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Ab initio calculation of the structural and electronic properties of carbon and boron
nitride using ultrasoft pseudopotentials
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We present ab initio calculations of the structural, cohesive, and electronic properties of various
polymorphic forms of carbon and boron nitride. Our calculations are based on ultrasoft pseudopo-
tentials and a variational approach to the solution of the Kohn-Sham equations. Optimization of
the atomic geometries is performed using total energy calculations and by minimizing the energy
via a quasi-Newton quench using the Hellmann-Feynman forces. Special attention is devoted to the
convergence of the results with respect to the plane-wave basis. The entire set of structural energy
differences calculated in our work is in good agreement with the most accurate results obtained
using a variety of different techniques —our results represent a consistent set of data based all on the
same potential. We show that the use of ultrasoft potentials allows one to achieve accurate results
with low cutoff energies (and hence small basis sets).

I. INTRODUCTION

In recent years, the physical and chemical properties
of carbon and boron nitride have been studied in great
detail, both theoretically and experimentally. This is
mainly due to the fascinating properties of the cubic
phases of these materials, such as extreme hardness, high
melting point, low dielectric constant, large band gap,
etc. , that have many applications in modern microelec-
tronic devices and as a protective coating material.
Both C and BN occur in different crystallographic forms
with strikingly different physical properties. The natural
forms of C are graphite (occurring in a hexagonal struc-
ture intermixed with 5—15 Fo of a rhombohedral stacking
variant4) and diamond. Diamond is known in its natural
cubic crystal structure and in a hexagonal form which
may be synthesized from graphite. Possible phase tran-
sitions at very high pressures (in analogy with the high-
pressure behavior of the other group-IV semiconductors)
have been discussed. ' BN exhibits solid phases simi-
lar to those of carbon. Normally BN is found in the
hexagonal (graphitelike) phases with a two-layer stack-
ing sequence, but a rhombohedral form with a three-
layer stacking also exists. The denser zinc-blende and
wurtzite forms are similar to cubic and hexagonal dia-
mond and may be synthesized under static and dynamic
compression. Amorphous forms of both C and BN
may be prepared by chemical vapor deposition or sputter
deposition, the physical and chemical properties depend-
ing strongly upon the conditions under which the thin
films have been prepared.

From the theoretical side, the structure and phase
stability of materials may be investigated using total-
energy and electronic-structure calculations based on the
local-density approximation (LDA) to density-functional
theory. One of the most popular methods uses the
pseudopotential approximation and plane-wave basis
sets. ' In recent years, this technique has gained par-

ticular importance because, with the development of the
Car-Parrinello molecular dynamics schemes and of ef-
6cient conjugate-gradient techniques, it has become
possible to study very large systems suitable for studying
surfaces, interfaces, and defects in crystalline materials
and amorphous materials. However, even with modern
computer performance, the application of this technique
to materials such as the transition metals or erst-row el-
ements is still difFicult due to the enormous number of
plane waves needed to represent the sharply peaked va-
lence states arising from the strongly attractive electron-
ion pseudopotentials. For this reason, total-energy meth-
ods working in an augmented-plane-wave or local-orbital
basis are of particular importance for these materials.

The structural phase-stability of carbon has been
studied using pseudopotentials in a plane-wave ' '

or local-orbital basis, ' using the linear mufEn-tin
orbital2s (LMTO) and full-potential linear augmented-
plane-waveso (FLAPW) techniques. The results ob-
tained using the various techniques lead to a rather con-
sistent picture of the cohesive properties of the graphitic
and diamondlike phases, and for the phase transitions
occurring under very high pressure, although the results
have been obtained using different potentials and basis
sets. A completely consistent set of structural energy dif-
ferences (calculated all using the same technique) does
not exist as yet. The difEcult point remains to determine
the extremely small structural energy difference between
hexagonal graphite and cubic diamond. The calculations
predict the cohesive energy of graphite to be slightly
smaller (by 0.009 eV/atom) than that of diamond
so that the observed stability of graphite would be at-
tributable to a lower vibrational free energy, even in the
low-temperature limit (the difference in the zero-point
vibrational energies calculated &om the experimental
phonon densities of states ~ 2 is —0.01 eV/atom). It is
true that these extremely small energy differences even-
tually exceed the accuracy of the calculations.
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The situation for boron nitride is more complex.
Calculations of the structural and cohesive properties
of the various polymorphs have been performed using

pseudopotentials and plane waves, pseudopotentials
(PP's) and a localized basis, s the FLAPW method, ss sr

and a tight-binding (TB) technique. ss Whereas the PP
calculation predicts a lower energy for the cubic phase

(by 0.12 eV/atompair) so that the observed phase sta-
bility of the graphitelike phase would again be at-
tributable to differences in the zero-point energies, the
TB calculation 8 predicts that the total electronic en-

ergy of the hexagonal phase is lower by as much as 0.70
eV/atom pair.

In the present paper we return to this problem. We
present extensive investigations of the phase stability of
carbon and boron nitride, based on a pseudopotential
with optimized plane-wave convergence. In Sec. II we
review very brie6y the construction of the "ultrasoft"
pseudopotentials and the formalism for calculating to-
tal energies, forces on atoms, and stresses. Sections III
and IV describe our results for the structural and elec-
tronic properties of C and BN, respectively. In Sec. V
we present our conclusions.

IX. ULTRASOFT PSEUDOPOTENTIALS

Attempts to solve the convergence problems that arise
in the application of pseudopotentials with plane-wave

(PW) basis sets to transition metals and first-row ele-
ments have been made on two different levels:

(i) It is now generally agreed that it is most converuent
to construct the pseudo-wave-functions directly. For a
continuous pseudopotential, the pseudo-wave-functions
4~' must be at least two times continuously differen-
tiable at the cutoff radius R, ; i.e., the ansatz for 4~' must
contain a minimum number of four adjustable parame-
ters if in addition the conservation of the norm of 4~'
is required. 39 Additional parameters are introduced
with the aim to improve the convergence of an expan-
sion of 4,. ' in a basis of plane waves. A very differ-
ent scheme for optimizing normconserving pseudopoten-
tials has been introduced by Rabe, Rappe, Kaxiras, and
Joannopoulos (RRKJ),4s based on the observation that
the convergence of the total energy of a solid with the cut-
off energy of the basis set mirrors the convergence of the
total energy of an isolated pseudoatom and that total-
energy convergence and kinetic-energy convergence are
similar in the limit of high cutoff energies. Very recently,
the RRKJ scheme was reexamined by Lin et al. and
Kresse and Hafner and it was shown that the minimal
form of the RRKJ ansatz, representing 4~' for r & B, in
the form of a linear combination of three spherical Bessel
functions ji(q;r) [with the q s chosen such that the log-
arithmic derivative of ji(q; r) joins smoothly to the log-
arithmic derivative of the all-electron orbital 4+ at R
and that there are (i —1) nodes within r ( R,j already
optimizes the PW convergence of the pseudopotential for
a given cutoff radius R . Increasing R helps to reduce
the cutoff energy E,„t, but reduces the transferability

and accuracy of the pseudopotential.
(ii) Vanderbilt4s'4s pointed out that the main obsta-

cle to a further increase of R, (and hence a reduction
of E,„q) is the requirement of norm conservation, forcing
the pseudo-wave-function to reproduce the sharp peak
of the all-electron wave function. Dropping the norm-
conservation constraint, however, makes the logarithmic
derivative of 4,-' deviate rather quickly &om its all-
electron value as the energy moves away Rom the ref-
erence energy. Vanderbilt proposed to improve the log-
arithmic derivative by fitting not just one, but at least
two different reference energies and to use a small set
of localized functions ("augmentation functions" ) to de-
scribe the charge-density deficit created by the violation
of the norm. It has been shown that the new ultrasoft
pseudopotentials with large cutoff radii and low cutoff'
energies are as accurate as norm-conserving pseudopo-
tentials.

