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Res+nant transport in coupled quantum vvells: A probe for scattering mechanisms

Y. Berk
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Ezact Sciences, Tel Aviv University,

Tel Aviv 69978, Israel

A. Kamenev
Department of Condensed Matter, The Weizmann Institute of Science, Rehovot 7610'0, Israel

A. Palevski
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv 69978, Israel

L. N. Pfeiffer and K. W. West
ATST Bell Laboratories, Murray Hill, Nevi Jersey 0797$

(Received 21 July 1994)

We present a microscopic theory and experimental results concerning resistance resonance in
two tunneling coupled quantum wells with different mobilities. The shape of the resonance appears
to be sensitive to the small angle scattering rate on remote impurities and to the electron-electron
scattering rate. This allows the extraction of scattering parameters directly from the transport
measurements. The negative resonance in a Hall coefEicient is predicted and observed.

The resistance resonance (RR) in two coupled quan-
tum wells (QW) with different mobilities was recently
suggested and discovered experimentally. The basic
physical idea of this phenomenon is the following. One
studies the in-plane resistance of two tunneling coupled
QW s as a function of a relative position of their quan-
tized energy levels. Each current lead is contacted to
both QW's. The energy levels are shifted by applying
the voltage to the capacitivly coupled gate (see device
diagram on the inset to Fig. 1). If the energy levels are
far &om each other, the tunneling is suppressed and the
resulting resistance is given by, Il, q (wi" + r2") (two
resistors connected in parallel), where w~' are the trans-
port mean f'ree times in the corresponding wells. The
situation, however, is remarkably different once the sys-
tem is brought into the resonance (energy levels coin-
cide). In this case, the wave functions form symmetric
and antisymmetric subbands, split by a tunneling gap.
As any electron is completely delocalized between two
wells, the scattering rate in each of these subbands is

(w") = (2wi') + (2'~') . The resulting resistance
is given by R„, (2w ') i. If the transport scattering
rates of two QW's are different, the resistance as a func-
tion of the gate voltage exhibits the resonance, whose
relative amplitude is

( ~@s +«)/+«( i 2 ) /4+i +2

This effect was indeed observed and reported in a number
of publications. In this paper, we present a microscop-
ical model of the RR, which includes elastic scattering on
a long-range remote impurity potential. We also report
the experimental measurements of the RR shape and its
temperature dependence, and we analyze them within
the presented theoretical model. In addition, we have
calculated and measured the Hall coefficient in coupled
QW's. We show that at the resonant conditions the Hall
coefricient exhibits a local minimum, which may be well

understood on a basis of a classical two-band model.
The main messages which follow &om the present in-

vestigation are the following: (i) at low temperature, the
width of the RR is determined by a small angle scatter-
ing time on remote impurities, providing an independent
way of measuring the small angle scattering time in a
pure transport experiment; (ii) the temperature depen-
dence of the RR indicates that a shape of the resonance
is sensitive to the electron-electron interactions, allow-

ing determination of the electron-electron scattering rate;
(iii) the resonance in a Hall coefficient is predicted and
demonstrated experimentally.

We first present a theoretical model of a transport in
two coupled QW's. In a basis of local states of each QW,
the Hamiltonian of the system may be written in the

following matrix form: H = Fags pap, where

t' ei + (p —eA) /(2m') 6/2 )
b. '/2 eg+ (p —eA) /(2m*) )

( Ui(p —k)+i

and k, p are two-dimensional (2D) momentum of the elec-
trons. In the last equation (eV ) Gare bare quantized lev-

els of corresponding wells, which are functions of a gate
voltage, V~. The tunneling coupling (gap), 6, is assumed
to be in-plane momentum conserved and energy indepen-
dent. A vector potential of the external 6eld (electric and
magnetic) is denoted by A = A(r, t). Finally, U;(p —k)
represents the elastic disorder in each layer. We shall
assume that impurity potentials in difFerent wells are un-

correlated. Inside each QW an impurity potential has a
finite correlation length and may be characterized by the
two parameters: the single particle (or small angle) scat-
tering time and the two particle (or transport) scattering
time (hereafter we employ the energy units for various
scattering rates, h = 1)
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FIG. 1. Resistance reso-
nance (RR) curves: circles—
experimental data, solid line—
theoretical calculation. The in-
set—schematic diagram of the de-
vice.
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(6)

where the integrations are carried out over the Fermi cir-
cles.

Now the model is specified completely and we apply
it first to the calculation of a linear conductance. Using
the Kubo formula, one has

0 = de Tr(IpG+q(c+ ~)Ii,Gq (e)))
f(e) f(e+ ~)

where Tr stays for both matrix and momentum indexes;
8 is an area of the structure. A current operator, I&, is
ep/m times a unit matrix (if all contacts are attached to
the both wells). Retarded and advanced Green functions
of a system are defined as

Gp i, (e) = (p~(e —II + ill) '~k).

