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Variational charge relaxation in ionic crystals: An efficient treatment of statics and dynamics
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An ab initio variationally induced breathing {VIB)description of the energetics and dynamics of ionic
crystals is developed within the spherical-ion-pair approximation and the Gordon-Kim ansatz. In the
VIB method, the total crystal charge density is given by the overlap of Kohn-Sham ionic charge densi-

ties. Spherical charge deformation of the ions is accomplished by adding an effective many-body crystal
site potential to the atomic potential used in the Kohn-Sham procedure. Parameters defining this
effective site potential are treated variationally such that the total crystal electronic energy is a minimum

for a given structural configuration. We have explored a number of forms of the effective potential, in-

cluding Watson-sphere types where both the charge and radius of the sphere are variationally deter-
mined. In addition, we have investigated anion-cation charge transfer by incorporating an additional
variational parameter. We also present a formulation of the lattice dynamics of ionic crystals based on
the VIB prescription in which the electronic variational parameters are treated as dynamical variables

within the adiabatic approximation. With the computed phonon density of states, the structural param-
eters of a crystal can then be determined at any temperature and pressure (or stress condition) by mini-

mizing the quasiharmonic Gibbs free energy with respect to the structural parameters along the elec-
tronic adiabatic surface. The complete pressure- and temperature-dependent thermal and elastic proper-
ties of a crystal can also be determined. We have applied the VIB procedure to calculate the equations
of state, elastic properties, phonon dispersion relations, and phase stability of the alkaline earth oxides

(MgO, CaO, and SrO). The calculated properties are generally in quite good agreement with experi-
ment. Spherical charge deformation within the ionic description is responsible for a considerable im-

provement over rigid-ion elastic constants and bulk moduli, but some of the remaining discrepancies
cannot in principle be eliminated within a spherical-ion model. In particular, the effect of spherical
breathing on the optical vibrational frequencies is not dramatic and further improvement (e.g., reduction
of LO-TO splitting) will require the inclusion of nonspherical charge relaxation (polarizability).

I. INTRODUCTION

Theoretical and experimental investigations into the
properties of oxide, fluoride, and sulfide materials have
intensified considerably during the last ten years. This is
at least partly due to the fact that these materials exhibit
a remarkable range of electronic and structural behavior
ranging from superconductivity to ferroelectricity and
ionic conduction. One step toward unlocking the vast
technological potential of such compounds is the devel-
opment of a thorough understanding of the microscopic
mechanisms responsible for the properties of interest. In
spite of the many significant advances in the theoretical
treatment of condensed-matter systems, oxide materials
continue to provide a special challenge. Oxygen anions
are typically characterized by rather disuse electronic
charge distributions and, therefore, large polarizabilities,
which make quantitative modeling dificult.

In this connection there appears to be an increasingly
conspicuous tendency to apply very sophisticated ab ini
tio electronic structure computation schemes to the
description of oxide materials. This leaves one with the
impression that simpler and more approximate methods
are totally unreliable or inappropriate. Here we are
thinking of, e.g., ionic models, bond-charge models, and
so on, as opposed to methods based on a full electronic
band structure determination. While there is no doubt
that modern quantum molecular-dynamics simulations
can provide quite a good accounting of most of the ob-
served properties, they are also known to be extremely
time consuming and ineScient, especially for complex
structures.

In this work we present a reasonably accurate but very
efBcient scheme to compute the structural, lattice dynam-
ical, and thermoelastic properties of arbitrarily complex
insulating compounds over a range of pressures and tem-
peratures. Our method is derived from an existing class
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of approximate ab initio schemes developed during the
last 20 years' which were devised specifically to treat in-
sulating compounds.

Our method exploits the fact that ionic and molecular
solids can be modeled, to a first order of approximation,
as an assembly of closed-shell units with electronic
charge clouds that are more or less localized about their
respective nuclei. Approximate density-functional
methods can then be used to accurately determine the in-
teraction between the closed-shell atoms or ions.
Specifically, the electronic structure of the closed-shell
constituents is determined by carrying out a Kohn-Sham
density-functional theory (DFT) or a Hartree-Fock calcu-
lation. These accurate densities are then used to con-
struct an approximate crystal-charge density, which is in
turn used to obtain an estimate of the interaction, or
binding energy, using the Gordon-Kim ansatz. Al-
though the latter method is based on simple uniform
electron-gas functionals, it is remarkably successful at
predicting the short-ranged interaction between closed-
shell systems.

The accuracy of methods based on the preceding no-
tions was demonstrated several decades ago by Kim and
Gordon who calculated some equilibrium properties of
alkali halide crystals. Using free-ion charge densities,
they obtained lattice constants and bulk moduli within
8% and 30% of the experimental values, respectively.
The same model, in its original rigid-ion formulation, was
applied to many alkali halides, alkaline earth halides,
and fluoride perovskites. '

An obvious limitation of these original schemes is that
they could not be applied to oxide crystals since
multiply-charged anions such as 0 are not stable as
free ions. This diSculty was ultimately resolved by intro-
ducing stabilizing charged spheres around the anions, as
originally suggested by Watson in 1958. ' The "Watson
sphere" is intended to simulate the stabilizing field pro-
vided by the crystal environment, but the shell radius and
charge remain to be determined. The shell radius and
charge are often referred to as breathing parameters, al-
though the shell charge is usually fixed (arbitrarily) to
neutralize the charge on the anion.

In a model originally introduced by Mulhausen and
Gordon" and later refined by Hemley and Gordon' and
Mehl, Hemley, and Boyer, ' the breathing parameters
are subject to plausible but arbitrary (and, strictly speak-
ing, unphysical constraint equations), which couple them
to the respective Coulomb-site potentials. In particular,
the Watson-sphere radius is adjusted so that the Coulomb
potential inside the sphere matches the site potential.
This technique, commonly referred to as "potential-
induced breathing" (PIB), leads to equations of state that
are markedly improved over the rigid-ion results. The
method has been applied with varying degrees of success
to simple oxides' and oxide perovskites. ' '

Mulhausen and Gordon" were also the first to suggest
an alternate scheme based on a variational treatment. In
this approach the crystal energy is minimized with
respect to the shell radius, which in turn determines the
a~ion-site densities. Unfortunately, the shell radii could
not be reliably determined because the crystal energy is

extremely flat in the vicinity of the minimum.
Wolf and Bukowinski' subsequently showed that a

very careful optimization of the Hartree-Fock ionic wave
functions must be carried out in order to determine accu-
rate densities and self-energies for each shell radius.
They were the first workers to successfully implement
variational ionic breathing. In this way many-body
effects due to charge-density overlap are approximately
included. Their model gave better overall agreement
with experimental data for the static and elastic proper-
ties of MgO and CaO than any previous electron-gas
model.

In a very recent study, Zhang and Bukowinski' (ZB)
calculated the equations of state and static properties of a
number of alkaline earth cubic oxides using a "self-
consistent" crystal potential scheme. Their breathing po-
tential is also that due to a Watson sphere, but with the
inner potential replaced by the spherical average of the
crystal potential [local-density approximation (LDA) ex-
change correlation + Coulomb] obtained from ionic
charge densities and the Watson-sphere parameters ob-
tained from a self-consistent scheme. Using this modified
PIB (MPIB) method, ZB were able to very accurately
reproduce the observed equations of state and phase sta-
bility of a number of alkali halides and cubic oxides.
While their method retains a certain degree of simplicity
through the use of the Gordon-Kim ansatz with Watson-
spherelike stabilizing potentials, its self-consistent char-
acter vitiates a simple description for the formulation of
lattice dynamics within this model, as discussed below.

It is straightforward to set up and solve the general lat-
tice dynamics equations for the simple rigid-ion electron-
gas models. With these models it is typically found that
the "averaged" vibrational properties of an ionic crystal
are adequately represented. In detail, however, all of the
expected deficiencies of rigid-ion dynamics are manifest.
These include a predicted observance of the Cauchy rela-
tions for the elastic constants (i.e., C&z=C44 for cubic
crystals), in contradiction with experiment, and a sub-
stantial overestimate of the splitting between longitudinal
optic (LO) and transverse optic (TO) mode frequencies.