A. Construction of ultrasoS pseudopotentials

The all-electron eigenvalues e„and wave functions
I4„) of the atomic reference state are defined by the
Schrodinger equation (in the following we use the nota-
tion 4 for all-electron wave functions and 4 for pseudo-
wave-functions; n is a shorthand notation for a set of
quantum numbers)

For the construction of the ultrasoft pseudopotential
we define the following quantities4" s4 (V~, is the local
part of the pseudopotential which may, in principle, be
chosen arbitrarily):

(2)

(4)

q„(r) = 4' (r)@„(r)—O' (r)4„(r),

(6)

D„=B„+e Q„

It can be shown that the pseudo-wave-functions satisfy
the generalized eigenvalue relation
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with the overlap matrix S defined in (8) and the nonlocal
pseudopotential with

(i6)

VNL = ) D„ lp )(p„l.
A ym

(10)

The total valence charge density n(r) is given as the
sum of a smooth part described in terms of the pseudo-
wave-functions ICI, &

and a localized part described in
terms of the augmentation function Q„(r) [see Eq. (5)],

[where V)'," and the augmentation part of n(r) are given
by the sum over the individual ionic contributions &om
the sites R ] and

OCC

n(r) = ) 4,"( )4"( ) + ).a-( )(4"I&-&(P-IC")

(»)

Equations (11), (8), and (6) show that the ultra-
soft pseudo-wave-functions satisfy a generalized norm-
conservation condition

(c' ISI@ &~. = (@ I@ &R. (12)

and this may be used to demonstrate that the logarith-
mic derivative of the pseudo-wave-functions fits the all-

electron value not only at the reference energies, but also
around these energies. Finally, the ionic pseudopotential
is obtained using an unscreening procedure

D =D ' + Vscr „rdr
The solution of the Kohn-Sham equations has been

performed using the vAsp (Vienna ab initio simulation
program) which performs a variational solution using
a preconditioned conjugate-gradient technique. With
the ultrasoft pseudopotential, only a low cutofF energy

E,„t,——2" Q2„~ is necessary. The action of the local poten-
tial on the smooth part of the charge density can be cal-
culated using a relatively coarse fast-Fourier-transform
(FFT) grid which must contain all the wave vectors up
to Q = 2Q,„q. Nonlocality is handled in the real-space
projection scheme. A finer grid is necessary to represent
the augmentation charges and the Hartree and exchange-
correlation potentials.

One of the consequences of the introduction of ultrasoft
pseudopotentials is that the gradients of the energy with
respect to the orbitals are now given by

) = (a —&-s)le-& (19)

and

D„'" =D — Vj, r r d r. (14)

B. Total energies and Kohn-Sham equations

Variation of the total energy of a solid with respect to
the I4) under the constraint

OCC- c,-sc,- (15)

leads to the Kohn-Sham equations

In actual calculations, it is advantageous to "pseudize"
the all-electron wave functions 4 (r) entering the ex-

pression for the augmentation functions Q „(r) [Eq.
(5)]. This may be achieved via an expansion in a basis
of localized functions or by replacing the all-electron
orbitals 4 (r) by very accurate, "hard-core" norm-

conserving pseudo-wave-functionss4 CIN+(r) with a small
augmentation radius B „g.

(for a Hamiltonian that is diagonal in the subspace
spanned by the I4„&; for the general case see Ref. 54).
The gradient defined this way is no longer orthogonal to
the orbitals, i.e. , (CI„ ISlg„& g 0. We solve this problem

by explicitly orthogonalizing the preconditioned search-
ing vector, using the preconditioning functions K of Ref.
21,

(20)

The preconditioned gradient is used in conjunction
with a sequential band-by-band optimization of the
Hamiltonian. After running over all bands, a subspace
diagonalization is performed, the Fermi energy is calcu-
lated and charge density and potential are updated using

a modified Broyden mixing.
Brillouin-zone integrations have been performed on a

grid of Monkhorst-Pack special points. To improve the
convergence of the k-space integrals, we used the finite-

temperature version of the LDA, with the ex-

pressions for the electronic free energy, entropy, and frac-
tional occupancy corresponding to a Gaussian broaden-

ing of the one-electron levels. ' The variational quan-

tity is now the free energy; it is minimal with respect
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to changes in the orbitals, the chemical potential, and
the fractional occupation numbers. The Gaussian broad-
ening greatly improves the convergence of the Brillouin-
zone integration and the use of the electronic &ee energy
as the variational quantity, together with fractional oc-
cupancies and improved mixing, guarantees the conver-
gence of the iterative eigenvalue determination.

C. Forces on atoms, stresses

For the optimization of the structural parameters, we
used a quasi-Newton quench based on the Hellmann-
Feynman forces. It has been shown ' that even within
finite-temperature LDA, the Hellmann-Feynman forces
are still given by the derivatives of the energy (not the
free energy). This is a consequence of the stationarity
properties of the free energy. Due to the dependence of
the overlap operator and the augmentation charges on
the positions of the ions, additional terms appear in the
Hellmann-Feynman forces. 6 For a mixed-basis set, this
case was treated by Goedeker and Maschke. In the same
way it is possible to calculate the stresses acting on the
unit cell; for details see Ref. 54.

D. Application to the 2p elements C, B, and N

We have performed extensive tests of the accuracy,
transferability, and convergence properties of the ultra-
soft pseudopotentials for C, B, and N (a small part of the
tests for C has been reported in Ref. 47). We used an
ultrasoft pseudopotential with two projectors ( = two ref-

erence energies s, „)for the s and p components (cutoffz(2)

radii R, , and R, „) and a potential with a single refer-
ence energy (radius R, q) for the d component. The aug-
mentation functions for the s and p-wave functions were
calculated using a norm-conserving (NC) pseudopoten-
tial with small cutoff radii R „g, and R g p Various
forms have been tested for the local potential Vj,.

For the choice of the local potential, the d pseudopo-
tential or the all-electron potential cut at some small dis-
tance gave excellent results. The precise choice of the
two reference energies per angular momentuxn coxnpo-
nent turned out to be rather uncritical, as long as both
energies fall within the energy range of interest. The fi-
nal choice was for the atomic 8 and p eigenvalues e, „and
the second reference energy about halfway between the
atomic eigenvalues (equal for the s and p components);
the d reference energy has been chosen within the upper
region of the valence band, corresponding to an unbound
state. With this choice, the logarithmic derivatives of the
pseudo-wave-functions at a radius comparable to the in-
teratomic distance in the solid are indistinguishable &om
the all-electron values over an energy range of +15 eV
&om the atomic eigenvalues.

The augxnentation functions are the xnore accurate
the smaller the augmentation radii R „s, (i = s, p).
A reduction of R „g,, however, increases the computa-
tional effort, since a finer grid for the representation of

the augmentation functions is required. We found that
Raug, s = 1.3 a.u. , Raug, y = 1.2 a.u. , Rsug, g = 1.3 a.u.
leads to very accurate results. A reduction of all augmen-
tation radii to 1.0 a.u. changes the equilibriuxn atomic
radius of diaxnond by less than 0.003 a.u. , the cohesive
energy by less than 0.01 eV/atom, and the bulk modulus
by less than 0.005 Mbar.

