Pulsed-NMR study of the long-range order in solid H_2 and D_2

Cheol E. Lee

Department of Physics, Korea University, Seoul 136-701, Korea

J. R. Gaines

Department of Physics, University of Hawaii, Honolulu, Hawaii 96822 (Received 18 November 1993; revised manuscript received 1 July 1994)

Quadrature Fourier transform NMR detection has been employed to study the disorder-order transition in high J = 1 concentration solid hydrogen and deuterium. In solid H_2 , where the ortho-para conversion is rapid, quick measurements were made possible by computer batch files containing pulse programs. Newly obtained order parameters were compared with those from the so-called quadrupole glass phase. In addition, peculiar emission of power was detected and regarded as characteristic of the longrange order which distinguishes it from the local order in the quadrupole glass phase.

I. INTRODUCTION

NMR has proven to be a very useful probe of shortrange interactions in all phases of matter. The quantities usually measured, namely, T_1 , the spin-lattice relaxation time, T_2 , the spin-spin relaxation time, and line shape are (with some exceptions) predominantly determined by interactions with the nearest neighbors. It is therefore interesting to examine in some detail usage of NMR techniques to probe long-range order in systems.

At low temperatures, the homonuclear hydrogen molecules H_2 , D_2 , and T_2 form a solid consisting of groundstate J=0 and J=1 metastable species. At J=1 concentrations over 56%, the electric quadrupole-quadrupole (EQQ) interaction between the J=1 molecules leads to a transition to an orientationally (long-range) ordered phase.

For a quadrupolar system (J=1), two normalized local order parameters can be defined:¹

$$\sigma = -\frac{1}{2} \langle 3J_z^2 - 2 \rangle_T \tag{1}$$

and

$$\eta_i = \langle J_{xi}^2 - J_{yi}^2 \rangle_T . \tag{2}$$

The temperature dependence of the order parameter was first measured in D_2 by using NMR.² The "splitting" Δv between the flattened peaks in the absorption spectrum was shown to be

$$\Delta v = 3d \left\langle 1 - \frac{3}{2}J_z^2 \right\rangle_T = (15d/4)\sigma , \qquad (3)$$

where d is the intramolecular splitting constant.

Although NMR order parameters have been measured and reported in these phases in the D₂ solids, which have a slow J=1 to J=0 conversion rate,^{2,3} no comprehensive data have been available in the H₂ solids in which a very fast ortho-to-para conversion rate (1.9%/h) makes such measurements difficult. A high signal-to-noise ratio, coupled with the use of automated computer batch files, enabled us to obtain excellent data in the normal H₂ (n-H₂) $(x_J=0.75)$ solids. The order parameters were also measured using n-H₂ impurities (1%) in the high J=1 concentration D₂ lattice $(x_J=0.90)$. The detection of an emission of power is also reported and discussed.

The existence of a new phase, the quadrupole glass, was proposed in the intermediate range $(x_J < 0.55)$.^{4,5} Subsequently, an experiment was done in D₂ in that same concentration range and cusplike behavior in the T_1 was reported.³ A line shape resembling a Pake doublet was also obtained, which is characteristic of an ordered state with a well-defined order parameter. In this paper, the order in this phase is compared with that in the higher-concentration long-range-ordered phase.

II. EXPERIMENT

A pulsed quadrature detection spectrometer was used for the experiments in the temperature range 1.1-4.2 K. A 90° pulse of length 1 μ s for proton NMR at 30 MHz and 4 μ s for the D₂ NMR at 6 MHz was used. The dead time in the FID (free-induction decay) signals, typically 7 μ s, was replaced by a Gaussian fit. To obtain the line shape, the FID files were Fourier transformed. In addition, where appropriate, the line shape was differentiated to obtain the order parameter Δv .

The high J=1 concentration D_2 sample was made by an apparatus set up in our laboratory. It makes use of the preferential adsorption of the J=1 molecules on the surface of aluminum oxide at the temperature of liquid hydrogen (20 K).⁶ The concentration is determined by a thermal conductivity cell.⁷ The calibration is done using samples of known concentrations.

