comparing it to the inertial term

that defines E~ and Gf, will not be discussed in this pa-
per because it is not clearly related to the boundary-value
problems for ey, v, and p. The kame moduli may either
be considered experimentally determined (just like Ky,
K„andG) or may be obtained kom one of the many ap-
proximate theoretical models available for specific (and
very simple) pore-grain geometries (see Refs. 11 and 12
for a review). In conclusion, although the electromag-
netic fields do not directly appear in the above stress-
strain relations, their inQuence is present if they induce
relative Quid-solid motion w.

A@V x V x v)

~i(upyv[ pic' (102)
IV. BOUNDARY-VALUE PROBLEMS

rq ——(KgV u, + CV w) I

+Gr,
i

V'u, + Vu, ——V u, I i,
)

(103)

where c is the speed of the mechanical wave producing the
shear disturbance. For water and, say, c = los m/s, we
have that as long as frequencies are much less than loi2
Hz, the macroscopic shearing in the Huid is negligible.

In the next section, expressions will be obtained that
linearly relate the local-Huid velocity v and Huid pres-
sue p to the macroscopic forces that are generating them

(—Vp+ iurpyu, and E). It will be seen that it is more
direct to simply vob~me average the expression for v to
obtain the macroscopic Hux-force law than to carryout
the integrals contained within fq and d of the above
averaged-force balance; however, the two approaches are
equivalent.

It remains to average the stress-strain relations so that
a~ and p are linearly related to the induced deformation.
Because the stress-strain relations utilized here are inde-
pendent of any explicit electromagnetic coupling (e.g. ,
no piezoelectric deformation is allowed for), the volume-
averaged results of Pride, Gangi, and Morgan are di-
rectly applicable. Their results are identical to those of
Biot and Willis (who, however, did not employ volume
averaging) and are

A. Averaging disk

To complete the averaging procedure, the local fields
ey, v, and p involved in the various integrals above must
be related to the macroscopic fields. In order to accom-
plish this, the idea of an averaging disk is introduced.
Consider an imaginary vob~me within the porous ma-
terial defined by two large plane-parallel faces of area A
separated by a distance H. Qne might imagine a circular
disk with radius much greater than thickness. The vol-
ume of this disk is AH We ima. gine that a macroscopic-
potential difFerence exists between the two Hat faces. The
potential difFerence may be one of Huid pressure and/or
electric potential. This potential difFerence is defined so
that when it is divided by H, one obtains the appropriate
macroscopic field (pressure gradient or electric field) in
the direction normal to the disk face. The normal to the
disk face will be defined as the z direction in what fol-
lows. These potential difFerences represent the boundary
values for the local fields in the pores and grains.

The macroscopic-electromagnetic disturbances have
wavelengths dramatically larger than H (which may be
as small as 10 s m depending on the grain sizes). Thus,
it can be assumed that for the purpose of determining
transport in the averaging disk, V x ey = V x e, = 0 at
the pore and grain scale, or, ey = —Vyy and e, = —V&p, .
Thus, on the averaging disk, we have that

—p= CV u, +MV'

where

(104) i.E=— (109)

Kf, + pK& + (1+4)K.A
1+6

Ky+ K,L
1+6

1 Ky
$1+6, '

and the parameter 6 is

(1o5)
where

&& = ~x(H) —~s(0) = ~ (H) —
V (o) (11o)

(107)
B. Pore-scale electric Selds

and ion-number-density deviations

(106) is the potential difFerence between the two Hat faces.

(Io8)

The moduli K~ and Gf, are the bulk and shear moduli
of the "&amework of grains" when the Quid is absent —in
practice, K~ and Gf, can be deaned when the saturating
Huid is a gas (e.g. , air). The boundary-value problem

In this subsection, the boundary-value problems con-
trolling the electric potentials and deviations ng will be
considered. The conditions required for the neglect of
the ng (at the pore scale) will be defined.

Let us begin by rewriting the current density in the
Huid [Eq. (38)] using the static-equilibrium condition
ezra%& E& ——kTVN&. The result is
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~ ~ p ( ne eze
jy = ) ezeNe v —bekTV'

( e + spy
)

g Neo kT

e eze@'= N'+ kT~'
e

(117)

and will be used in the conservation of charge, V pe=0, (118)

I
jy = iw ) ezene. (112)

and

n. Vge = 0 on S (119)

Because this conservation law must hold for an elec-
trolyte of arbitrary specifications, we then have

~&& b,P on z = H,
ve =

0 onz=0. (120)

0 ( ne ezeV. Ne v —bekTV 0 + py
g Neo kT

(113)

for each of the I ionic species. Upon distributing the
divergence and noting that V' v = 0, a general statement
of ion conservation is obtained (the ion balance):

V'F =0, (121)

This last condition is a statement that there exists a
macroscopic-electric-potential difFerence of b,P between
the two flat faces of the averaging disk but that no macro-
scopic gradients in ne exist. A solution for vPe may be
expressed in terms of a related, purely geometric, field I'
possessing units of length and defined to satisfy

2 (ne eze l i~ ne

Ne kT bekT Ne

V'NeP

NP
e

+»~~ I
(»4)

n VI'=0 on S,

H onz=H,
0 onz=0.