The most important parameters influencing the trans-
ferability and convergence of the pseudopotential are the
cutoff radii of the ultrasoft (US) pseudopotentials. The
most direct way to test the convergence properties is to
perform supercell calculations for a single atom with a
plane-wave basis —this allows us to separate neatly con-
vergence and transferability. Figure 1 shows the abso-
lute convergence of the total energy of a C atom (rela-
tive to an all-electron calculation) for a norm-conserving
PP (with the cutoff radii equal to the augmentation
radii) and a series of ultrasoft PP's with varying cutoffs.
Each potential is characterized by the value for R, „,and
R...= R,,~

—0.2 a.u. (for R, ~ ) 1.6 a.u.), R...= R, z
otherwise, and R, &

——R, z. Convergence within 0.001
eV requires a cutoff energy of E,„q ——1200 eV for the
best ultrasoft potential (R, z

——1.4 a.u.). However, these
are unrealistically tight limits. Convergence with 0.01 eV
requires a cutoff of 950 eV for the norm-conserving po-
tential, but this is reduced for the ultrasoft potential to
500 eV (for R,,~ = 1.4 a.u. ) and to 230 eV (for R,,„=1.8
a.u.), respectively .

The problematic point with the extremely soft poten-
tials is their transferability. Figure 2 displays the abso-
lute convergence of the cohesive energy of diamond for
the same series of pseudopotentials. , Convergence within
0.01 eV/atom is achieved at E,„t ——950 eV for the norm-
conserving pseudopotential and E,„q ——600 eV for the ul-
trasoft pseudopotential with R, z ——1.4 a.u. In this case
the fully converged values agree within 0.005 eV/atom.
With a larger cutoff radius, relative convergence may be
achieved at even lower energy (e.g. , at E,„t ——330 eV
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FIG. 1. Convergence of the calculations of the total energy
of a free C atom in a basis of plane waves against the cutofF
energy E,„„siuangnorm-conserving (NC) and different ul-
trasoft (US) pseudopotentials. The US pseudopotentials are
characterized by the value of the p cutoff radius (in a.u.); cf.
text.
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TABLE I. Equilibrium values of the lattice constant a, co-
hesive energy Eo, bulk modulus B, and its pressure deriva-
tive B' for cubic diamond, calculated using difFerent ultrasoft
pseudopotentials and the minimum recommended cutoff en-

ergy E,~&.

PP
R, ,(p) (a.u. )
NC
US (1.4)
US-d' (1.4)
US (1.8)
US-d (1.8)
US (2.0)
US (2.1)
US (2.2)

E,„s (eV) a (A) Eo (eV) B (Mbar) B'

1100
600
600
300
300
240
200
170

3.527
3.528
3.528
3.532
3.530
3.536
3.544
3.544

9.032
9.026
9.026
8.994
9.004
8.993
8.899
8.789

4.61
4.59
4.60
4.61
4.60
4.67
4.39
4.38

3.67
3.67
3.67
3.65
3.64
3.47
3.57
3.67

Norm-conserving pseudopotential.
Ultrasoft pseudopotential with the all-electron poten-

tial, cut at a distance of r = 0.8 a.u. as the local poten-
tial; cutoff radius given in parentheses.
'Ultrasoft pseudopotential with the d-electron pseudopo-
tential as the local potential; cutoff radius given in paren-
theses.

for R, „= 1.8 a.u. to within 0.02 eV/atom), but the
difference in the converged values relative to the norm-
conserving potential is now 0.013 eV/atom, indicating a
loss in transferability. For extremely large cutoff radii
(R, ~ ) 2.1 a.u. ), transferability is evidently limited.
However, other structural and cohesive properties are
much less affected than the cohesive energy. Table I sum-
marizes the cohesive properties for diamond, calculated
using ultrasoft pseudopotentials with increasing cutoff

0.40

0.30—
O

0.20

0.10
bQ

0.00

I

s '\

\

14
1.6
18
2.1

radii, different choices for the local part of the potential,
and the minimum recommended cutoff energy for each
potential. We find that increasing the cutoff radius to a
value as large as R, ~ = 2.0 a.u. (bringing the necessary
cutoff energy down to E,„s ——240 eV) affects the equilib-
rium lattice constant by atmost 0.2%, the cohesive energy
by 0.4'%%uo, and the bulk modulus by 1'%%uo, i.e. , hardly beyond
numerical uncertainty (which arises mainly from the in-
terpolation of the energy vs volume data using a Mur-
naghan equation of state ). Even these small changes in
the cohesive energies reflect mostly a constant, structure-
independent shift rather than a limitation in the predic-

s I s s s I s s ~ I s s s I

200 400 600 800
plane-wave cutoff energy (eV)

FIG. 2. Convergence of the total energy of diamond (rel-
ative to the result obtained using the norm-conserving pseu-
dopotential) for difFerent ultrasoft pseudopotentials. Same
notation as in Fig. 1.

TABLE II. Structural energy differences AE for carbon (in eV/atom), calculated using different pseudopotentials (for
nomenclature see Table I).

(a) Energy difFerences relative to the diamond structure

Structure

fcc
bcc
sc

-tin
bc-8
hexagonal diamond
hexagonal graphite

NC

4.6524
4.3544
2.6354
2.7326

US
(1.4)

4.6485
4.3510
2.6336
2.7307
0.6894

0.0002

US-d
(1.4)

4.6482
4.3505
2.6328
2.7299
0.6896
0.0287

-0.0004

Pseudopotential
US

(1 8)
4.6337
4.3375
2.6284
2.7287
0.6889

US-d
(1.8)

4.6401
4.3433
2.6282
2.7268
0.6905
0.0281
0.0028

US
(2.0)

4.6427
4.3450
2.6260
2.7227
0.6864
0.0293
0.0251

US
(2.1)

4.5722
4.2683
2.5873
2.6787
0.6768
0.0273
0.0281

US-d
(1.4)

0.0009

US
(1 4)

0.0009

(b) Energy difFerence between hexagonal and rhombohedral graphite
(AB vs ABC stacking sequence)

NC US
(1 8)

0.0008

US-d
(1 8)

0.0009

US
(2.0)

0.0001

US
(2.1)

0.0022

US-d
(1.8)

0.0037
-0.0253

US-d
(1 4)

0.0005
-0.0291

US
(1.8)

US
(1.4)

0.0011(1)
(2)

(c) Energy difFerences between rhombohedral graphite aud cubic diamond (1), and hexagonal
graphite aud hexagonal diamond (2)

NC US
(2.0)

0.0252
-0.0042

US
(2.1)

0.0303
0.0008
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TABLE III. Parameters specifying the optimal ultrasoft
pseudopotentials for C, B, and N.