Constructing the perturbation expansion over the impu-
rity potential [the second term in Eq. (2)], and solving
the Dyson equation for an average Green function, one
obtains to the leading order in (e~v;)

1/r = (1/2') + (1/2')) 1/r ' = (1/2'') + (1/2''),

where R; = (e2hn;rt'/m) ~ are resistances of each well
and the asymmetry coefficient, A, is defined by Eq. (1).
The result, Eq. (6), is valid if all relevant energies are
much less than the Fermi energy, ep, this implies that
the concentrations of carriers in two QW's are close to
each other, ~nq —nz~ && n;. For relatively clean case,
~b~ && (rr '), Eq. (6) confirms our qualitative con-
clusions, drawn in the begi~~ing. In the dirty case (the
opposite limit), the height of the resonance is suppressed.
Note, that the width of the resonance depends on the
small angle scattering time, v, although the resistances
of each well are fully determined by the transport times,
r~'. The physical nature of this fact is the following.
Any elastic scattering process (e.g. , the small angle scat-
tering) leads to a mixing between the states of symmetric
and antisymmetric subbands (according to classification
in clean wells). Not too far from the exact resonance (say

(G+ ()) b ~~~
—~~ —~p +i/2~~ &/2'l~

'
pk &P ( Q~/2 & —E2 —ep + X/2T2 p

Note that a tunneling coupling is taken into account in
a nonperturbative fashion, hence the final results should
not be restricted by lowest orders in E. The conductivity,
according to Eq. (4) is given by a diagram Fig. 2(a),
where the shaded triangle represents the renormalized
current vertex. To evaluate the latter one should solve
the matrix integral equation schematically depicted on
Fig. 2(c). The calculation gives the following result for
the zero-frequency resistance (R = 0 )

~ +

(c)
FIG. 2. Diagrams for a conductivity (a) and a Hall coe%cient (b),

current vertex renormalisation due to a small angle scattering (c). Full
circle—bare current vertex; dashed line —impurity scattering.
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ei —c2 —A) the wave functions of clean wells would be
practically localized in one of the wells (e.g. , "symmet-
ric" in the upper one and "antisymmetric" in the lower
one). In this case, they are sensitive only to scatterers
in the corresponding well and the resonance is destroyed.
The mixing due to small angle scattering changes the sit-
uation, making the exact eigenfunction of the dirty wells
delocalized. As a result, the resonance appears to be
broader than in the case without small angle scattering.
Unlike the width of the resonance, its relative amplitude
is mostly determined by the transport quantities [at least
for ~b,

~

)) (rw ') ] and is not sensitive to the single par-
ticle scattering rate.

The Hall coefFicient is given by the two diagrams, one of
which is depicted in a Fig. 2(b). We present here only
the result for the short range impurity potential (r, =
~tv

)

RH 2Ri + R~ iR2
1

2wirg

(Ri+ Rz)' ~,'+ ~,'

(ei —~z)'+ ~&~'+ 3~ '
[(ei —E2) + ~A~ + T ]

where R~, = (n, e) i is a Hall coefficient of each QW.
We shall discuss the physics of the last expression later,
when presenting the experimental results.

The double QW structure was grown on N+ GaAs sub-
strate by molecular-beam epitaxy and consisted of two
GaAs wells 139 A. width separated by a 40 A. Alo &Gao 7AS
barrier. The electrons were provided by remote b-doped
donor layers set back by 250 A and 450 A spacer layers
&om the top and the bottom well correspondingly. In or-
der to obtain the difference in the mobilities, an enhanced
amount of impurities was introduced at the upper edge
of the top well (Si, 10io cm z). The schematic crossec-
tion of the device may be found in Ref. 1. Measurements
were done on 10 pm wide and 200-pm-long channels with
Au/Ge/Ni Ohmic contacts. Top and bottom gates were
patterned using the standard photolithography fabrica-
tion method. The top Schottky gate covered 150 pm of
the channel (see inset to Fig. 1). The data were taken
using a lock-in four terminal techniques at f= 11 Hz.
The voltage probes connected to the gated segment of
the channel were separated by 100 pm.

The application of the upper gate voltage allows us to
sweep the potential profile of the QW's through the res-
onant configuration. The variation of the resistance vs

upper gate voltage is plotted in Fig. 1 (circles). The
data were obtained at the T = 4.2 K for the bottom
gate voltage VCB ——0.5 V. The resistance resonance is
clearly observed at V~ = —0.6 V. In order to compare
the experimental data with the theoretical formula, Eq.
(6), one has to establish the correspondence between
the gate voltages and the energy levels, ~, . The lat-
ter was found, using the known density of states and
dc capacitances between the QW's and corresponding
gate electrodes. The experimental values of these ca-
pacitances were established using the Hall measurements
in the regime of the complete depletion of the top QW,
and are given by Cz ——4.53 x 10 Fcm for the upper