Thus, for thin double layers, we have

(122)

(123)

The boundary condition of no ion accumulation on S
(n jy = 0 on S ) is equivalent to the conditions

ne(r) eze

N =kT '(') H (124)

( ne eze
n V( + py)=0, (115)

The field I'(r) will be important in all that follows.
We next consider the boundary-value problem for py

defined by Coulomb's law

n v=0, (116)

on S
The right-hand side of the ion balance can be under-

stood as a source term for ion accumulation. The gradi-
ent VNe is everywhere normal to the grain surfaces and
is nonzero only in the double layer. There can only be
such a source term if either the flow field v or the force
fe = V(ne/Ne + eze—yy/kT) driving the ion Hux has a
component normal to the grain surface within the dou-
ble layer. From the boundary conditions just given, we

expect that when the thickness of the double layer d is
much smaller than the radii of curvature r of the grain
surfaces (which are responsible for the spatial deviations
in v and fe), there effectively will be no normal compo-
nent to either v or fe within the double layer. It has
previously been discussed that the condition d (( r is
well satisfied for sedimentary media.

Under such thin-double-layer conditions and in the
low-frequency liinit where ur « bekT/r [using values of
be = 3 x 10 Ns/m (typical inorganic ion), T = 298 K,
and r = 10 m (e.g. , sand grains) gives f « 2x10 Hz;
using r = 10 m (e.g. , clay particles) gives f «200 Hz],
we have the boundary-value problem on the averaging
disk,

L

V'p, = —) '"
n,

60Ky

spry kT I, H

(125)

(126)

where on S

Ks
n Vyy ———n. Vy,

Ky
(127)

and on the flat faces

bQ z=H,Py=
0 z=0. (128)

V' y, =o, (129)

Ps= Pf on S (130)

z =H,
0, z=O. (131)

The presence of y, in the boundary condition requires
specification of the boundary-value problem for p„
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A particular solution for yy (i.e., satisfying the difFeren-
tial equation but not, necessarily, the boundary condi-
tions) is

(132)

To the extent that r, /Icy « 1, so that n Vyy 0
on S, this particular solution will, in fact, be the ac-
tual solution. In this case, we then have n~ 0 and
the integrals J„andf &om the volume averaging van-
ish. For the quartz-electrolyte interface, the contrast is
e, /ey 1/20, and this approximation is appropriate.

In physical terms, if the dielectric contrast is large,
then large polarization-charge densities are induced on
those portions of 8 that have n s g 0. These polariza-
tion charges produce local fields that keep n. Vy, 0
everywhere along S and, thus, ng 0 throughout the
Quid. If the dielectric contrast is small, then electric-field
lines can pass through S, thus producing an electric field
in the fluid that has components normal to S near S
These normal components will drive an electromigration
that must be balanced by an equal and opposite diHusion
fiux so that ions do not accumulate on 8 [Eq. (115)];
i.e., deviations ng are necessarily induced near S when
the dielectric contrast is small.

For the case of a small dielectric contrast, we can ex-
press the actual thin-double-layer electric potential as

assumed to be met by the materials being considered.
By neglecting ng, we will be ignoring all grain-scale

diffusion currents. Experimentally, it is found that at
low frequencies (as defined above) in sedimentary mate-
rials containing significant quantities of clay, the electric
current has a small phase shift relative to the applied
electric field. ' This phase shift is on the order of a
few milliradian. The details of how these small phase
shifts arise remains unknown in sedimentary materials;
however, the efFect is almost certainly due to accumula-
tions ng induced by the electric field. It can safely be
assumed that ignoring this milliradian-phase-shift efFect
(also sometimes called the "low-frequency dielectric en-
hancement") will not produce significant error in the cou-
pled electromagnetic-acoustic wave-propagation problem
of interest in this work.

In conclusion, if the ng are ignored, then we have that
for all frequencies the electric-field in the fluid is given
by

ey(r) = —Vyy(r) = —VI'(r)

This field can be assumed to be both constant and tan-
gential to S throughout the thin double layer.

C. Pore-scale Sow Belds

yy =I +by,

where the field by is defined by the problem

V by=0,

(133)

(134)

The Quid-Qow boundary-value problem is expressed on
the averaging disk as [cf. Eq. (95) and note that V x
V x v = —V'2v]

ilV v+i~pyv = Vp+ eoKy(V Ey)VI', (139)

Ksn Vby = —n. V'y,
Ky

on S,
V v=0,

v=0 on S,
(140)

(141)

0 z=H,
0 z=o; (136) p= b,P:—z (Vpy —iurpyu, )H, z = H, (142)

0, z=0.
i.e., the source for the by field is the electric field passing
normal through S . Finally, the ion-number deviations
are related to by as

The deviations ng have been neglected.
The solution for v and p can be separated into me-

chanically and electrically induced portions
Ar ezra

kT y (137) v = van+ ve) (143)

As &equencies increase, there is progressively less time
available for these ion-number deviations to take place
and we expect that ng will decrease. Indeed, when ~ &&

bgkT/r2 we must have nr ~ 0 from the ion balance [Eq.
(114)].