Atom
(reference configuration)

C
(2s 2p )

8
(2s 2p')

N
(2s' 2p')

(eV)
0
0
1
1
2

0
0
1
1
2

0
0
1
1
2

(a.u. )
-13.84
-9.52
-9.52
-5.31
-4.08
-9.38
-6.53
-6.53
-3.72
-2.72

-18.40
-10.88
-10.88
-7.24
-5.44

RLUg s
't

(a.u. )
1.3
1.3
1.2
1.2
1.8
1.5
1.5
1.5
1.5
1.8
1.2
1.2
1.2
1.2
1.8

Rc,'

1.6
1.6
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

III. STRUCTURAL AND
ELECTRONIC PROPERTIES OF CARBON

A. Structures

In this section we describe very brieQy the crystal
structures considered in this work and the relationship
between some of them. First, there is the group of tetra-
hedrally coordinated structures: cubic and hexagonal

tion of structural phase stability. This is demonstrated
in a striking way by the small variations in the structural
energy differences compiled in Table II (details of the cal-
culations will be given in the following section). We find
that even with cutoff radii as large as R,„=1.8 a.u. , the
predicted structural energy differences remain accurate
to within 0.01 eV/atom for the large differences between
the stable forms of C and the common metallic struc-
tures (fcc, bcc, etc.), and 0.003 eV/atom between the ac-
tually existing allotropic forms of C (diamond, graphite,
bc8). Note that this maximum uncertainty corresponds
to a temperature difference of only 35 K. Predictions of
this accuracy are possible with ultrasoft pseudopoten-
tials with cutoffs as large as 1.8 a.u. and cutoff ener-
gies of only 300 eV. This result is important because it
helps to reduce the computational effort involved in ab
initio calculations of the disordered (liquid, amorphous)
phases, of surfaces and interfaces. For this purpose we
have also carried out extensive tests of the convergence
of the Hellmann-Feynman forces acting on the atoms in
distorted crystalline configurations. For a randomly dis-
torted bc8 structure, for example, we find that the forces
calculated using the US(1.8) pseudopotential (and a cut-
off of only 300 eV) differ &om those calculated using a
norm-conserving pseudopotential (and a cutoff of 1100
eV) by atmost 0.8% and by 0.4% on average.

Similar, though less extensive tests have been car-
ried out for the pseudopotentials of B and N. Table III
compiles the parameters specifying the optimal ultrasoft
pseudopotentials for C, B, and N.

diamond and the bc8 structure. Cubic diamond has
a face-centered-cubic Bravais lattice (space group O&r)

with two atoms in the unit cell at +s(1, 1, 1). Each
atom has four nearest neighbors forming bond angles
of cos ~(—s) = 109.47 . The structure may also be
viewed as a sequence of layers of buckled hexagonal
rings, stacked in an (ABC) sequence in the [111] di-
rection. Changing the stacking sequence to (AB) de-
fines the structure of hexagonal diamond; it is related
to the hexagonal-close-packed structure in the same way
as cubic diamond to the fcc structure. The unit cell
is hexagonal with four atoms in the basis at positions
+( saq, s a2, zc), +( saq, sa2, (2 —z)c) where the angle
between aq and a2 is 7r/3. Ideal tetrahedral coordination
is achieved for c/a = /8/3 and z = 1/16. The Bravais
lattice of the bc8 structure ' is body-centered cubic
with eight atoms at positions ka(z, —z, z), ka( —z, —2+
z, z), ka(2 —z, —z, —z), ka(z, z, 2

—z), space group
T&. x is a free parameter; for x = 0.1036 coordination
is almost tetrahedral, and for all other values of z one
has to differentiate between one A-type and three B-type
bonds (with d~ ( d~ for z ( 0.1036, and d~ ) dye for
z & 0.1036).

The second group consists of the hexagonal and rhom-
bohedral graphite structures. s 4 Both forms of graphite
consist of honeycomb nets, with an AB stacking sequence
(the atoms of the B layer centering half of the hexagons
of the A layer) for the hexagonal form, and an ABC
sequence for the trigonal form. Simple geometrical rela-
tionships exist between rhombohedral graphite and cubic
diamond, and the hexagonal polymorphs of both graphite
and diamond. It is possible to deform rhombohedral
graphite continuously into cubic diamond2~ by decreasing
the interlayer bond length (D = 3.35 A in the graphitic
phase) while increasing the intralayer bond length (ini-
tially d = 1.54 A) and the angle between the interlayer
and intralayer bonds (from 8 = 90' toward 8 = 109.47').
All the intermediate structures have rhombohedral (Dss&)
symmetry. A similar transformation path links hexago-
nal graphite and hexagonal diamond. The actual trans-
formation will occur along the path minimizing the en-
ergy barrier as a function of D, d, and 8.

The third group of structures are the sixfold-
coordinated simple cubic and P-tin structures (derived
&om the cubic diamond lattice by a tetragonal distor-
tion), and as the fourth group we consider the common
cubic metallic structures: cubic face and body centered.

For the Brillouin-zone integrations we used the
Monkhorst-Pack special-point technique and a Gauss-
ian broadening of the one-electron levels with o = 0.1 eV
(cf. Sec. IIB) with all energies extrapolated to o = 0.
For the cubic and hexagonal diamond structures, the bc8
structure, the hexagonal and trigonal graphite lattices,
the sc and P-tin structures, and the fcc and bcc struc-
tures we used 10, 14, 7, 28, 15, 56, 56, 66, and 44 k points
in the irreducible part of the Brillouin zone, respectively.

B. Calculated structural and cohesive properties

Table IV summarizes the calculated structural and
cohesive properties [we show only the results for the
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TABLE IV. Structural and cohesive properties of C in various phases: atomic volume V, lattice
constants a, c [to facilitate comparison (c/a) is given as the ratio of the interlayer distance to the
lattice constant a], structural parameters (x, z), cohesive energy Ep, bulk modulus B, pressure
derivative B', and energy difFerence AE relative to the cubic diamond structure.

Cubic diamond

v [A.']
a [A]
Ep [eV/atom]
B [Mbar]
BI
AE [eV/atom]

Hexagonal diam

US-1.4
5.488
3.528
-9.026
4.60
3.67

0

ond

US-1.8
5.498
3.530
-9.004
4.60
3.64

0

Fahy et al.
5.583
3.548
-8.17
4.44
3.24

0

Biswas et al.
5.571
3.545
-8.43
4.94
2.60

0

McMahan'
5.59
3.55
-7.35
4.64

Expt.
5.673
3.567

US-1.4
v [A'] 5.504
a [A] 2.480
c/a 0.833
z 0.0625
Ep [eV/atom] -8.998
B [Mbar] 4.62
B' 3.66
AE [eV/atom] 0.028
Hexagonal graphite

US-1.8
5.513
2.483
0.832
0.0625
-8.976
4.66
3.64
0.028

Fahy et al.
5.602
2.50
0.828
0.0625
-8.140
4.40
3.5

0.030

Expt."
5.61—5.67
2.51-2.52

0.819
0.0625

v [A']
a [A]
c/a
Ep [eV/atom]
B [Mbar]
BI
bE [eV/atom]

Rhombohedral

v [A']
a [A.]
c/a
Ep [eV/atom]
B [Mbar]
BI
AE [eV/atom]
bc-8 structure

US-1.4
8.609
2.440
1.369
-9.027
2.86
3.57

-0.0004

graphite

US-1.4
8.531
2.440
1.356
-9.026
2.89
3.51

0.0005

US-1.8
8.627
2.443
1.367
-9.001
2.88
3.58

0.0028

US-1.8
8.550
2.443
1.354
-9.000
2.93
3.52

0.0037

2.361 3 ~ 19

0.0001

Fahy et al.
8 ~ 50

0.009

Yin and Cohen Jansen and Freeman'
9.312 8.939
2.47 2.459
1.362 1.388

Expt. ~

8.734-8.797
2.46

1.35-1.365
-7.374

2.86-3.19

v [A']
a [A]

Ep [eV/atom]
B [Mbar]
B'
AE [eV/atom]

US-1.4
5.392
4.419

0.09425
-8.336
4.18
3.88
0.689

US-1.8
5.397
4.420

0.09434
-8.313
4.20
4.11
0.691

Yin and Cohen
5.733
4.51
0.1003

4.00

Fahy et al.
5.456
4.436

-7.48
4.11
3.7

0.690

Biswas et al.
4.65

0.7

P-tin structure

US-1.4 US-1.8 Yin and Cohen

v [A']
a [A]
c/a
Ep [eV/atom]
B [Mbar]
B'
DE [eV/atom]