III. RESULTS AND DISCUSSION

Following previous workers, we have defined two order parameters Δv and Q. First, Δv is the splitting of the Pake doublet characteristic of the ordered phase, as defined by Eq. (3).² Q is defined as the ratio of the average frequency in the absorption spectrum to that in an ideal Pake doublet;³

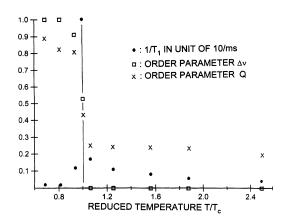


FIG. 1. n-H₂ order parameters Δv and Q and $1/T_1$ vs T/T_c , where T_c is the transition temperature, 1.6 K.

$$Q = \frac{\int_{0}^{\infty} \omega I(\omega) d\omega}{\int_{0}^{\infty} \omega I_{\rm PD}(\omega) d\omega} , \qquad (4)$$

where $I_{PD}(\omega)$ is the line shape of the ideal Pake doublet. This quantity should be more sensitive to changes in the line shape than the splitting. The Q can be thought of as the first term in an expansion of the line shape, while the splitting is the zeroth-order term. The order parameters for n-H₂ are shown in Fig. 1 as a function of temperature.

The phase transition in the hydrogen isotopes is sharp, drastically changing the line shape over a temperature range of less than 3% in the reduced temperatures T/T_c . For this phase transition, the conventional order parameter Δv , which is a measure of the line splitting, appears to be a good order parameter for the long-range order that accompanies the transition. On the other hand, the quantity Q better characterizes short-range (or local) order. In other words, while Δv vanishes above the transition, Q is nonzero above T_c although it does change at T_c , reflecting local order in clusters and possibly also long-range order. The phase transition is marked by an abrupt change in all of the quantities T_1 , Δv , and Q.

In order to investigate the quadrupole glass phase, Sokol put 1% n-H₂ in 52% para- (J=1) deuterium (p- D_2) for proton NMR in the p-D₂ lattice.³ This has advantage over direct deuteron NMR with much shorter T_1 and much higher Larmor frequency. Deuteron NMR also gives an unwanted signal from the J=0, I=2 ortho molecules. The ortho- H_2 (o- H_2) molecules share many properties with the para- D_2 molecules (both have I=1, J=1), like the same quadrupole moment which is nearly independent of their mass difference. Thus the H₂ molecules act as mass defects in the p-D₂ lattice and they should show the properties of the D_2 lattice. In this work, we also put 1% n-H₂ impurities in the 90% p-D₂ to compare the order parameters from this high J=1 concentration system with those from the 52% $p-D_2$ quadrupole glass phase.

Figure 2 shows the temperature dependence of the order parameter Δv as obtained from proton NMR in 90% p-D₂. It is verified from Fig. 2 that o-H₂ molecules un-

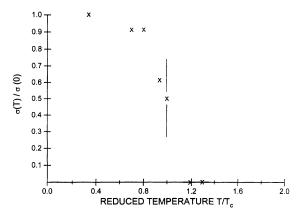


FIG. 2. Order parameter Δv vs T/T_c by proton NMR in the 90% p-D₂ sample, where the transition temperature $T_c = 3.1$ K.

dergo a phase transition at the same temperature, 3.1 K, as the p-D₂ lattice, as determined by direct deuteron NMR, which was performed to verify the use of the n-H₂ impurities as a probe of the D₂ lattice.⁸

In the experiment on 1% n-H₂ in D₂, we have shown that n-H₂ in D₂ is an acceptable probe of the orientational ordering transition in D₂. In other words, a NMR experiment on n-H₂ in D₂ reflects the properties of D₂. The change in the line shape (e.g., line splitting) and the order parameters Δv and Q as well as in the relaxation rate occur at T_c for D₂.

For comparison, the order parameter Q of n-H₂ is shown in Fig. 3 together with those from the 90% p-D₂ and the 52% p-D₂ samples, as obtained from the proton NMR. The 75% J=1 n-H₂ and the 90% p-D₂ samples show a sharp change through the phase transition. On the other hand, it is seen that Sokol's 52% p-D₂ quadrupole glass phase sample shows a much milder change in the order parameter Q with respect to the reduced temperature around the T_c determined from the cusp in T_1 . It is possible that, in the intermediate concentrations, the order shown in $1/T_1$ and the line shape is short-range (or local) order rather than the long-range order seen for the

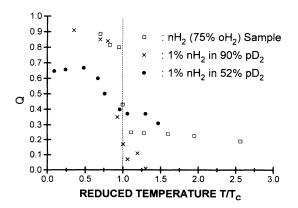


FIG. 3. Order parameter Q vs T/T_c in n-H₂ and in 90% and 52% p-D₂ measured by 1% n-H₂ impurities.