Semiempirical lattice dynamic models have demon-
strated that the reduction of LO-TO splitting in real ma-
terials (relative to the rigid-ion value) can be related to an
induced dipolar polarization of the ions, whereas the ob-
served deviations from the Cauchy relations is at least
partly due to nondipolar deformations. Both problems
have been treated separately. Dipolar deformations were
introduced by Basu and Sengupta, ' who used perturba-
tive estimates for the ionic wave functions and electro@-
gas potentials to determine the parameters for a simple
shel1 model. Although their model is based on simplify-
ing assumptions such as the point-dipole approximation,
it yields dispersion relations for alkali halides that are in
very good agreement with experiment. A shell-model ap-
proach was also introduced by Jackson and Gordon to
simulate the static structural properties of Si02 quartz.
In their method, split shells on the oxygen ions were
used, thus allowing both dipolar and quadrupolar defor-
mations. More recently, Lacks and Gordon ' have
performed calculations using the so-called polarization-
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included breathing electron-gas (PEG) model. The
prescription is similar in spirit to the variationally-
induced breathing (VIB) approach, but is based on
Hartree-Fock densities in the Gordon-Kim ansatz. To
simulate the nonspherical environment around anions,
these authors introduce point charges in place of the
Watson sphere. Charge relaxation is achieved by supple-
menting the Hartree-Fock basis sets with Qoating
tetrahedral lobe functions localized along bond direc-
tions. The point-charge positions and the exponents and
locations of the Gaussian functions are then varied for
each structural eonfiguration, until a minimum in the to-
tal static crystal energy is obtained. The crystal property
predictions obtained using this latter approach are very
encouraging and typically (but not exclusively '} surpass
their MEG counterparts in terms of accuracy. Unfor-
tunately, neither of the methodologies discussed above
have yet been applied to the calculation vibrational
modes or elastic constants.

Apart from the perturbative dipolar deformation ex-

plored by Basu and Sengupta, ' the only other eharge-
density deformation that has been included in electron-
gas lattice dynamical modeling of crystals has been
spherical-ion breathing. Spherical deformation of the
anion-charge densities in electron-gas models has been
found to be an important many-body effect in oxides.
The inclusion of spherical breathing is crucial to obtain a
realistic description of the structural response of oxides
to applied pressure. Both the PIB and Wolf-Bukowinski
(WB) variational models reasonably reproduce the ob-
served violations of the Cauchy relations for cubic alka-
line earth oxides. The lattice dynamics of the PIB model
was presented by Cohen, Boyer, and Mehl and applied
to a number of oxide materials. However, the significant
reduction in the LO-TO splitting calculated using the
PIB model for the alkaline earth oxides underscores the
unphysical basis of this model. In the long-wavelength
limit, the additional restoring force acting on the ions in

the LO mode is due to the presence of a linear macro-
scopic electric field. Physically, this linear field cannot
couple to spherical breathing modes. Hence spherical
breathing in an ionic model should give the same degree
of LO-TO splitting as any rigid-ion model. The reduc-
tion in LO-TO splitting which arises in PIB results from
the unphysical constraint equations imposed by the PIB
ansatz; i.e., the Watson-sphere parameters are deter-
mined by the Coulomb-site potential (we will address this
point in more detail in Sec. IV B).

In this paper we more fully develop the work of Wolf
and Bukowinski' by deriving the dynamical matrix for
the variational electron-gas model within the spherical-
ion approximation. In this variationally-induced breath-
ing (VIB) model, the electronic variational parameters
are treated as dynamical variables within the adiabatic
approximation. Similar to PIB, the ionic charge densities
spherically deform under lattice vibrations, but in con-
trast to PIB the electronic breathing parameters mini-
mize the total energy.

With the computed phonon density of states, the
structural parameters of a crystal can then be determined
at any temperature and pressure (or stress condition) by

minimizing the quasiharmonic Gibbs free energy with
respect to the structural parameters along the electronic
adiabatic surface. The complete pressure- and
temperature-dependent thermoelastic properties of a
crystal an also be determined. We have applied the VIB
procedure to calculate the equations of state, elastic prop-
erties, phonon dispersion relations, and phase stability of
several alkaline earth oxides (MgO, CaO, and SrO). The
calculated properties are generally in quite good agree-
ment with experiment.

Spherical charge deformation within the VIB ionic
description is responsible for a substantial improvement
over rigid-ion elastic constants and bulk moduli. Howev-
er, some of the remaining discrepancies cannot in princi-
ple be eliminated within a spherical-ion model. In partic-
ular, the effect of spherical breathing on the optical vibra-
tional frequencies is not dramatic and further improve-
ment (e.g., reduction of LO-TO splitting) will require the
inclusion of nonspherical charge relaxation (polarizabili-
ty).

We have also explored several ways of optimizing the
effectiveness of spherical breathing in the VIB procedure.
In particular, we have evaluated the effect of using
different analytical forms for the potential used to stabi-
lize the oxygen-charge density. In addition, we have also
investigated the importance of anion-cation charge
transfer within the variational scheme. An important
technical difference between the original WB variational
model and the VIB model presented here is that the ionic
charge densities are computed using a numerical Kohn-
Sham procedure rather than using a Hartree-Fock orbital
prescription. This modification increases the speed of the
calculation enormously without the added complications
of basis set dependences.

II. GENERAL THEORY

In this section we outline the philosophy and formal-
ism of the VIB approach to crystal statics and dynamics.
The organization is as follows: We being by describing in
broad terms the fundamental underlying physical con-
cepts of the theory, emphasizing its application to ionic
crystals. We then brie6y review the Gordon-Kim ap-
proximation for calculating interactions. Finally, we pro-
vide a detailed theoretical description of VIB statics and
dynamics.

A. Philosophy of the VIB model

When ions (or atoms} are assembled into a crystal, a
certain degree of charge rearrangement takes place. This
is most evident in metals and almost negligible in the case
of many ionic compounds (for example, the alkali
halides). In the latter case it is well known that the crys-
tal density is very well represented by the sum of its con-
stituent ion s closed-shell densities. Within the class of
ionic solids, the most striking charge rearrangernent
occurs in oxides since 0 is not stable as a free ion. In
this case the crystal potential including overlap interac-
tions must be simulated in the atomic calculation. This is
customarily done by adding to the nuclear potential that
of a charged sphere with radius R„and charge Q on its
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surface and then solving the atomic Kohn-Sham problem
in the resulting potential. As pointed out in the Intro-
duction, this technique, which was introduced by Wat-
son' for the treatment of Hartree-Fock ions, also pro-
vides a convenient mechanism for spherical breathing.
Such a Watson sphere is simply introduced around every
ion that is allowed to deform (not limited to oxygen), and
both the radius and charge of the sphere can then be tak-
en as variational parameters that determine the size of
the ion. In fact, any parameters that define the electronic
charge density of the ions can be used as variational pa-
rameters. We will denote the general set of such elec-
tronic variational parameters by g.

By representing the total crystal density as a superposi-
tion of such variational site ionic densities, the total in-
teraction energy takes the form

4„„,=E gnf —QE[n, ],
where n,~ and n, are, respectively, the fragment charge
densities in their crystal and free states. According to
density-functional theory the ground-state energy, as well
as the corresponding ground-state density, can be ob-
tained by minimizing the energy expressions with respect
to the charge density. The VIB procedure exploits this
principle, but provides an estimate of the ground-state
energy given a variational ansatz for the total crystal den-
sity.