5.234
3.310
0.390
-7.425
3.99
3.83

5.234
3.310
0.390
-7.406
3.98
3.76

2.730 2.727

5.553

2.82
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TABLE IV. (Continued)

Simple cubic
US-1.4

V [A'] 5.304
a [A] 1.744
Ep [eV/atom] -7.522
B [Mbai] 3.99
B' 3.83
EE [eV/atom] 2.633
Body-centered cubic

US-1.4
V [A. ] 6.290
a [A] 2.326
Ep [eV/atom) -4.676
B [Mbar] 2.18
B' 3.96
AE [eV/atom] 4.351

Face-centered cubic
US-1.4

V [A ] 6.890
a [A] 3.021
Ep [eV/atom] -4.378
B [Mbar] 1.70
B' 2.80
EE [eV/atom] 4.648

US-1.8
5.305
1.744
-7.505
3.98
3.76
2.628

US-1.8
6.315
2.329
-4.661
2.18
3.96

4.343

US-1.8
6.927
3.026
-4.364
1.683
2.51

4.640

Yin and Cohen
5.543
1.770

2.66

Yin and Cohen
6.700
2.375

4.28

Yin and Cohen~
7.290
3.078

4.59

McMahan'
5.423
1.757

2.60

McMahan'
6.479
2.349

4.24

McMahan'
7.256
3.073

4.50

References 27, 28, PP.
References 8, 25) PP.

'Reference 29, LMTO.
~Experimental data as given in Refs. 5, 65—69.
'Reference 30, FLAPW.
~References 23, 24, PP.
~Reference 7, PP.

US-d(1.4) and US-d(1.8) pseudopotentials] and compares
them with previous calculations and experimental data
compiled from Refs. 65—69. For the diamond and
graphite structures, our calculations underestimate the
lattice constant by about 1%, they overestimate the co-
hesive energy by about 20Fo, the bulk modulus of dia-
mond is overestimated by about 4'%%up, and that of graphite
is correct to within the experimental uncertainty. The
slight overbinding present in our calculations is charac-
teristic for the LDA. It is somewhat smaller in the calcu-
lations of Fahy et al. ,

' Yin et al. , ' 3' and Biswas et
al. ' due to the use of a different exchange-correlation
functional. The Wigner-interpolation formula o gener-
ally predicts weaker overbinding eHects, but is certainly
less accurate than the Ceperley-Alder functional~~ used
in our calculations. In the hexagonal structures we have
varied the axial ratio, and for the hexagonal diamond
structure also with respect to z, for the bc-8 structure
we have minimized the energy with respect to the pa-
rameter x.

C. Structural phase stability

The most important result is certainly the prediction
of the relative phase stability, as expressed by the struc-

tural energy differences given in Tables II and IV and
as expressed by the energy vs volume curves shown in
Fig. 3. Our calculations with the most accurate pseu-
dopotential predict that at zero pressure the energy dif-
ference between cubic diamond, and hexagonal and tri-
gonal graphite is zero within the high accuracy of the
calculations (]BE] & 0.001 eV/atom 10 K). This
agrees with the pseudopotential calculations of Yin and
Cohen24 [b E (hexagonal graphite-diamond) 0.0014
eV/atom], whereas according to Fahy et aL2 the binding
energy of diamond with respect to graphite is overesti-
mated by 0.009 eV/atom. One has to emphasize that
the difference in the cohesive energies is smaller than
the diHerence in the zero-point vibrational energies cal-
culated &om the theoretical phonon densities of state
of graphite 2 and diamond7s [E„;b(graphite) = 0.1659
eV/atom, E»b(diamond) = 0.1809 eV/atom; bE„;b =
0.0150 eV/atom]. There is also only an extremely small
energy difference between the hexagonal and trigonal
stacking variants of graphite (under pressure the trigonal
phase becomes even lower in energy; see Fig. 3), whereas
the hexagonal form of diamond is higher in energy by
0.028 eV/atom, again in very good agreement with the
result of Fahy et al. ' 8 Of the other structures covered
in our study, bc-8 is about 0.69 eV/atom higher in en-
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FIG. 3. Energy vs volume for C in the cubic and hexag-
onal diamond structures, in the hexagonal and trigonal
graphite structures, in the P-tin, the bc-8, and the simple,
body-centered-, and face-centered-cubic structures.

basis vectors) (0,0,0), (1/3, 1/3, 1/3), (—1/3, —1/3, 2/3),
(0,0,1/3 —gz), (1/3, 1/3, 2/3 —gz), and (—1/3, —1/3, —gz)
with z = 1/12. il = 0 corresponds to the rhombohe-
dral graphite structure and no buckling of the honeycomb
layers; g = 1 corresponds to the cubic diamond lattice.
Varying g between g = 0 and g = 1 and minimizing for
each given value of g the total energy with respect to
the axial ratio c/a (and hence with respect to the inter-
layer distance) and to the volume of the cell defines a
path describing a continuous transformation &om rhom-
bohedral graphite to cubic diamond. Similar calculations
have been performed by Fahy et al.2~ and Kertesz and
Hoffmann who treated the bond length between the
layers as the independent variable. Figure 4 describes
the variation of the total energy, volume, and axial ratio
as a function of the degree of buckling of the graphitic
layers. The calculations have been performed using the
US-1.4 and US-1.8 pseudopotentials. The calculations
predict an energy barrier of AE = 0.324 eV/atom and
b,E = 0.325 eV/atom, respectively (relative to cubic di-
amond); the saddle point is situated roughly at q = 0.5
and an axial ratio of c/a 2.79 [to be compared with

(c/a) = 2.45 =
2 g8/3 for diamond and (c/a) = 4.07 for

trigonal graphitej. This value represents an upper bound
for the actual energy barrier: On a transformation-path-
violating rhombohedral symmetry, the barrier might ac-

0.40 I I l
I

I I I
I

l i I
I

I I I

ergy (again in excellent agreement with the work of Fahy
et aL.2 2s and Biswas et al. 2 ); for the sc and P-tin struc-
tures b,E is of the order 2.6 —2.7 eV/atom, and for the fcc
and bcc structures we find AE 4.3—4.65 eV/atom. We
think that it is quite remarkable that the present set of
structural energies agrees so well with the data obtained
with very different approaches. The very large differences
in the structural energies re8ect the strong preference for
sp - and sp -type bonds, but the difference between the
sp and sp bond energies is compensated almost entirely
by the difference in the promotion energies.

0.30

0.20

0.10

0.00

50.0

45.0

E 40.0

35.0

I I I
I

I I I
I

I I I I I 1 I
I

I I I

D. Graphite-diamond transition
3.00 i i s I i i i I i i i I i I i I

4.00 —' I I
I

I ~ ~
I

I ~ I
I

I I I
I

I

A central question is the energy barrier for the trans-
formation between the energetically almost degenerate
tetrahedral and layered phases. The transitions be-
tween the hexagonal phases of graphite and diamond,
and between rhombohedral graphite and cubic diamond

may be described by calculating the total energy of a
general hexagonal structure with four atoms per cell,
respectively a rhombohedral structure with two atoms
per cell (equivalent to a hexagonal cell with six atoms)
as a function of the volume and the axial ratio c/a
of the cell and the parameter z specifying the buck-

ling of the hexagonal layers. In the rhombohedral cell
the six atomic positions are (in units of the hexagonal

3.60
0

3.20

2.80

2.40

0.0
I I I I I I I I I I I I I I I I

20.0 40.0 60.0 80.0
buckling parameter Tl (%)

100.0

FIG. 4. Variation of the total energy, volume, and axial ra-
tio of the hexagonal cell as a function of the degree of buckling
of the graphitic layers, describing a continuous deformation
from trigonal graphite to cubic diamond (cf. text).
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tually be lower. Both the energy barrier and the calcu-
lated structure at the saddle point are in excellent agree-
ment with the results of Fahy et al. The essential result
of both studies is that, starting from the layered phase,
buckling and interlayer distance are strongly correlated:
Any deformation of the layers induces a rapid decrease
of the interlayer distance and vice versa, until the saddle
point has been reached. After the saddle point, the de-
formation consists mainly in a change of the bond length
within the layers.

