
PHYSICAL REVIEW B VOLUME 50, NUMBER 3 15 JULY 1994-I

Coulomb quantum kinetics and optical dephasing on the femtosecond time scale
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Quantum kinetic equations with memory are formulated and solved for the femtosecond Coulomb
kinetics of an optically excited electron-hole plasma. In a time interval smaller than the inverse

plasma frequency screening and energy conservation are still absent. The resulting decay of the
optical interband polarization is shovrn to be nonexponential and is in qualitative agreement with
the results of the quasiclassical theory of Gurevich et al.

I. INTRODUCTION

On very short time and length scales the semiclassi-
cal Boltzmann kinetics has to be replaced by a quantum
kinetics. The quantum mechanical coherence of the elec-
tronic wave function introduces memory eKects, which
make the quantum kinetics non-Markovian. i 4 Because
the screened Coulomb potential V, (ri, ti, r2, ts) is in this
regime itself a retarded function that has to be deter-
mined by its own quantum kinetic equation, Coulomb
quantum kinetics becomes in general rather difficult. s

We will show in the present treatment that the Coulomb
kinetics can be simpli6ed considerably in the early stage
during and shortly after a femtosecond optical pulse ex-
citation.

Nonequilibrium screening is known to give rise to new
efFects. For example, in the presence of a homogeneous
electric field it causes a higher electron-impurity scatter-
ing rate and for carrier distribution function with empty
low energy states new plasmon resonances can arise.
Nonequilibrium screening in the nonstationary regime
after an ultrafast optical excitation was investigated in
Refs. 9 and 10. In the later work it was shown that the
buildup of screening occurs in a time of the order of a
typical inverse plasma &equency. This is a rather nat-
ural result because the inverse plasma &equency can be
understood as the characteristic time the plasma needs
to respond to a disturbance. If a new charge is created
in the plasma faster than this time, the plasma cannot
screen it. In a plasma excited by an ultrashort optical
pulse, all charge carriers are unscreened and thus the
early, transient quantum kinetics is dominated by the
bare Coulomb potential. For an estimate, one can take
the plasma &equency u&~ of the maximum plasma den-
sity, which the pulse excites, and neglect screening up to
t ~

&
after the pulse. Energy cannot be conservedpl

better than with an accuracy of the inverse time elapsed
&om the excitation. For very small time intervals the
energy broadening is larger than the characteristic en-
ergy transfer in a two-particle collision and thus also the
energy conservation in the individual collisions can be
neglected. (incomplete collisions). These two ideas lead
to a rather unconventional non-Markovian quantum ki-
netics. We will show that the bare Couloxnb potential in

this new quantum kinetics without energy conservation
yields no divergence in contrast to the situation in the
semiclassical Boltzmann kinetics.

We calculate with this quantum kinetics the decay of
the induced interband polarization, which has been mea-
sured in femtosecond four-wave-mixing experiments.
We show that the resulting optical dephasing, in a cer-
tain time window, is in qualitative agreement with a sim-
plified analytic treatment of Gurevich et al. is In this
theory the dephasing of an initially given polarization
is calculated quasiclassically by considering the motion
of an excited electron-hole pair in the Coulomb field of
the plasma, which is assumed to be "&ozen" and ran-
domly distributed. Particularly, we see in the time win-
dow where the two theories can be compared a nonex-
ponential decay of the form exp( —ant ). The exponent
is proportional to the plasxna density and to the third
power of time. a is a numerical constant. So far, this
fast nonexponential decay has not been observed experi-
mentally.

In Sec. II we discuss briefiy the general Coulomb quan-
tum kinetics and its reduction in the early, transient stage
to a retarded kinetics with a bare Coulomb potential and
without energy conservation in the two-particle collision.
We formulate this theory for a laser-pulse-excited two-
band semiconductor. In Sec. III the properties of the
transient scattering integrals are investigated and dis-
cussed. In Sec. IV we give a short adopted version of the
quasiclassical theory due to Gurevich et al. In Sec. V
we present the results of numerical simulations of the
transient Coulomb kinetics and compare them with the
quasiclassical theory.