There are two distinct aspects to the implementation of
VIB: the mechanism responsible for the electronic site
charge deformations and the accounting of the concomi-
tant energy costs. The latter can be broken down into
overlap and self-energy effects. In particular, as the
charge densities on neighboring sites deform (given a
fixed internuclear separation), the short-ranged overlap
interactions are modified. An additional energy contribu-
tion comes from the change in the electronic self-energy
of the distorted ion relative to the free-ion state. This no-
tion can be formalized by recasting (l) into the form

E g n~ —QE[n~]

This expression can be further simplified when the elec-
tronic charge densities of the fragments do not overlap
strongly. In this case the first term can be replaced by a
pairwise summation. In practice, this approximation is

quite good even in the case of the oxide crystals con-
sidered since it leads to a change in the zero-pressure
volume of 1ess than a few percent. " The simplified ex-

pression takes the form

E [nf +nf] E[n,~] E[nj]— —
i)j
+ g (E [nf]—E [n; ])

In this formula the first term represents all the crystal in-

teractions between the deformed fragments including
point-ionic Coulomb interactions. The second term ac-
counts for the energy cost associated with the distortion
of the fragments relative to their dissociated reference
state.

While the preceding formula implies that the same en-

ergy functional is used to evaluate all the energy contri-
butions, yet another approximation is made in practice.
In particular, the short-ranged interactions contained in
the first term on the right-hand side are evaluated using
the Thomas-Fermi-like Gordon-Kim (GK) approxima-
tion (discussed below). However, functionals of this kind
do not represent the electronic kinetic-energy contribu-
tions to the total energies of the individual ions very ac-
curately. This is at least partly due to the fact that the
charge density varies more rapidly in the core regions of
atoms (which harbor most of the self-energy), but is much
more homogeneous in the outer regions which mediate
the overlap interaction. For this reason fully self-
consistent Kohn-Sham calculations are performed in or-
der to generate reliable self-energies. As a by-product,
realistic ionic charge densities are also obtained for input
into the Gordon-Kim interaction formula.

The essence of the VIB approach is to minimize the to-
tal crystal energy with respect to both the distortion pa-
rameters g and the lattice structural parameters R. For
computational simplicity we restrict ourselves here to
variational parameters that deform the ions spherically.
The main purpose is to show how important it is to in-
clude variational parameters in electron-gas models by
demonstrating the effect of spherical breathing on the
model's predictions for those crystal properties that cou-
ple to the breathing degrees of freedom. It will be pointed
out throughout the paper wherever this restriction to
spherically symmetric ions seems to be inadequate and
additional variational parameters that allow for non-
spherical deformations of the ions need to be included.

Figure 1 illustrates the effect of spherical breathing on
the Kohn-Sham 0 '('S;g) charge density. As can be
seen from the plot, the ionic core is practically unper-
turbed; only the tail of the charge distribution is expand-
ed or contracted in accord with the breathing parame-
ters. The range of variability shown is typical for the
range of temperatures and pressures simulated in our cal-
culations of oxide material properties. The formal and
computational details of the breathing mechanism will be
discussed in detail below.

B. DFT approach to energetics

One of the obvious advantages of the GK approach is
that it is extremely efficient computationally. To exploit
this scheme, however, an input density ansatz is required.
In the original formulation of Gordon and Kim, the com-
ponent charge fragments were rigid ions with radially
symmetric charge distributions derived from Hartree-
Fock wave functions for isolated closed-shell ions. A su-

perposition of such spherical densities was used as an ap-
proximation to the actual interacting density. In the
present work we use a variant of the original GK scheme
in which the input densities are obtained from a superpo-



50 VARIATIONAL CHARGE RELAXATION IN IONIC. . .

the results take the form
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FIG. 1. Example of spherical breathing on the oxygen charge
density. Kohn-Sham calculations were performed for a
Watson-sphere-stabilized ion with a Watson charge of
Q„=+2.0e and variable Watson radius R . Solid line, R =1
a.u. ; dashed line, R =2 a.u. ; dot-dashed line, R =3 a.u.

sition of Kohn-Sham densities. For completeness and to
establish our notation, we therefore first provide a brief
review of DFT followed by a discussion of the GK
scheme.

The density-functional formalism is based on a
theorem due to Hohenberg and Kohn (HK), which
states that the ground-state energy of an electronic sys-
tem is expressible as a functional of the electron density,
namely,

E [n]=T[n]+—fdr n (r}P(r)+E"'[n]1

2

+fdr n(r)u, „,(r),

where p(r) is the electrostatic potential associated with
the density n (r). The first three terms represent, respec-
tively, the kinetic energy of the noninteracting system,
the classical electron-electron repulsion, and the
exchange-correlation energy. Together they form a
universal functional which defines all the electronic in-
teractions within the system. The fourth term represents
the interaction of the electrons with their external envi-
ronment (i.e., nuclei) and changes from one electronic
structure problem to the next.

Unfortunately, the functionals above are only explicitly
known in certain limiting cases. The kinetic-energy func-
tional T [n], for instance, is only exactly known for a uni-
form electron-density distribution and for a relatively
small number of suSciently simple model systems. The
same is true for the exchange and correlation energy
functional. Thomas-Fermi-like theories are based on the
use of the uniform electron-gas functionals for both the
kinetic and exchange functionals. The kinetic and ex-
change energies per unit volume in a uniform system are
constants characterized by the value of the density or,
equivalently, the r, value defined by n =1/(4wr, ). The
corresponding density functionals are obtained by apply-
ing the local-density approximation (LDA), which
amounts to ascribing a coordinate dependence to the den-
sity parameter n. For the kinetic and exchange energies,

EoT"[n]=Tp[n)+ —fdr fdr'

+Exo[n]+Ec[n]

is used to estimate the pair interactions. The GK formu-
la is obtained by invoking the additivity assumption and
using, in place of the GTF densities appropriate to E
those obtained from a Kohn-Sham or Hartree-Fock
atomic calculation. The expression for the approximate
interaction then takes the form

6E i2
=ETp+ f dr $,(r)n2(r)+bEp

+QEc+ +EQQc (9)

where P, is the electrostatic potential due to the electron-
ic charge n, , AE""' represents nuclear repulsion, and, for
example, 5To=Tol"i+n2) To["i) To[n. 2) Similar
expressions hold for hE~ and AEO. It should be pointed
out that the formal error in this interaction energy esti-
mate is of order 5n, the deviation of the input density
away from the true CxTF ground-state density n
Thus, in the case of neutral atoms, Eo "[n ] actually
provides an inferior estimate of the ground-state energy
compared to E "[n "], although the input density is
presumably more realistic. Nevertheless, the original
work ' of GK shows that Eq. (9), when applied to
closed-shell interactions, yields surprisingly accurate esti-
mates. Ultimately, this suggests that the errors arising

Correlation energy functionals for a uniform electron gas
have also been put forward by a number of workers.
However, our aim here is not to review the advances in
DFT and the treatment of correlation energy, but to pro-
vide a measure of reference for subsequent discussion. A
frequently employed approximation, and one we shall use
in the calculations to be presented, is that of Gunnarsson
and Lundqvist. Other functionals for the correlation
energy can also be used, but do not materially alter any of
our results. We shall brieAy discuss the importance of in-
trasystem and intersystem correlation effects in Sec. IV.