In order to neglect ng in our modeling of the fields in
the pore space, we therefore must satisfy two conditions:
(1) The electric-double layer must be much thinner than
the efFective grain sizes so that the right-hand side of the
ion balance [Eq. (114)] is negligible, and (2) there must
be a large contrast in the dielectric constant between the
grains and the electrolyte so that by as defined by Eqs.
(134)—(136) is negligible. Both of these conditions are

P =P~+Pe) (144)

(145)

the boundary-value problem is then separated as

V vm+ —v
i Vp

7l
(146)

i.e., the m stands for fields induced by b, P/H, while the
e stands for fields induced by b,P/H. Introducing the
viscous skin depth (units of length)
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AP, z=H,
0, z=0, (147)

will hold regardless of frequency; i.e., ]0 vf/Bg
~

]iv", /h
~

throughout the double layer. To this must be
added the homogeneous solution %exp(i / y/b), which
then gives the general frequency-dependent fiehi

7l rl

eoKf @0 ( i'~'y/b

7l 0 (157)

0, z=H,
0, z=0. (149)

Note that if the Debye approximation 4' (exp( —y/d)
is used in Eq. (152), the solution, regardless of the value
of d/b, is

(150)

everywhere and for all frequencies. In the limit of very
low frequencies (8 ~ oo), the How velocity v, o is

v, o ——— (4 —()VI'
fl

(151)

Wealsohave that v = v, = Oon S and V. v
V ~ v, = 0 everywhere.

The electrically induced Bow problem is treated first.
Because the electrical body force inducing Bow only acts
in the thin double layer and is purely tangential to S
we have that n Vp, = 0 on S so that

C,o (ea ~ y/b~~
Debye eowf & Vl

q 1 y id2/h' H
' (158)

The two results are consistent to order d/8. Because of
Eq. (155), we only bother to retain terms to order d/b
throughout what follows.

The mechanically induced Bow problem is less
tractable because the vorticity is not always confined
to a thin boundary layer near S . As is explained at
the start of the next section, we only have need of the
low-frequency and high-&equency solutions defined by
whether the inertial term is significant or not. The tran-
sition frequency ft (in hertz) is estimated as

The only vorticity in this How field is present in the thin
double layer. Thus, for general frequency dependence,
the flow is governed by the boundary-layer-type equation

]V2v
] vy

27rpy [v [ 27rpfr
(159)

8 vz 'i epKy 8 4

where y is the local coordinate measuring distance nor-
mal from the grain surfaces (into the Huid). For water-
based electrolytes at room temperature, the Debye length
in meters goes as d = 3 x 10 io/~C where t is salt con-
centration in moles per liter, while the viscous skin depth
goes as 8 = 4 x 10 4/~ where f is frequency in hertz.
Thus, these lengths are related as

g(r) AP
v Dr (160)

where r can be taken as a typical pore radius. For water
and r = 10 s m, this gives fq 2000 Hz.

When f « ft (low frequencies), the vorticity extends
throughout the Buid and the inertial term is everywhere
negligible. The Buid Bow and pressure fields can be rep-
resented as

d—= 10
AP

p-0(r) =h(r) ~ (161)

» 1Q mol/liter, (154)

Taking f = 10s Hz (the largest possible frequency) it is
seen that as long as

where g(r) has the units of length squared and h(r) has
the units of length and both are independent of fluid

properties. These pore-geometery functions are solutions
to the fundamental Stokes problem [obtained from Eqs.
(146) and (147) and V v = 0]

we will always be in the regime where V' g=Vh, (162)

(155) V h, =O,

This condition on concentration will always be met in
rocks. Even if a sample is saturated with distilled water,
after the water has come to equilibrium with the grains,
the condition should again be fulfilled. Thus, the partic-
ular solution

g=0 onS,

0, z=H,
0, z=0.

(164)

(165)

aping
e H (156) ln general, n Vh (= n V'2g = —n. V x V x g) g Q on S~,
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so that h g I'. The only way for n. Vh to be everywhere
zero on S is if all the pores are constant-width channels,
e.g. , h = z. Nonetheless, it proves convenient to express
the h function as

h = I'+8h,
where bh therefore satisfies

V'bh = 0,

(166)

(i67)

n V'bh= —n VxV'xg onS, (168)

0, z=H,
0, z=0. (169)

AP
(r) = I (r)

This leads to the boundary-layer equation

82v i V'I' 6P

Taboo

K tx
which has the solution

(i70)

(171)

2

(I —.'"' ~"~ Vr . (172)
g E ) H

All the pore-scale fields required to obtain the
macroscopic-transport coefficients have now been de-
fined.

Vmoo—

V. TRANSPORT COEFFICIENTS

The source for the bh field is the rotation of vorticity
on the pore walls. As will be seen, the existence of
the Stokes-How geometery field g is all that is needed
to establish relations between the various macroscopic-
transport coefficients. Explicit expressions for g (or h)
will not be required.

Continuing now to the case f )) fq (high frequencies),
the vorticity is confined to a thin boundary layer of thick-
ness b. The How in this boundary layer is like How past
a planar wall and, accordingly, has the property that
n Vp = 0 on S . Thus, the high-frequency pressure
field p is simply

L-(~) = L.(~) (i77)

p =p+.,~, (V E,)rI bP
(178)

one ends up with the result that both k(tu) and L(u)
have all their poles and zeros on the negative imaginary
~ axis (for a thin double layer where Vl' is perpendic-
ular to the double-layer variation). Thus the frequency
functions used to define k(m) and L(u) should also have
this property. Improper location of any singularities in
the complex u plane can lead to spurious contributions
from the residue theorem when we (inevitably) return to
the time domain via the inverse Fourier transform.