II. EARLY STACK OF COULOMB KINETICS

We derive the Couloxnb quantum kinetic equations
in the &amework of the Keldysh nonequilibrium Green
function technique (see, e.g. , Refs. 4 and 14—16). The
self-energy is taken in randoxn phase approximation. For
the description of the interaction with the driving (clas-
sical) light field we use the rotating wave approxima-
tion. This gives a closed set of Dyson equations for
the two-time Keldysh matrices of the particle and the
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screened potential propagators. In order to get a closed
set of equations for the one-particle reduced density ma-
trix, i.e. , the equal-time limit of the Keldysh matrix el-
ement G+ (t, t), we use the generalized Kananoff-Baym
ansatz. In a two-band model the diagonal elements
of the reduced density matrix are the distributions f;h of
the electron (i = e) and the holes (i = k), while the off-
diagonal elements are given in terms of the polarization

In the present investigation, we concentrate on the first
10—40 femtoseconds during and after an ultrashort opti-
cal excitation. In this regime the involved quantum ki-
netic equations can be drastically simplified. In Ref. 10
we have shown that the time required for the buildup of
screening is approximately given by the inverse plasma
frequency 4p )

0 8 8—PI = —Pa + —PA:
Ot Bt coh at scatt

0 8 0
Ot Bt h Bt

(2.4)

tial (see, e.g. , Ref. 10), we recover Eq. (2.2), which shows

again that the two approximations are indeed consistent.
A detailed description of the straightforward but

lengthy algebra leading to the simplified equations can
be found in Ref. 4. We will give here only the final re-
sult. In order to get compact expressions, we will assume
isotropy in momentum space from now on, but this as-
sumption is not necessary. The final quantum kinetic
equations for the polarization Pp and the electron and
hole distributions f,h can be written as

(2.1)

where 1/p = 1/m, + I/mh is the reduced electron-hole
mass and n(t) is the induced plasma density. This has a
simple physical meaning. A charge is screened due to a
displacement of the plasma. The surrounding charges of
opposite sign are attracted, the others are repelled, giv-
ing rise to a charged cloud. This rearranging of carriers
needs some time. If a new charge carrier is introduced
faster than the plasma can adjust to it, this charge re-
mains initially unscreened. The typical time needed for
the adjustment is related to the only characteristic time
constant of the plasma, namely, the inverse plasma fre-
quency. In a time interval At ( v

&
after a femtosecondpl

pulse excitation, the screened retarded and advanced po-
tentials can be replaced by the bare Coulomb potential,
1.e. ,

The coherent parts of Eq. (2.4) are the coherent semi-
conductor Bloch equations

f,i, —= —2Im O„(t)Pi,'(t)R
Bt coh

(2 5)

The instantaneous parts of the self-energy, i,e., the
Hartree-Fock (HF) self-energy (see, e.g. , Ref. 15), con-
tribute to the Rabi frequency 0 ("local" or HF field)
and to the single-particle energies e; (band gap shrink-

age)

hO„(t)= + ) V~P]i, ~](t),
R " E(t)

4+e
V,"~ (ti, t2) ~ Vqb(ti —t2) with Vq ——

Vc q2
(2.2)

e;g(t) = s;A, —) V~f;]i, ~](t).

(2 6)

V~ is the bare Coulomb potential and V is the normal-
ization volume. Only the high-frequency components of
the unexcited crystal polarization will contribute to the
background dielectric function e of the crystal. With
this approximation one neglects oscillations of the po-
tential exp( —i(d~it). Consistent with this approximation,
we also neglect oscillations with the difference of single-
particle energies, e.g. , terms as exp[i'd (sip —zi]h ~])t]
coming from combinations of the spectral functions G"' .
A kinetics based on the bare Coulomb potential is domi-
nated by small-angle scattering (q ~ 0). Therefore, also
the characteristic energy differences are small. Indeed,
if ti is only a little later than t2, the retarded Green
function becomes simply

where azk are the electron field operators in the Heisen-
berg picture and [, ]+ is the anticommutator. With the
two short-time approximations (2.2) and (2.3), the ex-
tremely diKcult Coulomb quantum kinetics reduces to a
tractable set of equations. If we use approximation (2.3)
in the Dyson equation of the retarded Coulomb poten-

Within the rotating wave approximation, E(t) denotes
only the pulse envelope. dp is the interband optical ma-
trix element. The single-particle energies are given by

(hk)2 (hk)2—+0~ ~ok =
2m. 2m/

(2.7)

= —,Q f dh' V' [P|, ((t') —Pg(t')]

x Fq(t'), (2 8)

t
= —) dt' V [f;]i, ~](t') —f;g(t')j

x F~(t'),

Here 40 ——Ruo —Eg is the detuning between the central
kequency ~0 of the pulse and the unrenormalized band

gap E~. The quantum kinetic scattering integrals, which
will be called transient scattering integrals (TSI's) are
given by
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with III. PROPERTIES OF THE TRANSIENT
SCATTERING INTEGRALS

F (t ) = ) . ) (f (t )[1 —f~ip+q~(t )]
j=e,h p

—Re[p)p+g)(& )& (& )]).