Let us now consider the interaction between a single
pair of quantum-mechanical fragments. In the present
work we shall be concerned exclusively with estimating
the crystal interactions via such pair interactions. Within
the DFT framework the interaction energy is formally
given by

EE,2
=E [n) —E [n, ]—E [ni],

where n denotes the ground-state density of the combined
interacting system and n, and n2 represent the ground-
state densities of the isolated fragments. Within the
Gordon-Kim prescription ' the generalized Thomas-
Fermi (GTF) functional
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C. Lattice statics

In the VIB model the total binding energy of the static
crystal, as given in Eq. (3), can be expressed as

I,.I.
+@,"(R;,g, , g ) + g4;(g, ) .

i(j &J

(10)

The first term, which contains all the crystal interactions,
has now been written as the sum of two terms. The first
of these represents the point-ion Madelung energy. Here

from the various approximations cancel in some nontrivi-
al way. 26

Shortly after its appearance in the literature, a number
of attempts were made to improve the GK scheme by ex-
tending the basic GTF functional to include gradient
corrections to the kinetic and exchange energies. One of
the first attempts at such an extension is due to Shih
who incorporated the von Weiszacker correction in the
GK prescription. Although the corrected functional
leads to substantially improved estimates for individual
atoms and ions Shih finds the von Weiszacker con-
tribution to the interaction to be dominant at long range
and negatiUe compared to the uniform electron-gas term.
Shih speculates that the poor results obtained from this
procedure are due to a failure of the additivity assump-
tion used to construct the input densities for the
gradient-corrected functionals. Subsequently, Pcarson
and Gordon ' (PG) reconsidered the inclusion of gradient
corrections by applying a local truncation to the kinetic-
energy volume density, rather than the actual kinetic-
energy functional. Using a somewhat ad hoc truncation
prescription, they find only marginal improvements in

the interaction estimates.
Using the VIB procedure, we have also applied both

the gradient expansions as in Shih's work, and the PG
truncation procedure to the calculation of our ionic in-

teractions. In both cases we find substantial discrepan-
cies between our calculated equations of state and equilib-
rium volumes and those obtained by applying the
presumably cruder GK prescription. Similar conclusions
were obtained by Lacks and Gordon who recently com-
pared the performance of various gradient-corrected
kinetic-energy functionals. Although the kinetic-energy
estimates for isolated constituents can be somewhat im-

proved by the inclusion of gradient terms, the latter au-

thors also find that the interatomic interactions are wor-
sened. This would seem to imply that the error cancella-
tions inherent in the GK ansatz may indeed be fortuitous.
We have chosen to work with a variant of the original
Gordon-Kim interaction formula in which the ionic frag-
ment densities are computed using the Kohn-Sham (KS)
procedure, including exchange and correlation, but in
which the interaction (9) is calculated using KS exchange
only, in including a correlation contribution. In a subse-

quent section we shall make contact with a recent study

by Illas et al. , which provides some justification for
this choice. We find that the neglect of correlation ener-

gy in the Gordon-Kim treatment of the interaction leads
to systematic improvements in the calculated properties
of alkaline earth oxides.

Z;Z —I;I- n;~(r)n (r')

nf(r) n,~(r )
(12)

Here Z is the nuclear charge and I the total charge of the
respective ion; n (r) is its electronic charge density, and R
is the position of its nucleus. The remaining kinetic and
exchange contributions are calculated using the GK pro-
cedure as described previously.

We now discuss the calculation of the distorted charge
densities and their corresponding self-energies. Both are
obtained simultaneously by solving the Kohn-Sham prob-
lem self-consistently at each site in the crystal subject to
an effective local many-body potential (ELMBP) W(g', r).
The ELMBP provides the breathing mechanism and ion-
ic stabilization (if required). Although W(g;r) is usually
taken to be a Watson sphere with variable radius and

charge, more flexible parametrizations can easily be im-

plemented (see Sec. IV). In this case the single-particle
Kohn-Sham problem can be written as

,'V +v, tr[n—~]+W(r;g, )]P' (13)

where m is the state label and the index i labels the site in
the crystal. The electronic self-energy associated with
the ion at site i is then obtained by subtracting from the
Kohn-Sham ground-state energy the interaction of the
density with its ELMBP,

E,'(g, ) =EKs[(n,~)]—fdr n;~(r) W(r;g; ) .

This crucial step is required in order to avoid double
counting the ions interaction with its local electronic en-

vironrnent. With this definition all the crystal interac-
tions are contained in the first term on the right-hand
side of Eq. (10), while the second term measures the cost
in electronic self-energy due to charge relaxatioa. The
change in the self-energy is therefore defined by

4;(g;)=E (g;) —E (g;) .

The particular choice of reference state g; used to

i and j label the ions of the crysta1, R; is the separation
between ions i and j, and the I's stand for the ionic
charges. The Madelung energy is obtained by summing

up the long-ranged point-ion electrostatic interactions us-

ing Ewald's method. The second term in the brackets,
4, , is the short-ranged interaction energy. The last term
in this definition, 4, , is the contribution to the binding

energy due to the change in the ionic self-energies. We
now discuss these latter two contributions in more detail.

The short-ranged overlap interaction can be split into
three parts:

=DE +ET +DE
1J V 1J 1J

AE, is the short-ranged Coulombic term that is due to
overlapping charge densities. It is given by the exact
electrostatic interaction between two spatially-extended
charge distributions minus the long-ranged point-ion
Coulomb energy:
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define the self-energy is immaterial. In our calculations
the reference state is a Watson-sphere-stabilized 0 ion
with R =2. 15 a.u. and Q =+2.0e. The corresponding
self-energy of 0 ('S;P)= —74.373453 a.u. Since O~

is not stable as a free ion, to obtain the binding energies
of the crystal, the Kohn-Sham energy associated with the
reaction —Mii(q) =% (q)u(q)+2) ~(q)v(q), (21)

masses associated with the breathing variables, which
represent electronic degrees of freedom, to zero. With
these coupled equations given, the equations of motion
for the Fourier-transformed variables u(q) and v(q)
decouple into N independent sets of equations, one (cou-
pled) set for every wave vector q:

0 ('S;P)~O ( P)+e (16)

D. Lattice dynamics

The dynamical matrix in the VIB model is derived by
treating the electronic variational parameters as dynami-
cal variables subject to the adiabatic condition. As in
empirical shell models, ' the equations of motion in the
quasiharmonic approximation are obtained by expanding
the static lattice energy 4 of Eq. (10) up to second order
in the nuclear displacements u and variations v of the
breathing parameters of all the ions (in matrix notation}:

0+eRu+ @~v+,' u@RRu+

+—'v4~"u+ —'v4~~v .
2 2

Here 40 represents the potential energy of the equilibri-
um static lattice. 4 and 4~ are the multidimensional
gradients of 4 with respect to all the nuclear coordinates
R and all the breathing parameters g, respectively, and
4~~, 4"~, @~",and 4~~ are the respective (second deriva-
tive) force-constant matrices. If the expansion is made at
the equilibrium configuration, the linear terms vanish and
the equations of motion can be written as the following
set of coupled equations involving the nuclear and elec-
tronic coordinates:

Mu (ORRQ+q Rg

O=e &Ru+e &&v .

(19}

(20)

M is a diagonal (3Nn X 3Nn) matrix (N =total number of
primitive cells and n = number of ions in the primitive
cell) containing the ionic masses as elements. In Eq. (20}
we have made the adiabatic approximation by setting the

was calculated For the reference state go=(R =2. 15,
Q =2.0), the energy of this reaction was determined to
be —0.36926 a.u. This value is then subtracted from the
binding energy obtained from a VIB calculation to yield
the dissociation energy of the crystal.

The equation of state and certain equilibrium proper-
ties of the static lattice can be obtained as a function of
pressure (or any general strain tensor) by minimizing the
Gibbs free energy of the static crystal, G„„;,=4+pV,
with respect to the lattice structural parameters R. The
free-energy minimization is performed along an adiabatic
energy surface where the total electronic energy is at a
minimum with respect to the variational parameters, i.e.,

G„„;,(p) =min I min[4(R;g}]+pV(R)] .
R

The short-ranged contribution to 4 was obtained by
direct lattice sums over the first three coordination shells
of each ion.