A. Conduction current J, and ey

The neglect of the deviations ng means that both J,
and ey are independent of &equency and that they do not
depend on the macroscopic-pressure variations. Both are
only proportional to E. If eg = —VI' AP/K is averaged
over the pore volume of the averaging disk, we have

for all frequencies. The only requirement used to arrive
at this statement of Onsager reciprocity is that double
layers are thin relative to grain sizes.

The &equency dependence in the coefficients is ob-
tained following the general procedure outlined by John-
son, Koplik, and Dashen as is now described. We have
obtained the pore-scale fields in the limits of high and
low &equencies. These fields will first be integrated to
give the high- and low-frequency definition of the trans-
port coefficients. The two limits are then connected by a
simple postulated function. Although there is nonunique-
ness in defining such a frequency function, it nonetheless
must satisfy certain properties on the complex u plane in
addition to the &equency limits on the real u axis. For
example, causality requires the coefFicients to be free of
zeros and singularities in the upper-half ~ plane. More
specifically, in Appendix A of their paper, Johnson, Kop-
lik, and Dashen have shown that the poles and zeros of
k(u) all lie on the negative imaginary u axis. Following
their argument exactly but using a modified pressure p'
given by [cf. Eq. (139)j

Using the pore-scale fields just developed on the aver-
aging disk, we must next evaluate the integrals defined
by J (conduction current), J, (streaming current), and
v (relative Huid How) in order to obtain the macroscopic-
transport coefficients. We will obtain 8ux-force relations
in the form

1
ef ——— Vpf dV

&y v,

1
QKAz + nl' dS

Vy s H

(179)

(180)

J —= P (J.+J.)
=0(~)E+ L (cu) (—Vp+i~pgu. )

(173)

(i74)
z+ — nI' dS

1

Vf g H (181)

w =—gPv (i75)

The macroscopic-electric field is E = —zb, P/K so that
(for isotropic media) we have

(—Vp + uspy )u+ L, ((u) . Ek((u)
(176)

1—
ef —— E, (182)

It is demonstrated in Appendix B that where
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= 1+—- nr dS.
Vf s

(183)
1 vr- vr dv,

Vf v,
(184)

The unitless parameter a is the Grst of three funda-
mental porous-material "geometery" terms and is often
called the "tortuosity. " It must be identical to the o.
defined by Johnson, Koplik, and Dashen which is

thus establishing an identity for the r field.
The average conduction current in the fluid J, [Eq.

(73)] is now

D L

J, = E —— V'I' dS ) (ezra) bg Nr (g) —Ng dg
Vf e=i II (185)

If we define must be identical to that defined by Johnson, Koplik,
and Dashen which is

and

i v'r ds
A Vfs (186)

vr-vr ds,
A Vf s

(189)

ezr@o l
C, = ) (ezra) bghfg exp

~

—
~

—1 dg,kT

then (for isotropic media) we have

(187)

(of 2C,+
E~~ o~~) (188)

The parameter A is the second fundamental porous-
material geometery term. It possesses the units of length
and is seen to be a weighted volume-to-surface ratio
where the dimensionless weight function z . 7'I' empha-
sizes the constricted portions of the pore space (i.e. , the
"pore throats" where the local field VI' is large in order
that V' Vl' = 0). It will be seen that this "A parameter"

thus establishing another identity for the r field. Note
that the integrands in Eqs. (186) and (189) cannot be
equated because I' is dependent on S

The parameter C,m is the excess conductance associ-
ated with the electromigration of double layer ions. For a
general multicomponent electrolyte with no restrictions
placed on (, an exact expression for C, requires a nu-
merical solution of the Poisson-Boltzmann equation fol-
lowed by a numerical integration. However, it is possible
to obtain an extremely accurate estimate by using the
Debye approximation Co = (exp( —g/d) in the following
manner. Define the dimensionless surface potential

(190)

and insert the Debye approximation into C, obtaining

z' — z'—
Z e

—g/d + g e
—2g/d g —3g/d +

21 31

L D
C. = p (ezz) bzAj exp ( Zze x~

)
—1 dh—

0

L D

(ezra) 2br JVg
0

Zg Zg=) (ezra) brAgd —Zr+ — + .
2x2! 3x31

(191)

(192)

«~6 12d ) (eze) bible exp
~

—
~

—1
2kT) (194)

For the special case of a binary symmetric electrolyte
(L = 2; zq ———z2., Afq ——Afq) this gives

C, = 2d(ezra) Nj (bq + b2) cosh
~ ~

—1
q2kT g

+(bx —b2) sinh
«zzCI
i2kT)

(195)

It turns out that this is the exact result using the ex-
act analytic expression for 4 given in Appendix A for

l

this special case. Remarkably, the approximation made
in the first expression for C, [Eq. (191)]is exactly com-
pensated by the approximate summation used to obtain
the final expression. This gives good confidence in the
above estimate of C, [Eq. (194)] for a general elec-
trolyte. Under conditions where ~ezra(/kT] (( 1, we also
have the Debye estimate