In order to show the characteristic features of the pro-
posed new femtosecond carrier kinetics, we compare it
with the well-known Boltzmann scattering integral (BSI)

a
f'k—R scat t ) ) V, (ek —e)k ti() b(be)(f;~k ti((t) fgp+ti((t)[1 —f;k(t)][1 —f~„()]

j=e,h gtp

f;k(t) fop(t) [1 flak ~)(t)][1 f~(p+~((t)]) (3.1)

with

AE' = GIp
—

GfQ q/ + 6'p —Gfp+qJ.

limq V dO~

4
= lim —V dQ~ (e~ Vk) fk. (3.5)

The angular integral over (ez Vk) fk vanishes and only
the second term of the expansion survives. limq~0 q V
is finite [see Eq. (2.2)] and therefore the TSI with a bare
Coulomb potential is well defined. (Although we have
already assumed isotropy in order to get concise scatter-
ing integrals, the given proof does not depend on this
assumption. )

In the BSIan unscreened potential leads to divergences
for small transferred momenta because the energy con-
serving b function in Eq. (3.1) restricts the angular inte-
gration to two isolated points and the q linear term of the
expansion Eq. (3.4) contributes. Various approximations
for the screened potential V, ~(u) have been used, e.g. ,
a static screened potential, a plasmon-pole approxima-
tion, or even a Lindhard potential (see, e.g. , Refs. 19 and
20). The solution of the kinetic equations with the BSI
depend strongly on this choice. In the quantum kinetic
equations on the femtosecond time scale, this ambiguity
does not exist.

The kinetic energies in the argument of the b func-
tion in Eq. (3.1) make the BSI mass dependent, and
the evolution for the electrons and the holes is difFer-
ent. The TSI, on the other hand, does not depend on
the band masses. It can be scaled, e.g, with the exci-
ton Bohr radius ao ——fi2e /e2y, and the Rydberg en-
ergy Eo ——h2 j2pao alone. The integrals are exactly the
same for the two carrier species. The coherent terms
have this symmetry also. Thus, in the initial quantum
kinetic regime, the distributions of electrons and holes
are exactly the same

f k =fkk =fk

t
lim lim h ' dt'exp ih '(Bet' —p]t'~) = 2~8(be).

t-+oo y-+0

(3 2)

The integrand in the scattering integrals for small mo-
mentum transfer determines whether an unscreened
Coulomb potential can be used or not. The critical part
of the integrand in Eq. (2.8) is

OO

dqq'V* f dQ~[f~g ~~
—fg)[3.3),

27I 0

where 0& is the solid angle of the g integration. At small

g values, the distributions may be expanded (3.6)

The BSI describes a stochastic process, which is local
in time. The TSI, on the other hand, describes a par-
tially coherent process and is consequently nonlocal in
time. The memory to the history of the system is a
trademark of quantum kinetics. Formally, the integra-
tion extends from —oo to the actual time t, but the inte-
grand is nonzero only during and after pulse excitation.
The effective range of integration is proportional to the
time interval after the ultrashort pulse, i.e. , the scatter-
ing integrals build up in time.

At later times the phase factors become important and
the connection between the TSI and the BSI can be seen
clearly &om the relation

q
2

(f~k —q~ f&) = q(e&. &k)fk+ (eq +k)'fk+.Q

(3.4)

Here e& is the unit vector in the q direction. Using
Eq. (3.4), one finds

The superfiuous index i = (e, A.) will be dropped from
now on. For the BSI, often the terminology of in- and
out-scattering rates is used. They are defined as the first
and the second term in Eq. (3.1). This definition cannot
be used for the TSI, because only the compensation of
these two contributions at small transferred momenta en-
sures a finite result. Only effective rates can be defined.
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The integrands of the TSI are symmetrical in the vari-
ables k and k' = k —q. Therefore,