0=5r}~ (q)u(q)+2)~~(q)v(q) . (22)

G,z(R, t;g,d ) = g[ 2fico;+k&T ln(1——e ' )] (24)

Ea«7 0d)
—A'co. /k Ti 8

firu /k T—
i 8

%co;e
=@0(R)+g fico;+—

1 —e

Here the m; are the quasiharmonic normal-mode fre-
quencies associated with the structural configuration, kz
is Boltzmann's constant, and the sums are formally over
all the normal modes of the lattice. The mode frequen-
cies implicitly depend on g,d, the values of the electronic
variational parameters that minimize @0. Given a pres-
sure p and a temperature T, the equilibrium structural

Here M is a diagonal (3n X 3n) matrix containing the ion-
ic masses, and the 2) matrices are the q components of
the Fourier transforms of the respective force-constant
matrices. To derive Eqs. (21) and (22}, we have assumed
periodic boundary conditions and have made use of the
translational symmetry of the force constants. Equation
(22) is solved for v(q), which is then inserted into Eq. (21)
to obtain the general equation of motion for the nuclear
coordinates,

—ii(q}=M '[2)""(q)—2)"&(q)[2)&~(q)) 'S~ (q) ju(q) .

(23)

2)~~(q) is a Hermitian (m Xm) matrix (m =number of
breathing parameters per unit cell} and is easily inverted
numerically. The Z" part of the dynamical matrix is
the rigid-ion contribution and consists of the short-
ranged rigid-ion overlap part and the long-ranged
Coulomb (or Kellermann) matrix, which is calculated us-
ing Ewald's method. ' The other contributions 2)"&

and 2)~" are the direct coupling terms between the elec-
tronic and nuclear coordinates. The latter contributions
are of a short-ranged nature and can be calculated by
direct lattice summation. Explicit expressions for the
short-ranged potential contributions to the various
dynamical matrix elements are provided in the Appendix.

To obtain the equations of state at finite temperatures,
we invoke the quasiharmonic approximation; i.e., at
temperature T the thermal contribution to the energy for
a given structural configuration is that given by the corre-
sponding harmonic system. In the quasiharmonic ap-
proximation the formulas for the vibrational energy E,b
and free energy G,z are given, respectively, by
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parameters R are those that minimize the total quasihar-
monic Gibbs free energy along the adiabatic electronic
surface:

G(Tp) =minImin[4(r;g)]+G, „(R,T;g,d }+pV(R)I .
R

(26)

III. COMPUTATIONAL DETAILS

In this section we describe some of the computational
procedures followed for the calculations outlined in the
previous section.

As pointed out earlier in the text, we employ the
Kohn-Sham procedure to obtain the ionic charge densi-
ties. To implement VIB our basic Kohn-Sham code was
modified to include, in addition to the usual nuclear
external potential, the ELMBP W(r;g;). When this po-
tential is chosen to be a Watson sphere, the integration
mesh must be scaled in such a way that the discontinuity
in the potential at r =R matches a mesh point. In prac-
tice, we have found that the small differences in the self-
energy resulting from the neglect of this matching pro-
cedure can adversely affect the convergence of the crystal
energy minimization. We typically employ a Herman-
Skillman mesh with 10 blocks, 48 points per block, and a
typical initial step size of 0.001 atomic units. For the
exchange-correlation functional we use the form pro-
posed by Gunnarsson and Lundqvist. From the result-
ing ionic charge densities, the short-ranged overlap pair-
interaction potentials (in the following just "pair poten-
tials") were calculated according to Eq. (11)by numerical
integration. The contributions to 4,J. were combined in a
single integrand, and a (24X32}-point Gauss-Legendre
integration in spheroidal coordinates yielded results for
the pair potentials that were fully converged.

The calculation of the dynamical matrices in Eq. (23)
involves various derivatives of the total energy Eq. (10)
with respect to the nuclear coordinates and the variation-
al parameters, which makes it necessary to differentiate
the pair potentials 4," and the self-energy O'. As an ex-

ample, consider the case of two interacting ions both with
Watson spheres. In general, the pair potentials are func-
tions of five variables: the separation r of the ions and
two breathing parameters (R and Q ) for each of the
ions. We considered two practical schemes for extracting
the mixed partial derivative information from this type of
multidimensional potential-energy surface (PES). In the
first, we fitted the various potentials to an analytic form
that could be explicitly differentiated. However, optimiz-
ing the various coefficients and exponents of the analytic
equations turned out to be a formidable task for such a

complicated multiparameter function. For this reason,
and because the fitting procedure would have to be re-
peated for each new system, we abandoned this approach.
%'e decided, instead, to construct multidimensional
splines for the PES. Splines not only provide smooth
derivative information, but have the advantage that they
are relatively robust, so that the procedure of generating
derivatives for an arbitrary system's PES can be automat-
ed.

Ultimately, however, the complexity involved in using
multidimensional splines can also be avoided. As we

shall show in Sec. IV C below, a Watson-sphere potential
with variable R and a frozen but judiciously chosen Q„
yield essentially the same results as obtained from more
elaborate variational forms. In additional, the cation-
cation and anion-cation pair PES's can be further
simplified since we find that the deformation of the
cation-charge densities in their crystal environment is

insignificant. With this assumption the anion-cation pair
interactions depend on only two parameters, r and a sin-

gle R on the anion, while the cation-cation potentials
depend only on r. These sirnplifications of the parametric
dependence permits the implementation of standard bicu-
bic spline interpolation, which is sufficiently efficient and
accurate to be used in our application.

An additional complication arises in connection with
the anion-anion pair potentials P(r, g„g2) which are, in

general, functions of two independent breathing variables.
This difficulty can be resolved by introducing the new pa-
rameters e= —,'((I —g2) and g= —,'(g&+(2) and expanding

the anion-anion potentials as follows:

1 d P(rg s, g+e)—
dE,

+ 0 ~ ~

where

=f (r, g)+ —,
' g (r, g)s (27)

f (r, 0):4(r, —

g (r, g): P(r, (+e,g——e) ~,=0 .
dE,

(28)

a'y 1 a'f
4

(29}

ap 1 af
ag g, 4 ag'

For the systems considered here, the PES was comput-
ed over the range 1.0—13.0 a.u. for ~ and 1.0—3.0 a.u. for

The crystal energy minimizations were carried out us-

ing a Simplex procedure with an energy tolerence of
10 'a.u.

The first derivative term in Eq. (27) vanishes from sym-

rnetry considerations the calculation of the function

g (r, g) involves, taking finite-difference second derivatives
with a small value of c. =0.01. This function represents
the contribution to the anion-anion interaction for slight-

ly inequivalent ELMBP's. The second derivatives of the
anion-anion pair potentials needed for the dynamical ma-

trix calculation were then determined from these func-
tions according to the formulas

ap 1 af
ara(, 2 ara(
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IV. RESULTS AND DISCUSSION

A. Static and elastic properties

The VIB predictions for the binding energies, lattice

constants, and elastic properties of MgO, CaO, and SrO

at 300 K and zero pressure are summarized in Table I
where they are compared to experimental values. All cal-

culations were performed using a Watson sphere on the

oxygen ions with R as the only variational parameter

and a frozen value of Q„=+2.0e. For all three materi-

als, the 81 (sodium chloride) structure is correctly pre-

dicted to be dynamically stable and lower in energy than

the 82 (cesium chloride} structure at zero pressure. The
calculated dissociation energies of the B1 structure are

all within 5% of the experimental values. For the Bl
structure the calculated lattice constants (at ambient

pressure} are all within 2% of experimental values. The
calculated (isothermal} bulk moduli and their pressure

derivatives are of comparable accuracy and differ from

the experimental values by less than 2%. The accuracy

of these results is remarkable in view of the fact that nei-

ther nonspherical charge relaxation nor charge transfer

were included in these calculations. In contrast, the bulk

moduli calculated using the rigid-ion model (obtained by

freezing the breathing parameter R at its VIB equilibri-

um value) are overestimated by 58% for MgO, 34% for

CaO, and 36% for SrO. The magnitude of this softening

effect of variational ionic breathing demonstrates the im-

portance of including spherical charge relaxation in

electron-gas models.
The calculated equations of state of the B1 and B2

structures at 300 K are compared with the available ex-
perimental data for MgO, CaO, and SrO in Figs. 2, 3, and
4. The equation of state for MgO matches the data very
well. For CaO and SrO the calculated volumes for the
B1 structure are below experimental values by about 6%
over the entire pressure range. For the B2 structure,
however, the calculated values are in much better agree-
ment with the data. These results imply that the highly
accurate VIB predictions for the MgO B1 equation of
state may not reflect the overall accuracy of the model
and that volume errors on the order of 6% may be more
representative.