E. High-pressure phase transitions

Unlike Si and Ge, which transform to the sixfold-
coordinated P-tin structure under moderate compression,
C does not show a transition to sixfold coordination. On
the other hand, it has been claimed that the bc8 structure
(which is formed in Si as a metastable phase on unload-
ing the high-pressure P-tin phase to ambient pressure)
exists as a high-pressure phase of C. ' In our calcu-
lations we have also considered the possibility of a high-
pressure phase transition and confirmed the existence of
a diamond-bc8 transition (Fig. 5). The transition pres-
sure determined by the common-tangent construction is

pq 10—11 Mbar; the volume change at the transition
is AO = —0.08 As/atom (Table V), again in very good
agreement with previous calculations.

-20—

cf

-2.5
0

-3.0
S
S
Cg

cf
t

-35

-4.0

-4.5

2.4 2.5 2.6 3.0
OQ

Volume/formula unit (A )

2.8 2.92.7

FIG. 5. Total energy vs volume of the diamond and bc8
structures at very large compression.

F. Electronic properties

The electronic band structures of the tetragonal and
layered phases of C (and for comparison that of the cor-
responding phases of BN; cf. Sec. IV) are shown in Figs.
6 —9. It is not necessary to comment on the band struc-
ture of cubic diamond in much detail. The fundamental
gap is E~ = 4.25 eV from I' to 0.8X, in good agreement
with the calculation of Fahy and Louie2s (Es = 4.3 eV).
The calculation of Fahy and Louie is based on PP's and
a localized 8, p basis and the authors note a reduction of
the gap to E~ = 3.9 eV if d states are included in the
basis. '" The present calculations use a well-converged
PW basis. Compared to experimentrs (Es = 5.47 eV),
the calculation shows the underestimate of the gap char-
acteristic for the LDA. We believe that the differences
between the two sets of calculations are to be attributed

to our use of a more accurate exchange-correlation func-
tional. In the hexagonal diamond structure, the width of
the valence band is essentially unchanged but the funda-
mental gap (indirect, I' -+ K) is reduced to Es = 3.05
eV (to be compared with the value Es = 3.3 eV quoted
by Fahy and Louie ). On the other hand, even quite
recently there has been an intense interest in the band
structure of graphite. 2s'so'rr The recent interest arose
from the fact that FLAPW (Ref. 30) and pseudopo-
tential calculations 6' ' ' differ in the position of the
top of the a band, with the FLAPW calculations being in
better agreement with experiment. ' Table VI summa-
rizes the results for characteristic one-electron energies
(bottom and top of n, o'*, m bands, etc.). The results are
relevant in several respects: (a) The comparison of the

TABLE V. High-pressure phase transition diamond ~ bc8. Transition pressure p~, initial and
final atomic volumes and volume change at the transition (V, , Vf, b,V).

pg (Mbar)
v, (A')
Vr(A)
~v (A')

Reference 23.
Reference 28.

'Reference 25.

Present work
US-1.4 US-1.8
10.95 10.20
2.71 2.80
2.63 2.71
-0.08 -0.09

Yin
12.00
2.62
2.55
-0.12

Previous work
Fahy and Louie

11.10
2.75
2.63
-0.06

Biswas et aL
12.00
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TABLE VI. Characteristic electron energy eigenvalues (in eV) of graphite, evaluated relative to
the Fermi level. Comparison of present results with previous calculations and experiment.

Present work
US-1.4 US-2.0
US-1.8

Ref. 30
FLAPW

Previous calc.
Ref. 26

pp
Ref. 77

pp

Expt.

Bottom o.

Bottom vr

Top 0

Empty o*

—19.7
—19.35

—8.8
—6.7

—3.05
—3.0
3.8
8.5

—19.7
—19.35

—8.8
—6.7
—3.0
—3.0
3.8
8.6

—19.6
—19.3

—8.7
—6.7
—4.6
—4.6
3.8
8.3

—20.1
—19.8

—8.9
—6.8
—3.5
—3.5
3.7
7.9

—19.5
—19.0

—8.6
—6.7
—3.0
—3.0

4.0
8.5

—20.6

—8.1, —8.5
—5.7, —7.2
—4.6, -5.5

6.9

Reference 79.
b Reference 80.

calculations based on difFerent ultrasoft pseudopotentials
show that even with very soft pseudopotentials (R, = 2.0
a.u. ) and very low cutoff energies, complete convergence
of the one-electron energies may be achieved. (b) Ex-
cept for the critical eigenvalue describing the top of the
cr band, the present results agree even better with the
FLAPW result of Jansen and Freeman than other pseu-
dopotential calculations. The exception is the position of
the top of the cr band. Jansen and Freeman attributed

the discrepancy with previous PP calculations to an in-
sufficient k point sampling. Our calculations (28 special
k points) and that of Schable and Martinsrr (6—40 spe-
cial k points) are undoubtedly based on a fully converged
k-point mesh so that the reason for the discrepancy re-
mains unclear.

The band structure of rhombohedral graphite divers
from that of the hexagonal stacking variant by (a) the
presence of a small direct gap (along K-H) of Eg 0.8

10
10

0
0

-20 (a) -20

X g K K H

10
10

0

"-10
LJ

e-10
LJ

-20 -20 (b)
X III K

FIG. 6. The electronic band structure of C in the diamond
(a) and of BN in the zinc-blende (b) structure.

K H

FIG. 7. The electronic band structure of C in the hexagonal
diamond (a) of the BN in the wurtzite (b) structure.
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LJ

-20

K H M L K H A r

10
10

K 5
L

Se-10
4J

-15
(b)

K H A r K H A r

FIG. 8. The electronic band structures of hexagonal
graphite (a) and BN (b).

FIG. 9. The electronic band structures of rhombohedral

graphite (a) and BN (b).

eV, whereas hexagonal graphite is a semimetal. (b) The
top of the 0 band (at the L point) is raised to —1.7
eV. The existence of a narrow gap agrees with the re-
sults of Fahy et al. It is important for understanding
the semiconductorlike transport properties of pyrolithic
graphite (which contains a certain fraction of rhombohe-
dral graphite) compared to the semimetallic properties
of hexagonal graphite.