0=0, ) P—~
Ot scat t

k

=0 (3.7)

i.e. , the TSI's conserve the number of carriers and the
total polarization. The second sum rule in Eq. (3.7) il-

lustrates that in the present model, polarization can be
scattered from one k state to another. The sum rules
hold also in the Markovian limit, but cannot be under-
stood in a two-level model for each k state. In Ref. 22
it is shown that, even in the Markovian limit, this "in
scattering" is essential for the correct description of the
polarization decay. The other important conservation
law of the BSI, the conservation of the kinetic energy in
a collision, is not fulfilled by the TSI [see Eq. (3.2)]. The
coherent Bloch equations (2.5) describe a rotation of the
Bloch vector and conserve its length Bk(t),

f~ = f = N/M, where N = 2P& fg is the number of
carriers and M = 2P& 1 is the number of states. It is not
obvious that this stationary solution will ever be reached.
Due to the infinite memory depth in Eq. (2.8) the value

of the TSI increases strongly with time. This leads even-

tually to overshoots and the distribution will leave the

[0, 1] interval; the evolution will become unstable. On
the other hand, scattering leads also to a loss of mem-

ory. A consisted treatment of these two effects avoids
such unphysical artifacts. In Ref. 3 stable solutions of
the quantum kinetic equations with LO-phonon interac-
tion were obtained already when the memory depth was

determined from Fermi's golden rule.
The time scale under consideration is shorter than the

memory depth, so that the loss of memory can be ne-

glected. The occurrence of .overshoots marks the point
where the present theory definitely becomes invalid.

Bk(t) = 0,
dt ~Oh

(3.8)
IV. THE QUASICLASSICAL THEORY

OF POLARIZATION DECAY'

with

Bk(~) = [1 —»k(t)1'+ 4IPk(t) I' (3.9)

Together with the initial conditions P~ = fk = 0 at t =
—oo we get

(3.io)

The conservation of the length of the Bloch vector can
be written in the form

(3.ii)

For q -+ 0, the integrand of the TSI [Eq. (2.8)] is pro-
portional to the expression (3.11), i.e. , the small-angle
scattering is suppressed if the plasma is still nearly co-
herent.

Femtosecond laser pulses are spectrally very broad.
Except for very intense laser pulses, the induced car-
rier distribution is initially nondegenerate and the phase-
space filling term (1—f&) plays only a minor role. Due to
the buildup of the scattering integrals, scattering is not
important during the presence of the femtosecond laser
pulse. From Eq. (2.5) it follows that the distribution fl,
is proportional to the Geld intensity E' and the polar-
ization Pg to the Geld strength F. Therefore, the initial
effective scattering rate, no matter how it is deGned in de-
tail, must be proportional to 8, i.e., the density. This is
a rather natural result for carrier-carrier scattering with-
out screening.

The validity of the TSI is restricted to times t
Certainly we cannot expect that the carrier distriIIu-
tion will evolve towards an equilibrium Fermi distribu-
tion. To gain further insight, let us ignore the time re-
striction for a moment and discuss the behavior of the
TSI for large times. The TSI vanishes if the distribu-
tion and the polarization are momentum independent.
Therefore, the only stationary solution is Pk ——0 and

A rather different description of the polarization decay
has been proposed by Gurevich et al. ,

is which, however,
will turn out to be closely related to the early stage of the
Coulomb quantum kinetics with a bare Coulomb poten-
tial and without energy conservation. The quasiclassical
theory is used to calculate the femtosecond decay of an
initially given interband polarization. %e present here
an adoption of this theory, in which we consider in more
detail the nature of a pair excitation in a semiconductor.

In this theory one treats the motion of a newly created
electron-hole pair in the electrostatic field of an already
created plasma, which are assumed to be "frozen" and
disordered. One computes at time t the average of the
polarization component of wave vector k

Pk(t) —(@l+.,k(t)+k, —k(t) ]@),

on an initial state l@), which is a linear superposition
of the vacuum state and all states with one electron-hole
pair of total momentum zero. For a two-particle model it
can be shown that Pk is identical to the wave function of
the relative motion g(x,—xg, t), with the initial condition

g(x, t = 0) = exp(ik x)

taken at the origin x = 0.
The wave function of the pair state will be treated in

the quasiclassical approximation, followed by an averag-
ing over the disordered plasma in order to get the phase
decay. The wave function can be expressed through an
action function S

From the two-particle Schrodinger equation we And the
following equation for the action:
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2N
b . (V S)
bt - 2m;i=e,h n=l

V'2S
+V. h+ E, —ih)

. - 2m;
(4.2)

l(&~('))l = ('"PI—' «' &I* (') «(')i)) (4 ~o)
0

Averaging over the random positions R„=x; —x„
and random charges e„=+e of the background plasma
means