The phase-transition pressures for the B1-B2 struc-
tures were also calculated. For MgO, VIB predicts a
B1-B2 transition at 420 GPa, which is consistent with
the available data that show the B 1 phase to be stable up
to at least 200 GPa. The calculated transition pressure
for CaO is 139 GPa, considerably higher than the experi-
mental value of 63 GPa. ' For SrO the predicted B1-B2
transition is at 100 GPa, again much higher than the ex-
perimental value of 36 GPa.

The overestimate in the B1-B2 transition pressures for
CaO and SrO arises from an underestimation of the
volume change (which enters the free energy through the

p V term) across the transition. For CaO the experimental
volume change at the transition pressure is about —10%,
whereas VIB predicts a volume change of only —6.3% at
this same pressure. For SrO the experimental hV is
—13% at the transition pressure compared to the VIB
prediction of —6.5%. Because phase stability is deter-
mined by the (small) difference between two large num-

bers {the Gibbs free energies of the competing phases),

TABLE I. Structure and elastic properties of MgO, CaO, and SrO at T =300 K. R, is the zero-pressure nearest-neighbor distance
(in angstroms), and Ez is the isothermal bulk modulus (in GPa). The experimental elastic constants are adiabatic values (in GPa),
while the calculated elastic constants are "athermal" values, as discussed in the text. The binding energy is given by 40+E,b (in

atomic units) for the equilibrium structure at 300 K.

MgO (B1)

Expt. '
VIB
Rigid ion

Cao (B1)
Expt. '
VIB
Rcgj.d ron

SrO (B1)

Expt. '
VIB
Rigid ion

R,

2.106
2.111
2.111

R,
2.415
2.370
2.370

R,
2.580
2.534
2.534

Ey.

160
160
252

Eq

111
114
153

Kp

91
90

122

dEp
dP

4.1

4.0
4.3

dEq
dp
4.2
4.1

4.3

dK~

dp
4.3
4.2
4.4

297
278
370

Cii

221
204
243

174
172
204

Ci

95
100
194

C&2

57
69

109

C12

47
49
81

156
200
200

80
112
112

56
83
83

C11 C12

202
178
178

C11 C12

164
136
136

C I I C12

127
124
124

C44 —C12

61
100

6

C44 —Cia

23
43

3

C44 C

9
34

2

D,

1.16'
1.17
1.17

D,

1.01
1.06
1.06

094
0.99
0.99

'Experimental values quoted in Ref. 18; see references therein.
""Rigid ion" means the breathing parameters are frozen in at their VIB equilibrium values; hence, R, is the same as for VIB. The
Cauchy condition C~ —C,2=0 is slightly violated here since the volume of the lattice is slightly expanded from the static lattice
equilibrium value.
'Zero-temperature value quoted in Ref. 18.
300-K value quoted in Ref. 18.
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FIG. 2. Calculated equation of state for MgO at 300 K. The
experimental points were taken from Refs. 48 and 49.

FIG. 4. Calculated equation of state for SrO at 300 K. The
experimental points were taken from Refs. 42 and 43.
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such seemingly small discrepancies as those present for
the CaO and SrO B1 volumes can lead to large errors in a
model's predictions for transition pressures and tempera-
tures.

The theoretical values for the elastic constants given in

Table I were calculated from the harmonic sound veloci-

ties derived from the dynamical matrix and are thus nei-

ther isothermal nor adiabatic, but are what may be called
"athermal;" i.e., the only thermal correction to the static
lattice elastic constants is the effect of the quasiharmonic
thermal expansion of the lattice. At 300 K, however, the
thermodynamic corrections between the adiabatic and
athermal elastic constants are very small and can be safe-

ly ignored at the present level of accuracy. As shown in

Table I, the calculated values for C» and C,z are in

surprisingly good agreement with the data (within 10%),
especially when compared to those obtained from the
rigid-ion model. The elastic constant C44, however, is in

much poorer agreement with data, typically within 30%.
Furthermore, there is no difference between the value of
C44 calculated using the VIB model and that calculated

using the simpler rigid-ion potential. This lack of cou-

pling between C44 and spherical breathing is expected
from symmetry arguments. C44 is a pure shear modulus,
and thus no volume change accompanies the strain asso-
ciated with this modulus. This is also the case for the
combination C»-C&2, which is also a pure shear
modulus; hence, the same calculated values for this
modulus are obtained from both the VIB and rigid-ion
models.

Because of the coupling of spherical breathing to the
elastic deformations associated with C,2, the VIB model
does allow a relaxation of the Cauchy restriction
C&&=C44 which must be obeyed at zero pressure for al1

cubic crystals (in their static state) where the atoms in-
teract via central pair potentials alone. Since the VIB
model incorporates the first-order many-body effects aris-
ing from charge overlap, the Cauchy restriction is violat-
ed. In Table I we compare the calculated deviation of the
Cauchy relation for these oxides using the VIB and
rigid-ion models with the corresponding measured values.
Both the sign and magnitude of the deviation obtained
from the VIB calculation are in qualitative agreement
with the data. In all cases the calculated deviation is
larger than observed. This again rejects the fact that C44
cannot couple to spherical breathing and is overestimated
in the VIB calculation. The table also reveals a slight de-
viation of the Cauchy relation for the rigid-ion model.
This arises from the fact that at 300 K the volume of the
lattice is slightly expanded from the equilibrium static
lattice value.

To further improve the calculated elastic constants, it
will be necessary to include nonspherical deformation of
the ionic charge densities. Most importantly, inclusion of
quadrupolar deformations will be necessary to reduce C44
and further reduce C&z.

50 150
B. Lattice dynamics

P (OPa)

FIG. 3. Calculated equation of state for CaO at 300 K. The
experimental points were taken from Refs. 50 and 41.

In Figs. 5, 6, and 7 the theoretical dispersion relations
of the VIS model are compared to inelastic neutron-
scattering data and to the dispersion relations that result
when the breathing parameters are frozen in at their
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FIG. 5. Calculated phonon dispersion for MgO at 300 K.
The solid line represents the VIB result, while the dashed line

was obtained from a rigid-ion calculation. The neutron-

scattering data, represented by squares, were taken from Ref.
51.
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CaO-VIB at 300K
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200

equilibrium values in the VIB model. The agreement be-
tween the theoretical acoustic branches and the data is
reasonably good for the oxides, rejecting the respective
agreement in the elastic constants, which are, after all,
linearly related to the squared sound velocities. Howev-
er, the optic branches, in particular the LO branches,
show a much larger deviation from the neutron-
scattering data. This discrepancy primarily arises from
the neglect of nonspherical breathing in the present VIB
treatment.

The most important charge relaxation mechanism
affecting the optical branch and the LO-TO splitting is
dipolar deformation (polarization). This is because dipo-
lar charge distributions directly couple to the local mac-
roscopic field produced by the ionic motions. Higher-
order charge relaxation will have a lesser effect since it
only couples to electric field gradients (inhomogeneous
electric fields). Moreover, spherically symmetric charge

FIG. 7. Calculated phonon dispersion for SrO at 300 K. The
solid line represents the VIB result, while the dashed line was

obtained from a rigid-ion calculation. The neutron-scattering

data, represented by squares, were taken from Ref. 51.

relaxation does not produce any multipole moments, and
as a consequence, its coupling to the electric field is even
weaker.