IV. STRUCTURAL AND ELECTRONIC
PROPERTIES OF BORON NITRIDE

A. Structures

Assuming the electronic configuration B N+, the com-
pound BN is isoelectronic to the element C, and this
similarity is reBected in the structures of the known

polymorphic forms of BN. Like C, BN exists in lay-
ered and fourfold-coordinated phases. The common
form of layered BN has a hexagonal structure (space
group Dsh, ) with four atoms in the unit cell.s It ex-
hibits an AA'AA'. . . stacking sequence such that the
boron atoms in layer A are placed directly below the
nitrogen atoms in layer A'. This is diferent &om the
hexagonal form of graphite with ABAB... stacking,
where only half of the carbon atoms are directly above

or below the carbon atoms in the adjacent layers. The
rhombohedral form of layered BN (space group Cs„)
has a three-layer ABCABC stacking sequence similar
to hexagonal graphite. The denser forms of BN crystal-
lize in the zinc-blende and wurtzite structures of which
cubic and hexagonal diamond are just the homopolar
analogs. Zinc-blende BN (z-BN) may be synthesized un-
der pressure and elevated temperature from rhombohe-
dral BN (r-BN), and wurtzite-BN (m-BN) from hexago-
nal BN (h-BN) (at somewhat lower temperatures). o'~~

The transformations may be described in the same way
as the transformations between the layered and tetrahe-
dral phases of C in terms of a progressive buckling of the
honeycomb layers, accompanied by a change of the ax-
ial ratio and volume of the hexagonal cell. Finally, we
have also calculated the total energy of BN in the rock-
salt structure —again there is a simple analogy with the
simple cubic phase of C (which may be considered as the
homopolar analog of rocksalt-BN). 2s

B. Cohesion and phase stability

Table VII summarizes the calculated cohesive and
structural properties of BN in the hexagonal and rhom-
bohedral layered structures, and in the zinc-blende,
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wurtzite, and rocksalt structures. Figure 10 shows the
energy of the competing phases as a function of volume.
In our calculations we have used the optimized ultra-
soft pseudopotentials for B and N described in Table
III (cutoff energy E,„t ——300 eV). In addition, several
calculations with a much harder norm conserving poten-
tial with smaller cutofF radii (B, ~

= 1.2 a.u. for N and
B ~

= 1.5 a.u. for B, l = s, p, d) and a very high cut-
oE energy of E,„t, ——1600 eV have been performed to
control convergence and transferability of the pseudopo-

tentials. The calculations use again the Ceperley-Alder
exchange-correlation functional and the Monkhorst-Pack
special-point method and Gaussian broadening (cr = 0.1
eV and extrapolation to a. = 0) for Brillouin-zone inte-
gration. For the zinc-blende and rocksalt structures 10
special points have been used, and 5, 15, and 14 points
for the hexagonal, rhombohedral, and wurtzite phases,
respectively.

Compared to C, the phase stability of BN has been
studied much less extensively. Structural energy difFer-

TABLE VII. Structural and cohesive properties of BN in various phases: atomic volume V,
lattice constants a, c [to facilitate comparison between the different structures (c/a) is given as the
ratio of the interlayer distance to the lattice constant a], buck modulus B, pressure derivative B',
cohesive energy Eo, and structural energy difference AE relative to the zinc-blende structure.

Present work

NC US

Wentzcovitch et at. Park et aL Xu and Ching' Expt.

Zinc-blende

v [A']
a [A]
Eo [eV/atom]
B [Mbar]
Bc
AE [eV/atom)
Wurtzite

v [A']
a [A]
c/a
Eo [eV/atom]
B [Mbar]
Bl
AE [eV/atom]

Hexagonal (AA

v [A.']
a [A]
c/a
Eo [eV/atom]
B [Mbar]
Bl
4E [eV/atom]
Rhombohedral

v [A']
a [A]
c/a
Eo [eV/atom]
B [Mbar]
Bl
AE [eV/atom]
Rocksalt

v [A']
a [A]
Eo [eV/atom]
B [Mbar]
B'
b.E [eV/atom]

5.702
3.573
-8.185
3.95
3.67

0

8.617
2.481
1.304

—8.133
2.52
3.58
0.052

(ABC)

5.168
3.458

—6.451
4.12
3.76
1.734

5.718
3.576
-8.152
3.97
3.59

0

5 ~ 731
2.521
0.826
-8.132
4.01
3.59
0.020

8.613
2.486
1.295

—8.097
2.61
3.66

0.055

8.603
2.495
1.294

-8.100
2.62
3.87
0.052

5.168
3.458

—6.429
4.16
4.00
1.723

5.860
3.606
-7.15
3.67

0.027

0.06

0.06

3.493
—5.45
4.25

5.785
3.59

3.54

2.56

3.49

5.905
3.615
-7.00
3.70
3.80

0

5.845
2.536
0.828
-6.925
3.90
6.30
0.075

8.970
2.494
1.335

—7.350
3.35
3.76

—0.35

5.930
3.615
-6.6

3.69—4.65
~ 4

2.55
0.824

9.012
2.50
1.332

References 33—35.
Reference 37.

'Reference 38.
As compiled in Refs. 33—38.
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ences have been calculated by Wentzcovitch et al.
and Xu and Ching, with very different results: Whereas
Wentzcovich et al. predict the close-packed phases to be
more stable than the layered phases [EE(h-BN—z-BN)
= 0.06 eV/atom 700K], Xu and Chings predict the
hexagonal phase to be much more stable [b,E(h-BN —z-
BN) = —0.35 eV/atom 4000 K]. Our results for binding
energy, lattice constants, and bulk modulus are in good
agreement with experiment; they show the overbinding
effects (b,a —1%, b,Eo + +10%) characteristic for the
LDA. That the results of Wentzcovitch et al. are slightly
closer to experiment has to be attributed to the use of the
less accurate Wigner-interpolation forxnula for exchange
and correlation (the exchange-correlation potential used
in the FLAPW calculations of Park et al.3~ and the
orthogonalized linear combination of atomic orbitals
(OLCAO) calculations of Xu and Chingss has not been
specified in their papers). A noticeable point is that
our calculation predicts a large difference in the bulk
moduli of the dense (B 4 Mbar) and the layered
phases (B 2.6 Mbar) as expected, whereas in Xu and
Ching'sss calculation this difFerence is only about 10%.

The most interesting result is of course the complete
set of structural energy differences. The comparison of
the results obtained with a relatively hard potential (and
a very large cutofF) shows that the results obtained with
the optimized ultrasoft potential are well converged. Our
structural energy difFerences are in excellent agreement
with those obtained by Wentzcovitch et al. using
a mixed-basis pseudopotential technique. In particular,
both calculations predict the zinc-blende structure to be
about 0.05 —0.06 eV/atom lower in energy than either

of the layered phases. This difference is distinctly larger
than the difference between the layered and dense phases
of carbon (which is almost zero). This suggests that the
partially ionic character of BN affects the bonding of the
layered phases more than that of the dense phases. Also,
the energy difference between zinc-blende and wurtzite
BN is slightly larger than between cubic and hexagonal
diamond. The prediction that the electronic ground-state
energy of z-BN is lower than that of h-BN means that
the observed stability of the layered phases must be at-
tributed to differences in the phonon energies. However,
in contrast to diamond and graphite, the phonon densi-
ties of state are unknown for the BN polytypes. Wentz-
covitch et al. have estimated the zero-point vibrational
energies Rom the low-temperature specific heats within a
two-dimensional (2D) Debye model for the layered and a
3D Debye model for the tetrahedral phases. With Debye
temperatures of O(h-BN) 600 K and O(z-BN) 1700
K, the resulting difference in the zero-point vibrational
energies is b,E»b = —0.15 eV/atom, which would over-
coxnpensate the difference in the electronic ground-state
energies. However, for carbon, a calculation of AE„;b
from a crude model of the full phonon densities of state
yields a difFerence in the zero-point vibrational energies
which is one order of magnitude smaller. Hence, the rea-
son for the observed phase stability of h-BN remains to
be clarified. A full calculation of the vibrational spec-
trum would be necessary.

1. Tronsforrnation betsseen rhonabohedral
and zinc-blende BN

We have also calculated the energy along a transforma-
tion path taking the rhombohedral into the zinc-blende
form (see also Sec. IIIB3 for the corresponding transfor-
mations in C). The change in energy follows essentially
the same characteristics as in carbon (Fig. 11): Even a
modest buckling of the layers leads to a large change in
volume and interlayer distance until the saddle point is
reached. After the saddle point, the volume and shape
of the cell change only modestly. The energy barrier
for the transformation is only half as large as in carbon,
b,E = 0.16 eV/atom relative to r-BN.