gate and C2 ——1.79 x 10 F cm for the bottom gate,
which are extremely close to the theoretical estimates.
The complementary measurements of the resistance and
Hall coeKcient far from the resonance allow us to de-
termine the following parameters of our structure (as
grown, i.e. , V~ = V~B = 0 and T = 4.2 K): pi ——47000
cm /Vsec, p2 = 390000 cm /V sec, ni ——4.7 x 10i
cm, n2 ——2.5 x 10 cm . The values of these pa-
rameters for each gate voltage were found independently
and used for the 6ts. The quantum mechanical calcu-
lation of the tunneling gap results in 4 = 0.55 meV; a
very similar value for an identical structure was found
experimentally. The only parameter, which was not de-
termined by independent measurement is the small angle
scattering rate, r . The best fit (solid line in Fig. 1)
was achieved for v = 1.3 meV. This value implies the
ratio between transport and small angle scattering times
to be equal to 4.7, which is in a good agreement with
the measurements, using Shubnikov —de Haas oscillations
on a 2D gas with approximately the same mobility. To
our knowledge, this is the 6rst time when the small angle
scattering rate was determined in a pure (zero magnetic
field) transport experiment.

The same Btting procedure was applied to a set of the
resistance resonance data within the temperature range
4.2 —60 K, see Fig. 3. Among the independently mea-
sured parameters, only the mobility of a clean QW, pz,
exhibits pronounced temperature dependence, which is
consistent with previously reported experimental data. ~

The temperature dependence of the fitting parameter,
(T), is plotted by circles in an inset to Fig. 3. At low

temperature it may be well approximated by the follow-

ing relation (the solid line in the inset):

'(T) = ~ '(0) + 3.0(k~T)'/e~,

where e~ = 10.9 meV is the Fermi energy and r (0) =
1.3 meV is a low temperature scattering rate, associ-
ated with a small angle scattering on the remote im-
purities. We attribute the quadratic temperature de-
pendence of the single electron scattering rate to the
electron-electron (e-e) interactions. Indeed, in a clean
limit [~ (0) (( T (( eF], the e-e scattering rate is given
by w, , = aT /ez (up to small logarithmic correction),
where dimensionless coeKcient o. is of order of unity. Due
to conservation of the total momentum of an electronic
system, the e-e interactions practically do not change
the two particle (transport) scattering rate of each well

(see, however, Ref. 6 for the discussion of the dirty case).
As a result, the interactions do not influence the resis-
tance at the resonance [if ~A~ )) (v(T)wt') ] and very
far from it. However, the width of the resonance, as we

have demonstrated above, is sensitive to the single par-
ticle scattering rate, v i(T). The latest is not usually
measurable in any transport experiment, but it includes
among the other mechanisms the electron scattering due
to e-e interactions. The physical reason, why the trans-
port property (resistance) of our structure appears to be
sensitive to the e-e interactions, is very similar to those of
small angle scattering [see our discussion after Eq. (6)].
Namely, the interactions govern degree of delocalization
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FIG. 4. Hall coefBcient vs gate voltage:
experimental data, solid line —theoretical calculation.
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FIG. 3. The set of RR curves at difFerent temperatures. The inset
showers the variation of v (T) —v (0) vs temperature. The circles
denote the values deduced from analysis of experimental data, the solid
line represents 3.0 T /ey (meV).

of electrons between the clean and the dirty QW's, hence
altering the ability of the clean well to shunt the dirty
one. Thus, we conclude that the RR is a powerful method
of measuring of e-e scattering rate.

The Hall effect measurements are necessary to estab-
lish parameters of the structure. They are, however, in-
teresting due to a presence of a "negative" resonance in
a Hall coefficient. The experimental data for the Hall co-
efficient, RH, at T = 4.2 K and magnetic field less than
0.05 T (the region, where a Hall voltage is linear with
field) is presented in Fig. 4 (circles). The theoretical
curve [see Eq. (7)] is also plotted on the same graph by
a solid line. The nature of the "negative" resonance may
be easily understood using a classical two-band model.

According to this model, two bands having concentra-
tion of carriers n, and transport times v~', exhibit the
following Hall coefficient

RH = (Ile)([ni(ri")'+ n2(r2 ) ]l(n&r1 + n2r2 ) )' (9)

Far &om the resonance the role of two bands are played
by two QW's, thus, in this case, n;and rt, " are char-
acteristics of uncoupled wells [cf. Eq. (7)]. In the exact
resonance the two bands are symmetric and antisymmet-
ric subbands, which obviously have the same transport
times, rt", and practically the same concentrations, n
(6 (( ey'); thus, in the resonance, Rrt = (2en) [in
agreement with Eq. (7)]. If the concentrations in the two
wells difFer from each other slightly (nq n2 -- n), the
resonance value of the Hall coefficient is strictly less than
the off-resonance one. Another prediction of the simple
two-band model is the dependence of a Hall coefficient
on a magnetic field. This was also observed experimen-
tally in a full agreement with a model, confirming that a
classical two —band model is applicable to our structure.
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