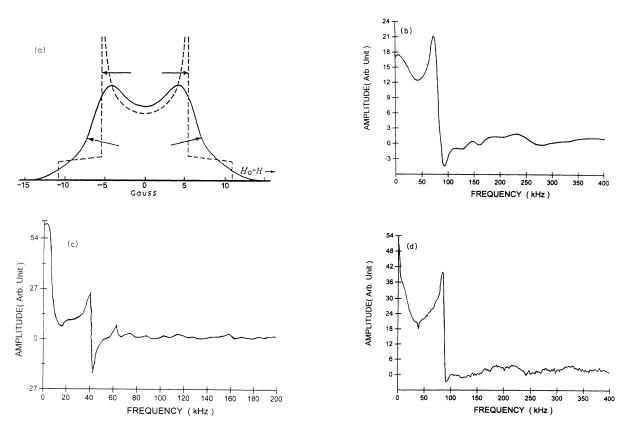


FIG. 4. (a) Pake doublet: dashed line, unbroadened; solid line, dipolar broadened. Line shapes showing an emission of power in (b) n-H₂ and (c) 90% p-D₂ by deuteron NMR and (d) 90% p-D₂ by proton NMR.

higher J = 1 concentrations.

In this paper, we report in Fig. 4 the first observation, as far as we know, of an emission of power, i.e., a negative part in the absorption spectrum, by pulsed NMR in the long-range-ordered state of H_2 and D_2 . This emission of power has been reported previously by continuous-wave (cw) NMR in the high-concentration long-range-ordered state.⁹ The emission of power was interpreted as due to a balance between the ortho-para pumping mechanism and the normal spin-lattice relaxation processes, because in the ordered phase conversion takes place from only one of the J=1 substrates ($J_z=0$).¹⁰ In contrast, Sokol's quadrupole glass phase line shape showed no negative part, nor any structure on the tail part,³ although it may have to be repeated with quadrature detection to make this absolutely sure.

By means of proton NMR in n-H₂ and high concentration J = 1 D₂, we have observed a special feature of NMR in the ordered state, namely, power emission resulting from selective J = 1 to J = 0 conversion that depends on the particular m_I state. This emission had only been observed in H₂ before this study. While Hardy and Berlinsky theoretically predicted and also reported an observation of power emission in the ordered state of H₂, the observation in D₂ reported in this paper is the first one to our knowledge.

Power emission in D_2 , which comes from the conversion of J=1 molecules, is of special interest because the

conversion rate in D_2 (0.06% per hour) is much smaller than in H_2 (1.9% per hour). In our line shapes, the emission part in D_2 was as visible as in H_2 in spite of the much smaller conversion rate. This would seem to require some additional theoretical exploration or some improved physical insight.

The observed power emission in D_2 also casts light onto the characterization of the quadrupole glass (where a cusp in $1/T_1$ was also observed) range of concentrations. It suggests a set of experiments to probe that range because the observation of the power-emission effect seems to be a characteristic of the long-range-ordered state. In the intermediate J=1 concentrations for the quadrupole glass with the same experimental setup as in this work, by testing for power emission in those concentrations, we can test if the so-called quadrupole glass is the same long-range-ordered phase as the highconcentration phase studied here.

To conclude this paper, a systematic NMR study has been done on the high-concentration J=1 range in H_2 and D_2 using quadrature detection.

ACKNOWLEDGMENTS

The authors are grateful for the grants from the Korea Science and Engineering Foundation (SRC), Korea Ministry of Education (BSRI), and the National Science Foundation (DMR 87-16520). ¹I. F. Silvera, Rev. Mod. Phys. **52**, 393 (1980).

- ²H. Meyer, F. Weinhaus, B. Maraviglia, and R. L. Mills, Phys. Rev. B 6, 1112 (1972).
- ³P. E. Sokol, PhD. dissertation, The Ohio State University, Columbus, Ohio, 1981; W. T. Cochran, J. R. Gaines, R. P. McCall, P. E. Sokol, and B. R. Patton, Phys. Rev. Lett. 45, 1576 (1980).
- ⁴N. S. Sullivan and R. V. Pound, Phys. Lett. **39A**, 23 (1972).
- ⁵N. S. Sullivan and R. V. Pound, Phys. Rev. A 6, 1102 (1972).
- ⁶D. A. Dapatie and R. L. Mills, Rev. Sci. Instrum. **39**, 105 (1968).
- ⁷M. Devoret, N. S. Sullivan, D. Esteve, and P. Deschamps, Rev. Sci. Instrum. **51**, 1220 (1980).
- ⁸C. E. Lee and J. R. Gaines, J. Korean Phys. Soc. **26**, 394 (1993).
- ⁹W. N. Hardy and A. J. Berlinsky, Phys. Rev. B 8, 4996 (1973).
- ¹⁰J. R. Gaines, A. Mukherjee, and Y-C. Shi, Phys. Rev. B 17, 4188 (1978).