(196)
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Two terms of the expansion are retained here because if
all the bg are equal, the first term sums to zero.

in ezra/2kT (note that the first-order term vanishes from
bulk-charge neutrality) and obtain

B. Streaming current J, C —
~

1+2 (204)

We next consider the average streaming current in the
fiuid J, [Eq. (77)],

D

J, = dS V4 Vvdy,
&f s„o (197)

where V4s Vv = (BOO/By) (Bv/By). Because of the
separation into an electrically induced 6eld v, and a me-
chanically induced 6eld v, we also have J, = J„+J,

Focusing on the electrical portion first with v, given
by Eq. (157) gives

2COS E
A

(198)

where

(epKy) 84 8 0
~

p/&xys)~

n 0 Bx Bx

(199)

C, represents the conductance due to electrically in-
duced streaming (convection) of the excess double-layer
iona. This may be called the "electro-osmotic" conduc-
tance. Because 6 » d, the variation of the exponential
across the double layer is negligible and we have

where the definition of the Debye length has been used.
This is valid whenever ~ezra(/2kT~ && 1. Alternatively, if
the Debye-approximation fiow field [Eq. (158)] is used
in J, along with 40 = (exp( —y/d), then we obtain the
Debye approximation estimate CD' "' that is valid (if
~ezra(/2kT~ && 1) regardless of the d/6 magnitude:

CD.by. (o ~) &
~

1 sy2

2' q 6&
(205)

Thus, when terms only to first order in d/6 are kept, Eqs.
(204) and (205) are seen to be consistent.

It is important to note, however, that the &equency
dependence de6ned by C, ~' has no singularities in the
complex u plane; nor can it lead to there being zeros of
o'(u) as long as analysis is carried out on a Riemann
surface (there is a branch point at the origin due to
6 = gupy/iv that must be respected). Contrarily, the
frequency dependence of Eq. (204) can lead to 0 (td) hav-
ing zeros in the upper-half ur plane (ul & 0); i.e., C, can
be a real negative number when ul & 0. Causality re-
quires that 0 (ur) be free from zeros or singularities when
ul & 0. Thus, because we are only developing a theory
to first order in d/6, we can rewrite Eq. (203) as

is~'
C..=("") (" +

I

4
I

dx. (200)
6 s (By)

(ep~f)2(2 ( 2is~2 d'l

2dg g P 6) (206)

We can obtain a nice approximation for the integral here
using exactly the same procedure as for C, . Starting
with the Poisson-Boltzmann equation

where the dimensionless parameter P is greater than or
equal to 1 and is defined as

«c
(

«z o't~
o L

r exp
By eowy kT (201)

P= 8kTd2 . ( ezra(l
exp — —1

epoxy(2 ( 2kT )
(207)

both sides are multiplied by 84's/By and the equation
integrated to give

I'BO 'I 2kT ~.~
Bg j eoKy kT

(eo~y) z 4kTd . ( ezra()
08 exp — —1

~7 [

ap�ing

( 2kT )
~3/2

(2 (203)

There is a weak frequency dependence through the pres-
ence of the skin depth 6 = gg/pyu in the last term. It
provides insight to expand the exponent to second order

Integrating this over the double layer using the sequence
of steps defined by Eqs. (191)—(194) then gives the esti-
mate

P goes to one when ~ezra(/2kT~ && 1. This estimate leads
to no problems when ~r & 0.

Finally, we compare the electroosmotic conductance
C, (at frequencies where d/b can be completely ne-
glected) to the double-layer electromigration conduc-
tance C, for the special case of a binary-symmetric elec-
trolyte with bi ——b2 ——b (e.g. , KC1). At room tempera-
ture we have

C,
C,

2E'pKf kT 1

(ez) 2iIb 2
' (208)

Thus, we have the important conclusion that CQS con-
tributes nearly as much as C, to the total conduction
and should, therefore, not be neglected.

The mechanically induced streaming current is now de-
termined. If the identity V40 Vv = V (OsVv )—
O' V' v is introduced into Eq. (197), then, because
V' v (uii&eke V' v, ) varies negligibly across the thin dou-
ble layer compared to 4, we have
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d. = (n Vv —d'V*v
) dS,

f s„
where the length d is defined as

(209)
thus confirming the form of Eq. (217). Note that the

general estimate [Eq. (217)] involves d while the Debye
estimate involves d.

(X) d
o

(210)

pJ o = L p (
—Vp + iodpyu, ), (211)

where the subscripts Sm0 stand for "streaming, mechan-
ical, and low &equencies" and where the low-&equency
coupling coefficient L p is

For the Debye approximation, we have d = d while, in
general, d & d.

As previously discussed, the mechanically induced flow

separates into low-&equency and high-&equency regimes.
Starting at low frequencies, we insert Eq. (160) into Eq.
(209) and obtain

C. Relative flow v

The average value of the relative fluid flow v can
be separated into electrically- and mechanically-induced
portions v = v, + v, as well as analyzed in the lim-
its of low and high frequencies. Furthermore, it can be
evaluated either by directly averaging the pore-scale field
or by utilizing the averaged-force balance [Eq. (96)] and
evaluating the drag integral d and the electrical body
force fg. It is more efficient to simply volume average the
pore-scale field.