In the PIB model there is a large effect on the LO-TO
splitting due to the spherical breathing. However, varia-
tions in the long-ranged electrostatic interactions due to
the lattice vibrations cannot "induce" spherical breathing
unless there is a direct overlap of the "inducing" charge
density with the breathing ion, no matter how strong or
nonuniform the electric fields. Since the non-Coulombic
contributions to the ionic interactions are short ranged,
this straightforward argument shows why ionic breathing
parameters should not couple to the point-Coulomb-site
potential. This would appear to contradict the premise
on which PIB lattice dynamics is based.

In the plots we also show the corresponding rigid-ion
dispersion curves for comparison. It is striking how
small the VIB effect is on the optical vibrational frequen-
cies. In the high-symmetry directions, most of the pho-
non branches show no change in frequency because sym-
metry prevents the modes from coupling to spherical
breathing of the oxygen ions. As expected, the LO-TO
splitting of the rigid-ion and VIB models is the same.

To demonstrate the model's usefulness in the calcula-
tion of thermal properties, we have used VIB lattice dy-
namics to determine the temperature dependence of the
isothermal and adiabatic bulk moduli of MgO at ambient
pressure. For this plot, the isothermal bulk moduli ET
were obtained by fitting the p(V) isotherms to a Birch-
Murgnahan equation of state. The adiabatic bulk
moduli were obtained from the isothermal value through
the thermodynamic identity

I A L Q W Z X K Z

Wave vector

Eg =ET 1+
TVa KT

Cv
(30)

FIG. 6. Calculated phonon dispersion for CaO at 300 K.
The solid line represents the VIB result, while the dashed line
was obtained from a rigid-ion calculation. The neutron-
scattering data, represented by squares, were taken from Ref.
51.

where u is the volume thermal expansivity and Cv is the
isochoric heat capacity. To extract the temperature-
dependent a, we employed a Mie-Gruneisen fit to the
calculated values of V along the ambient pressure isobar.
The temperature-dependent Cv values were obtained
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FIG. 8. Isothermal and adiabatic bulk moduli as a function
of temperature for MgO. Data taken from Ref. 52.

Because the breathing parameters in the VIB model
are determined variationally, it is important to work with
variational parameters that make the charge density flexi-
ble enough so it can relax close to the true ground state.
Since the conventional choice of a single breathing pa-
rameter (i.e., a variable Watson radius R with a fixed

charge Q chosen to neutralize the ionic charge) might
not provide the optima1 flexibility, we investigated the
effect of additional degrees of freedom for the crystal-
charge density (subject to the constraint of spherically
symmetric ions) on the calculated ground-state energy,
lattice constant, and bulk modulus of MgO and CaO. In
the subsequent discussion we investigate, in turn, the im-
portance of four effects: (i) incorporating the Watson
charge Q as an additional variational parameter, (ii)
variability associated with the use of different forms for
the confining potential, (iii) the effects due to cation
breathing, and (iv) the effect of charge transfer between
anions and cations.

We first reexamined the Watson-sphere potential. In-
troducing Q as a second variational parameter lowered
the energy of MgO by 5 mRy and decreased the zero-
pressure volume by 2% from their corresponding values
with Q frozen to +2.0. The optimal value for Q is
slightly pressure dependent and also depends on the
countercation. It is interesting that the variational value
of Q for MgO is +3.3e at zero pressure, considerably
larger than the conventional choice of +2.0e. The larger
value for Q can be explained by recalling that in the
VIB model the Watson potential simulates the effective
cr stal potential due to overlapping charge densities. '

Fixing Q at +2.0e leads to an equilibrium Watson ra-
dius of 1.16 A for MgO, which is well inside the 0 ion,
whereas relaxing both R and Q results in a larger Wat-

from the quasiharmonic vibrational density of states in
the usual way. The results are shown in Fig. 8 and com-
pare favorably with experimental values. The quasihar-
monic predictions for the bulk moduli are only a few per-
cent high throughout the temperature range for which
data are available (up to 1800 K).

C. Beyond the Watson sphere

0
son charge at a radius of 1.33 A, which is very close to
the classical ionic radius of 1.40 A for the 0 pseudo-
ion. At this distance from the oxygen nucleus, the
magnesium-charge density rises steeply and is more real-
istically simulated by a Watson sphere with this radius
and a large charge.

A completely different situation is found in the case of
CaO and SrO. In the case of CaO a minimum in the total
crystal energy could not be found with respect to varia-
tions in both R and Q at zero pressure. To investigate
the origin of this instability, we carried out a series of cal-
culations (at I' =0) in which the Q parameter was sys-
tematically fixed at different values while the R was al-
lowed to vary. The crystal energy gradually decreases as
Q is reduced from +2.0e with a slight expansion of the
lattice in the direction of the measured experimenta1
value. For Q values less than about +1.2e, 0 was
found to be unstable. This may suggest that the ionic
description for CaO may be tenuous at zero pressure. At
slight positive pressures for CaO, the 0 could be stabi-
lized with both the R and Q variables. It is interesting
to note that the use of self-interaction-corrected (SIC)
Kohn-Sham densities led to a larger stability window and
stable minimum at P =0 with R = 1.28 A and

Q =+1.8e. Unfortunately, we generally find that the
zero-pressure volumes obtained using SIC densities are
substantially reduced (4—6%) relative to those obtained
from the KS-LDA treatment and in poorer agreement
with data. Investigations aimed at understanding the
differences introduced by using KS vs SIC-KS densities
are currently in progress.

We next examined the effect of using different function-
al forms for the confining potentials. In our earlier dis-
cussion we pointed out that the Watson sphere is only
one possible ansatz for an ELMBP. A form for the
ELMBP similar to the self-consistent potentials calculat-
ed by Zhang and Bukowinski' in their MPIB work can
be obtained by considering the spherical average of a
screened electrostatic potential of the form

(31)

The spherical average of this potential about a displaced
center at r =R is then given by

—oR

W(r)= —Q„ja(or), r(R„
R

CT 1'

= —Q Jo(oR ), r &R
r

(32)

where je(x) is the zeroth-order spherical Bessel function
with pure imaginary argument, i.e., jo(x)=sinhx/x. In
the limit o. =0 this potential reduces to the Watson-
sphere potential. An even more elaborate parametriza-
tion which mimics certain aspects of the Watson sphere
potential, but provides control over the stiffness of the
we11 wall, can be written as
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1++2
l+(C —y)

(33)

0.0

—0.5

—1.0 P=O

As r~0, this potential goes to —Q lR, while asymp-

totically it behaves as =r e " with the exponent
given by a =o /(R„C).

Figure 9 illustrates the radial dependence all three of
the potentials considered. To simplify the comparison,
Q has been fixed at +2.0e and all others parameters
have been set to their optimal variational values for CaO
in the static B1 structure. As can be seen from the plots,
the difference in the radial dependence of the various po-
tentials is quite dramatic, particularly at high pressure.
In spite of this the calculated properties are found to be
essentially the same in all three cases. In Table II we list
the potential parameters and some calculated crystal
properties at the two pressures corresponding to the plots
in Fig. 9. The static lattice bulk moduli and the equilibri-
um zero-pressure lattice constants are seen to be nearly
identical in all three cases. Larger discrepancies are
found in the crystal properties at ambient pressure com-
pared to those obtained for the higher pressure. On the
other hand, there appears to be a larger variability in the
radial dependence of the three potentials at high pres-
sure. Similar trends'are found in the case of MgO. A re-
markable conclusion that emerges from these test calcu-
lations is that the crystal properties are relatively insensi-
tive to the precise form of the ELMBP. This would seem
to suggest that the simplest Watson-sphere ELMBP an-
satz for spherical breathing (with a fixed Q and variable
R ) is adequate.