2. JIigh-pvessum phase transitions

At very high pressure, the rocksalt structure becomes
energetically more favorable than the zinc-blende phase.
The transition pressure is calculated to be pq

——11R7
Mbar; the atomic volume before and after the transition
is 50% and 48%, respectively, of the equilibrium volume
of z-BN. This is in good agreement with the pressure and
voluxne for the transition calculated by Wentzcovitch et
al.s4

(ps ——11.1 Mbar, V; = 0.45VO, Vy
——0.42Vo).

C. Electronic structure

Figures 6—9 compare the band structures of the corre-
sponding phases of BN and. C; Table VIII suxnmarizes the
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FIG. 11. Variation of the total energy, volume, and axial
ratio of the hexagonal cell as a function of the degree of buck-
ling of the hexagonal layers, describing the transformation
from rhombohedral (trigonal} to zinc-blende BN.

diamond. The wurtzite phase is also predicted to be
an indirect-gap semiconductor, with a slightly larger gap
of 4.9 eV—again we note a good agreement with the
FLAP& results of Park et al.

The difference in the electronic properties of C and BN
is greater in the layered phases: h-BN is a good insulator,
whereas graphite is a semimetal. There is considerable
disagreement, however, on the width and character of
the fundamental gap. Optical absorption studies ' de-
scribe 6-BN as a direct-gap semiconductor with a gap
ranging between 3.8 and 5.8 eV, the large discrepancy
being attributed to the different quality of the samples.
From re8ectivity measurements, a width of the gap
of 5.0—5.7 eV has been deduced. Our calculations predict
a direct gap at the M point of 4.5 eV, which is 0.4 eV
larger than the indirect gap between the M and H points
(Table VIII). Figure 9(b) shows the band structure of h-
BN. Compared to graphite, the individual widths of the
bonding cr and x bands are strongly reduced due to the
presence of the internal gap in the heteropolar material
(note that the internal o'-z gap in the valence band is 1.7
eV wider in h-BN than in z-BN}, but the total width of
the valence band is nearly as large as in graphite. The
prediction of an indirect gap for h-BN agrees very well
with the recent FLAP%' calculations of Catellani et al. 6

and Park et al. and with the OLCAO calculations of
Xu and Ching. The new results de6nitely settle the
controversy existing in the literature (see, e.g. , the brief
summary given in Ref. 36).

For rhombohedral BN our calculations predict an al-
most unchanged width of the 0 and x valence band, but a
slight increase of both the direct and indirect gaps and of
the internal cr-x gap relative to h-BN. Again this differ-
ence is consistent with that observed between the hexag-
onal and rhombohedral phases of graphite.

important features of the band structure (bandwidths,
gaps), comparing theory and experiment (compiled from
Refs. 81—87). In the older literature, widely conflicting
results may be found (cf. the summary given in Ref. 33
for z-BN, and in Ref. 36 for 6-BN). For z-BN, the present
results using ultrasoft pseudopotentials and a plane-wave
basis are in very good agreement with pseudopotential
mixed-basisss and FLAPW (Ref. 37) results; small dif-
ferences exist with the OLCAO calculations. All calcu-
lations agree in characterizing z-BN as a semiconductor
with an indirect gap (I'-I) of 4.2—4.4 eV and a width of
the valence band of 20.1—20.4 eV. Compared to experi-
ment, the width of the gap is underestimated by about 2
eV—this discrepancy is characteristic for the limitations
of the LDA. Compared to cubic diamond, there is almost
no change in the width of the gap and in total width of
the valence band. The partially ionic character of BN
leads to the opening of a gap in the valence band of 3.2
eV (W —+ I ) separating the a and a valence bands.
The lower part of the valence band is dominated by N
2s states and the upper part by 8 and N p states, the B
s states contributing to both parts of the valence band.
The weaker hybridization is responsible for the lower co-
hesive energy and bulk modulus of m-BN compared to

V. CONCLUSIONS

%e have presented a general study of the structural,
cohesive, and electronic properties of the tetrahedral, lay-
ered, and high-pressure phases of carbon and boron ni-
tride. We think that our work is relevant in two respects:
(i) It represents a consistent set of ab initio calculations
of the structural and electronic properties of these very
interesting and technologically important materials. To
date, although both carbon and boron-nitride had been
studied extensively using ab initio techniques, the data
available in the literature have been based on different
computational techniques and diferent potentials. Our
calculations achieve full agreement with the most accu-
rate ab initio calculations present so far, and should help
in some case (e.g. , concerning the relative energies of the
tetrahedral and layered phases of BN) to settle an exist-
ing dispute. (ii) Our calculations have been performed
using a carefully optimized ultrasoft (Vanderbilt-type)
pseudopotential which allows us to use cutoE energies of
the expansion of the wave functions which may be as
low as 300 eV (i.e., of the same order of magnitude as
the plane-wave cutoffs necessary for conventional norm-
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TABLE VIII. Summary of the electronic band structure of BN in diferent crystal structures:
bandwidths and minimum gaps.

Zinc-blende

Lower valence
band (o)

(eV)

Bandwidths
Upper valence

band (z)
(eV)

Full
valence band

(eV)
direct

(eV)

Gaps
indirect

Present work
Wentzcov et al.
Xu and Ching
Park et al.'
Expt a,e

Wurtzite

Present work
Xu and Ching
Park et al.'
Hexagonal

Present work
Xu and Ching
Park et al. '
Catellani et al.
Expt. g

Expt."
Expt. '

Rhombohedral

6.2
5.9
6.9
5.9
5.2

6.3
6.3
6.0

4.0
4.0
3.8
3.2
5.8

11.Q
10.8
10.9
1Q.7
13.5

11.3
11.8
11.0

9.0
10.4
9.0
9.5

20.4
20.3
21.1
20.1
22.0

20.6
21.0
20.3

17.8
18.8
17.7
19.2

15-20

8.8 (I')
8.6 (r)
8.7 (I')
s.s (r)

14.5 (I')

s.3 (r)
s.o (r)
8.2 (I')

4.5 (M)
4.6 (M)

4.3 (H)

3.8-5.8
5.0-5.7

4.4 (I'-X)
4.2 (r-X)
5.2 (r-X)
4.4 (r-X)

(r-x)
6.4 (r-X)

4.9 (I'-K)
5.8 (I'-K)
4.9 (r-K)

4.1 (H M)-
4.1 (H M)-
4.0 (H M)-
3.9 (H M)-

Present work 4.0 9.1 17.8 4.8 (M) 3.9 (K-M)

Reference 33.
Reference 38, OLCAO.

'Reference 37, FLAPW.
~Expt. data, as compiled in Ref. 81.
'Expt. , Ref. 82.

Reference 36, FLAP%.
Expt. , Ref. 83.
"Absorption studies, Refs. 84,85.
'Optical data, Refs. 86,87.

conserving pseudopotentials for simple metals and semi-
conductors such as Al and Si). Nevertheless, all relevant
results (even structural energy differences) are shown to
be well converged. This is a rather important result since
it opens the way for g,b initio studies of complex prob-
lems with many inequivalent atomic sites such as surface
reconstruction, reactions at surface defects in the crys-
talline phases, and liquid and amorphous phases. These
problems may be solved using a,b initio molecular dynam-
ics based on the variational solution of the Kohn-Sham
equations described here, and the use of accurate ultra-

soft pseudopotentials is essential to achieve adequate con-
vergence.
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