Consider first the mechanically induced flow. In the
limit of low frequencies, a direct averaging of Eq. (160)
gives

epKy( z t'I, = —d . —. ~n Vg —dVh) dS,
g Vf s E

(212)

kp
Qv~p = —(—Vp + zldpyus),

where P is porosity and

(219)

where V2g = Vh [Eq. (162)] was used. If V2g = Vh is
integrated over the pore volume and h = I'+ 6h intro-
duced, one obtains

R 1
n V'g dS = + — n hh dS. (213)

Vf s o, Vf

Using this and the definition of A [Eq. (186)] in L p then
gives

spry( d' 'A

kp ———— i.I dV.
Vf v,

(220)

(221)

The negative sign arises because g, by definition of its
boundary-value problem on the averaging disk, is di-
rected on average in the —i direction. The parameter
kp is the dc permeability and is our third and final pore-
geometery parameter.

In the limit of high frequencies, Eq. (172) is directly
averaged to give

+a —
~

nhh —d V6h
~

dS .
Vf s )

(214)
where

%e leave this low-&equency definition for now and will

consider it again after L,p has been defined.
At high &equencies, the coupling coeffcient L is

obtained by inserting Eq. (172) into Eq. (209) which
gives

k =ih P V'I'dV —— VT dS
Vf s
D„

x e' ~~ dy
p

(222)

QJ, = L (—Vp+ z(upyu, ), (215)

where

tpKy(
moo

7/

dlf1+i l
') (216)

~)

= h'
~

1+2'~' —
~

hl
A)

(223)

(224)

= —2
~prf( i'~ b

n g A
(217)

Equation (217) leads to no problems when odl & 0 (again,
the branch point at the origin must be allowed for) and
is the estimate to be employed. Note that if the Debye
approximation is used, then, regardless of the d/b ratio,
we have

In the high-frequency limit (h ~ 0), Eqs. (224) and (223)
are equivalent; however, Eq. (224) leads to no problems
when odl & 0 (as long as the branch point at the origin is
respected). The distance D„in Eq. (222) can be taken
as a few viscous-skin depths.

Next, Eq. (151) for the low-frequency electrically in-

duced flow is integrated to give

' '8 ('1 .», d t

E' (218)
Pvo=LoE,

where the low-&equency coupling coefficient L p is

(225)
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(CP -q) srdV
Vf v,

(100 'l7 ( A )

(226)

(227)

Pa

noh dS = 0,
Vf s

(228)

Comparing this expression to Eq. (214) for L p and
using Onsager reciprocity (L, = L ) as independently
derived in Appendix B, then gives the identities

and
1

2 2
L(ur) u m t d ~ & .s~2- upzi

1 —i ——1 —2 —
~

1 —i d
Lp ~t4 i A) i &)

(237)

are two possible functions that simply and smoothly con-
nect these &equency limits. These functions have the
correct behavior on the complex cu plane. The transition
&equency uq separating low-frequency viscous Bow and
high-frequency inertial Bow is defined as

P

Vbh dS = 0.
Vy

(229)

9
cl'~kp py

The dimensionless number m is defined as

(238)

When these are introduced into Eqs. (213) and (186),
we have the apparently new results involving the Stokes
Bow:

A
kp

(239)

Z
n VgdS=

Vf
(230)

and consists only of the pore-space geometery terms. The
low-&equency coupling coefficient Lp is defined

P

V2g dS =
Vf

(231)

4»e~ = Le~E) (232)

where the high-frequency coupling coefficient is

D,
Vr dS

Vf s 0

D @—dx

Heretofore, 0, and A were defined solely in terms of the
potential field I' (e.g. , as in Ref. 15).

In the high-frequency limit, Eq. (157) is voluine inte-
grated to give

ep~y( d(
(x))o 'g ( A )

(240)

All the remaining parameters have been defined in the
previous sections.

Despite the negative sign in its definition, Lp will lead
to positive streaming-current densities for positive val-
ues of —V'p. This is because the ( potential is negative
when the diffuse layer contains excess positive charge and
positive when the diffuse layer contains excess negative

charge. Note also that the correction term 1 —2d/A is
only valid under the thin-double-layer assumption and at
most represents a correction of a few percent. We do not
have that Lp ~ 0 as d ~ A/2. For the special case of a
single cylindrical tube of radius R, it easy to show (using
the Debye approximation) that the coupling coefficient is
given by

spry(
A~ g

i'i'b t'

1+i'i'-
A

I b)
(234)

Ltube
0

ep~y( I2(R/d)
Ip(R/d)

' (241)

spry(
g

It is seen that L, = L, thus providing a check on
the validity of this expression.

D. Final coefticients

k((u)

kp

ld 4 \ (d

~t m)
(236)

We have obtained above the low-&equency and high-
frequency limits of the coupling coefficient L (= L, = L )
and the permeability k. It is easy to verify that (note
h = Qg/pf(u)

where I2 and Ip are modified Bessel functions. In the
limit as R/d ~ oo (thin double layers), we have that
I2(R/d)/Ip(R/d) ~ 1 —2d/R. It will be seen that for
a cylindrical tube, A = R. Thus the form of Eq. (240)
is confirmed for this special case. However, when R/d =
2 (double layers half the radius of the tube), we have
that I2(2)/Ip(2) = 0.3, while the correction factor of Eq.
(240) would predict zero. Again, the thin-double-layer
assumption must be satisfied for the analysis of this paper
to be valid.