It is also of interest to determine the importance of cat-
ion breathing. Introducing an additional Watson sphere
around the Ca + ion in CaO and relaxing the static lat-
tice energy with respect to both Watson radii and the cat-
ion Q„reduced the energy per unit cell by only 0.3 mRy
and resulted in a lattice volume that was contracted by
0.2% compared to the rigid-cation result. The efFect is
even smaller in MgO because Mg + is less deformable

0.0

—0.5

—1.0

-1.5

I I I I
)

I I I I

FIG. 9. Optimal ELMBP for static lattice CaO (B1}at 0 and
100 GPa. The solid lines represent the results obtained by op-
timizing the Watson-sphere potential with respect to both R .
The dashed and dot-dashed curves denote the optimal potentials
given by Eqs. (33) and (32), respectively.

than the larger Ca + ion. We therefore conclude that,
compared to oxygen breathing, spherical charge relaxa-
tion of the cations is of relatively minor importance.

It is interesting to note that the variationally-optimized
Watson charge for the cation is positive and thus has the
opposite sign of the charge that would be assigned to a
cation in a PIB-type treatment, where Q is chosen to
neutralize the ionic charge. This observation is con-
sistent with the notion that overlap repulsion determines
ionic sizes in crystals rather than the electrostatic site po-
tential.

The last issue we shall address in connection with the
modeling of oxide crystals is the adequacy of the closed-
shell description itself. We have investigated this ques-

TABLE II. Optimal variational parameters for three choices of the confining potential for CaO at
zero pressure. The potentials WR2 and WR are, respectively, Watson-sphere potentials with and
without the variable Q . The bulk moduli (in units of Gpa) were evaluated for a static lattice. Volume

0 ~ 0
in A and lengths in A.

Potential

P=O GPa
WS
Eq. (33)
Eq. (32)

R

2.591
2.848
2.412

2.000
2.000
2.000

0.151 1.25
0.30

119
120
121

R,

2.361
2.363
2.357

—1.432 37
—1.429 85
—1.423 55

P =100 GPa
WS
WS2
Eq. (33)
Eq. (32)

2.087
2.020
1.964
2.328

2.000
1.822
2.000
2.000

0.151 1.25
0.30

2.080
2.080
2.081
2.079

—0.950 59
—0.950 76
—0.946 31
—0.941 75
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tion within the context of a spherical-ion model by allow-
ing for fractional charge transfer between the anions and
cations. In order to treat these effects, the KS numerical
procedure was modified to allow fractional occupation
numbers. Special care was taken to ensure the continuity
of "single-particle" and total energies across shell boun-
daries. The VIB and MEG procedures were then
modified to treat the fractional charge 5Q as an addition-
al variational parameter. The latter quantity is defined as
the additional fractional charge on an anion. Thus a neg-
ative value of 5Q represents the removal of charge from a
closed anion p shell and its addition to an open s shell of a
cation. Within the framework of our simplified computa-
tional scheme, this is the simplest nontrivial way to
achieve a measure of the effects of charge transfer.

It should be emphasized that the coupling between the
ionic breathing and the charge transfer is provided by the
VIB procedure. In the most general case, the free energy
of the crystal is minimized with respect to the breathing
parameters R„and Q and the fractional charge parame-
ter 5Q. For all the cubic oxides considered, we find that
the variationally-optimized ionic charges are within less
than 1% of the corresponding formal values.

Very recently, Illas et al. performed a study to deter-
mine the character of bonding in the alkaline earth ox-
ides. Specifically, they performed a series of calculations
based on cluster-model determinantal wave functions of
increasing complexity and compared their results with
the predictions of full configuration interaction (CI) cal-
culations. They find that the ideal ionic configuration
(e.g., corresponding to a superposition of closed-shell ion-
ic densities) has a weight of more than 95% in the final
CI wave function. In addition, the ionic charge states of
the ions in the crystal deviated from their forrnal ionic
values of +2e by no more than a few percent. This latter
observation is consistent with our findings. Finally, from
an analysis of the CI wave functions, Illas et al. deter-
mined that electron-electron correlation effects were
mainly intra-atomic. Our electron-gas calculations also
reveal that the inclusion of LDA correlation energy in
the GK formula tends to contract the lattice and worsen
the agreement with the experimental equations of state.
Our work also indicates that the inclusion of correlation
energy in the KS description of the individual ions leads
to a more realistic description of the crystal properties.

Within the context of our model, this tendency toward
closed-shell character can be understood in terms of the
substantial energy cost associated with the fractional
charge transfer between ions. For positive 5Q there is a
strong decrease in repulsion which is compensated by an
equally large increase in the Madelung energy and self-

energy. Overall, we find that this approximate treatment
of charge transfer in our model has no effect on the calcu-
lated properties.

V. CONCLUSIONS

In this paper we studied the influence of ionic breath-
ing on the statics and dynamics of the binary alkaline
earth oxides by treating the structural and electronic de-
grees of freedom variationally. We have shown that a

description of the crystal energetics based on a simplified
density-functional approach is able to quantitatively
reproduce most of the observed thermoelastic properties
of these oxides.

Our work confirms the notion that spherical breathing
is an important relaxation mechanism in these systems.
We find that variational optimization of this effect (VIB)
leads to a significant improvement over the conventional
rigid-ion description.

We tested the sensitivity of our model to different func-
tional forms for the effective many-body potentials and
found that the essential physics is captured by a single
variational parameter on the anion. We find that the ar-
bitrariness in the choice of the breathing potential does
not appear to affect the predictions of our basic model.

Our calculated equations of state for the B1 phase of
MgO and the 82 phases of CaO and SrO are in excellent
agreement with available experimental data. The overes-
timation of the transition pressures for CaO and SrO
seems to be related to the slight underestimation of the
B 1 volumes near the observed transition pressure in both
cases. The accuracy of the VIB-model predictions is
found to be on the order of a few percent for the lattice
constants and bulk moduli. We do not expect that
significant improvement on this degree of accuracy is
possible within the simplified electron-gas description on
which our model is based. Since the influence of using
different correction schemes for the energy functionals on
the electron-gas results is of about this order of magni-
tude, it is at this point difficult to unambiguously decide
from the degree of agreement with experiment (and more
accurate first-principles calculations) which of several al-

ternate electron-gas energy functionals is to be preferred
in this type of model.

We also formulated a lattice dynamics description
based on VIB in which the breathing (electronic) parame-
ters are treated as dynamical variables. With no adjust-
able parameters we find that our model provides a very
good description of the elastic properties of MgO, CaO,
and SrO. In particular, the Cauchy relation predicted by
our VIB treatment for these systems is of the correct
sign, although the magnitude of the difference C44

—C, 2

is somewhat larger than its experimental counterpart.
We expect that the introduction of nonspherical deforma-
tions will greatly reduce these and other related
discrepancies with experiment. In particular, taking qua-
drupolar deformations into account seems necessary to
improve the predictions for the elastic constants, while a
model for dipolar charge relaxation is required to elimi-

nate the overestimation of the optical vibrational fre-
quencies.

The simplicity of the VIB model together with its
predictive character encourage the use of the approach
(and in the future possibly extended versions that include
nonspherical charge relaxation) in theoretical studies of
even more comples ionic materials which are currently
beyond the computational reach of more elaborate and
sophisticated ab initio techniques.
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APPENDIX

Here we provide explicit expressions for the dynamical
matrix elements. Our notation is as follows: R(„')

denotes the position of the vth ion in the 1th primitive
unit cell. Similarly, g(„') represents the ELMBP varia-
tional parameters. We discuss here only the contribu-
tions to the dynamical matrix from 4, the short-ranged
overlap part of the interaction, and 4', the self-energy
piece. Since the Coulomb contributions do not involve
the breathing parameters and can be treated using con-
ventional methods, we do not present detailed formulas
for them here.

m",J"(vv'~q) =
' 1/2

R
I @ii(I 0

) &iq R(l)

R

@i(m 0)
+5"

R V

tl), i(m 0)
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In this formula R(l) =R(~—R(„),R =R(l) R(l), and 4(„' „'.) is the pair potential between ions (,') and (&). The primes
on the potentials in matrix elements above denote radial derivatives, and i and j are Cartesian indices.
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while the pure VIB matrix elements are expressible in the form
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