The above expression for k(u) is identical to the one
defined by Johnson, Koplik, and Dashen using energy
argiiments thus giving that the A defined by Eq. (186)
is identical to the A defined by Eq. (189).

The conductivity )r(u) of the material is defined by
Eqs. (173) and (174), which then gives [from Eqs. (188)
and (198)j
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o((u) = 2 [C-+C-(~)1+
ofA

(242)

The weak dependence on frequency comes only from the
electro-osmotic conductance and is due to the electrically
driven viscous-flow to inertial-Bow transition. The defi-
nitions of oy, C, , and C, (ur) are given by Eqs. (72),
(194), and (206), respectively. Again, it is emphasized
that C, is of the same order of magnitude as C, and
should not be neglected [Eq. (208)].

A central question is whether the pore-geometery num-
ber m is a universal constant for all porous media. Rear-
ranging the definition of m gives an equation for the dc
permeability:

V' x E =i~B,
V' x H = —i(uD+ J,

V . TIi = t—d (pgu, + pf W),

D=~p (Kf —K, ) + Kg E,
0.'~

B=ppH,

J =cr((u)E+ L(~) (
—Vp+(u pyu, ),

—zurw = L(ur)E+ (—Vp+ tu pfu, ),k(u)) 2

q

(248)

(249)

(250)

(251)

(252)

(253)

(254)

=1 2
kp ——— A .

mo (243)

There is both laboratory ' and numerical ' ' evi-
dence suggesting that when ko, P, cz, and A are inde-
pendently measured, m lies in the range

Tg=(K@V u +CV w)I
( ~ 2+a„(Vu. + Vu~ —-V u.I ),

—p= CV' u, + MV' w.

(255)

(256)

4&m&8 (244)

VI. SUMMARY

%'e now summarize the final form of the macroscopic
governing equations. All overbars denoting averaging are
dropped. For the problem of modeling the propagation
of coupled electromagnetic and mechanical disturbances
in an isotropic-porous material, the following equations
represent a complete set:

for a variety of porous media ranging from grain packings
to networks of variable-radii tubes. However, it is difficult
to independently measure A and o. in rocks that contain
significant amounts of clay so that the value of m in, for
example, shaley sandstones is uncertain.

In this work, we have developed expressions for kp, o.
and A. These can be expressed as

kp i
gdV

Vy v,
1 i

n VgdS
~

=1+— ni'dS ~,
Vy )

(246)
2 z, /' z

V g dS
~

= — VT dS
i

. (247)a A Vg s ( Vg s )
'

Note that n and A can also be defined by Eqs. (184)
and (189) as derived in Ref. 15. Although all three
pore-geometery terms are expressed as integrals of the
Stokes flow g [defined by Eqs. (162)—(165)],it has proven
difEcult to use these relations to make general corre-
lations between m and material types. It is trivial to
demonstrate that for a cylindrical tube of radius B with
axis directed in the zi direction (perhaps difFerent than
z), the Stokes-flow vector is (in cylindrical coordinates)
g = zi(r —R )/4, and Eqs. (245)—(247) satisfy Eq.
(243) with m = 8. In this particular case, we have A = B
as pointed out in Ref. 15.

(257)

and obtain the following complete set of static equations:

V-3=0,
V'-w=o,

(258)

(259)

All coupling is present in the transport equations [Eqs.
(251) and (252)] and comes from the coefficient L(u) If, .
for some re ~son, we want to calculate the macroscopic-
charge density p = P P& ezrnr induced in the porous ma-
terial by the above disturbances, we utilize the macro-
scopic statement of Coulomb's law p = V D, once D
has been determined; however, it is unclear why such a
calculation would be of interest. The definitions of o (u),
k(u), and L(u) have been given in the previous section
[Eqs. (242), (236), and (237), respectively]. There are
two distinct frequency relaxations present in the above
equations. One is in the transport equations and is due
to the transition from viscous Bow to inertial How while
the other is in Ampere's law [Eq. (249)] and is due to the
transition from ion transport J to dielectric-displacement
current —i~D.

Two interesting observations can be made concerning
the relaxation in the transport equations. First, k(ur) re-
laxes at the frequency urz [Eq. (238)] while L(ur) relaxes at
the frequency 4uz/m. Observation of the two relaxation
frequencies would provide an independent means for de-
termining m. Second, k(u) falls ofF as ur when u ) urz

while L(~) falls ofF as v)i~2 when ur ) 4~z/m. If it is

possible to stress the material with equal amplitude over
a wide range of frequencies, then

~

—Vp + ~ pyu,
~

in-
creases directly as u so that ~w~ remains constant above
uz while

~
J~ continues to increase (as u r ) above 4uz/m;

this states that there continues to be enhancement in
the wave-induced streaming current even above the re-
laxation frequency.

Finally, if fl.ow is being induced by applied pressure
gradients and electric fields that are steady in time, we

may set
E= —V4
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2(C, +C )
)

1 —2 — (—Vp)
epKy(

CX~ A

W=- P aping( d
(—V4) + —(—Vp),

kp

'g A 7l

(260)

(261)

where

CZg

kT
(A4)

This estimate of N&~ is quite accurate even when ]Zi] & 2,
i.e., even when the linearization of Eq. (Al) is not valid.
However, the linearized estimate [obtained by expanding
Eq. (A3)]

where the dc transport coefBcients have been explicitly
written out [ 0'y, C, , C „and d are defined by Eqs.
(72), (194), (206), and (210), respectively, with the skin-

depth term in Eq. (206) neglected]. When gravity ef-

fects are important, the pressure gradient in Eqs. (260)
and (261) must be generalized to Vp+ pyg, where g is
the acceleration of gravity. If it is known that the ap-
plied frequencies are greater than zero but less than the
above mentioned transition frequencies (i.e., quasistatic
disturbances), then Eq. (259) should be replaced by Eqs.
(250), (255), and (256). For hydrology problems in which
flow occurs due to externally applied quasistatic pressure
gradients or electric fields, if the material is highly consol-
idated so that Kf, &) Ky, it is further possible to ignore
the V u, term in Eq. (256) and replace Eq. (259) simply
by imp = MV m. Note, however, that this simplification
cannot be made (even if Kf, » Ky) if How is being in-
duced by mechanical (seismic) waves or by deformation
of the bulk-porous material in general.

In conclusion, it is emphasized that the above results
have been obtained by vobi~e averaging and not simply
postulated. Boundary conditions and wave properties for
the governing equations are discussed in Ref. 9.
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APPENDIX A: DOUBLE-LAYER DESCRIPTION

ezra@ 1+exp( —y/d) tanh[ezi(/(4kT)]= ln
2kT 1 —exp( —g/d) tanh[ezi(/(4kT)]

which gives

2kT . , ( QP
slIlh

ezra i 2ezi JVid )

(A8)

(A9)

As discussed in the text, we need to have a solution for
the Poisson-Boltzmann [Eq. (27)] next to a plane wall.
Writing the equation as

But this exact result is identical to our result [Eq. (A7)]
for this special case. This gives good confidence in both
Eq. (A7) and Eq. (A3) for more general electrolytes even
when i'] & 2.

0'c p

x
).(ezra) Afg 1 ezra

EpKykT 2! kT APPENDIX B: ONSAGER RECIPROCITY
(A1)

it is seen that if ]ezgg/kT] « 2, where ( = 4 (0) (i.e.,
the potential at the shear plane), then the equation lin-
earizes, and the solution is the Debye approximation

Op ( —~/d (A2)

where the Debye length d is given by Eq. (29). Using
this estimate, the ion-number densities are estimated as

In this appendix, Onsager reciprocity is derived for
&equency-dependent electrokinetic phenomena in porous
media satisfying the thin-double-layer assumption.

The general boundary-value problem on the averaging
disk for mechanically induced flow v is given by Eqs.
(146) and (147). Note that the problem can also be stated
as

Nq —JVi exp (
—Zge

) (A3)
f AP)

gV v +i~pyv = V
~

by~+I' (B1)
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where bp = 0 on the disk faces. The problem for the
electrically induced How v, is rl i: (Vv . v, —Vv, . v ) dS

z=H

gV' v, +iu)Pfv, = VP, +P VI'o &4
(B2)

—rl i: (Vv . v, —Vv, v ) dS
z=0

where p = 0 on the disk faces and p is the excess-charge
density in the difFuse double layer (p = g& i ez&Nt ).
We also have that V v = V' v, = 0 everywhere and
v~ = v~ = 0 on S~.

If v, is dotted into Eq. (Bl) and v is dotted into Eq.
(B2) and the result subtracted and integrated over the
pore volume Vf, one obtains

( b,Pz. iv, —pv
i

dS.
H H )

If the material has no significant macroscopic variation
over distances H so that the distribution of grains (and,
therefore, now) near z = 0 is similar to that near z = H,
then the two integrals on the left-hand side will cancel
(one may additionally establish that each of the integrals
on the left-hand side individually goes to zero). Thus,
we have

V [rl(Vv v, —Vv, v )+bp v, —p,v j dV~ ~ ~

Vy

H z iv, —pv
i

dS=O.( bP o AQUA
c H TA (B3)

( AP
V I'iv, —pvv[ &'H H)

The definitions of the cross-coupling coefBcients L, and
L are now introduced:

Z
v, dV

Vf v

We have used the identities V (Vv v, ) = (V2v )
v, + Vv, : (Vv ) and Vv, : (Vv ) = (Vv,):Vv
plus the fact that V v = V v, = 0. Because Eq. (B2)
is only valid in the thin-double-layer approximation, we
are justified in setting Vpo v = 0 (the two vectors are
orthogonal when double layers are thin). The divergence
theorem plus the boundary conditions then gives

and

AP
z j =L

p v dV.
f vy

We can thus form
I

p v idV

—pv
I

dV0

—pv idS,

Agb, P „(b,P
Vy (I., —L )=i:

~

v, —pHH'v(H
( AP

V z~v,
v, q H

AP

where the thin-double-layer assumption Vp v = 0 was used again. Thus, from Eq. (B3), the desired result
L, = L is arrived at.
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