Here V; is the bare Coulomb interaction between the
newly created carrier i = e, h and the 2N randomly dis-
tributed charges

fdRw i )

e;e„
60 Xz —X~

with e„=+1.
In the quasiclassical approximation one neglects the

term linear in h and gets the time-dependent Hamilton-
Jacobi equation

b . (7';S i)'——S,i=) ' ' +) V, „+Vg+Es (43.)
n=1

For short times after the creation of the pair with p, = hk
and ph ———hk at time t = 0, the classical action S,~ is
close to that of the &ee motion

Taking into account that only the Coulomb interaction
with the charges of the plasma is infiuenced by the aver-

aging we have

l(p. (t))i= &+ —) fe„=he
N

x exp —— dt' ) V „(t') i

—1

(4.i2)

Following Chandrasekar, 2 we use the relation

where

S,i = S,i+ bS,

2

S,, =) p; x; — ' t —Est
2m;

(4.4)

(4.5)

( @)N
N)

to find in the thermodynamic limit (N -+ oo, V ~ oo,
and N/V = n finite)

The linearized equation for bS is

(b .p; Vi—+) ' * ibS=-) V;,„—V p, -=-U, (46)
(bt . m; )

with the solution

i(pq(f)ii = exp —n f dR

e2 ' i' 1

h o ]
hkt'/m. —R

)

t
bS(t) = — dt'U[». (t'), x&(t')],

0
(4 7)

] hkt'/mh, +R ~)
(4.13)

where

x;(t) = x;+ 't.
mi

(4 g)

@(x„xl„t)= exp i ) ~

p;. x; — ' t
~

—Egtp,'
2m; )

t
dt'U[». (t'), x, (t')] (4.O)

In this approximation the wave function of the pair is

IV'~('))I = '"~~—
I

—
I

( t l']'
(rG) J

(4.14)

The nonexponential decay time ~~ is given by

where the cosine has been generated by the sum over
both kinds of charges in the plasma. Through a rescaling
of the integration arguments to dimensionsless ones and
introducing the natural units of length and time through
the exciton Bohr ao radius and Rydberg energy Eo, we
get

A divergent Coulomb energy contribution at x = xh in
the phase has to be compensated, but plays no physical
role.

Now the pair wave function has to be averaged over all
con6gurations of the disordered plasma. The absolute
value of the averaged polarization is The function

&Eo & 16'naokaoE(A:ao).(h) (4.i5)
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F(z) = z drr dz
0 —1

tjr ( 1
x 1 —cos — du!

o i, gl + 2zun, + u'c '

Ql + 2zucxt«+ u cxt )
(4.16)

is slowly varying and on the order of 1. Here c«; = p/m,
is the effective mass ratio. This unusual polarization de-

cay law differs essential from the standard exponential
one. Most important is the cubic time dependence in the
exponent. It originates from the rescaling of the three-
dimensional volume integral. In a two-dimensional quan-
tum well structure one gets, consequently, a Gaussian.
polarization decay. The exponent is proportional to the
plasma density. For small k the decay becomes increas-
ingly slow, because in the quasiclassical model a slow pair
stays a long time at the same point and therefore does
not experience the disorder.

Finally, we discuss the expected validity of this result.
Most important, the velocity v; = hk, /m; of the elec-
tron and hole should be large so that (i) the motion of
the background plasma can be neglected, (ii) the action
is approximately given by the free one, and (iii) the bind-

ing of electron-hole pair is negligible. A bound electron
state cannot be properly described in this quasiclassical
approximation. The range of validity in time, on the
other hand, increases with the inverse velocity.

E(t)=Pe 'i (5.S)

In Figs. 1 and 2 the evolution of the polarization am-

plitude ]Pt(t)] and of the carrier distribution fg(t) are
shown for an excitation with an x/8 pulse, i.e. ,

OO

dtds oE(t) = —, (5 4)

lp«(

which decreases strongly above a cutoff energy e„for
which we took s, = 64 Eo (269 meV). This cutoff is

somewhat smaller but of the order of the energetic dif-

ference between the I' point and the the next higher band
minimum, the L point, which is about 310 meV. For 6,
we took 0.25E0, a value that ensures a smooth but suf-

Gciently sharp decoupling. The proper matrix element
would have to be evaluated using a real band structure
calculation, which is beyond the aim of our paper. The
total induced carrier density and polarization depend on
the chosen parameters of the matrix element, but the re-
sults for the polarization decay and the relaxation times
are not sensitive to this choice, as will be shown below.
The necessity of a cutoff in the optical matrix element is

only due to the ultrashort pulses. It is not related to the
special form of the Coulomb scattering integrals which
are treated here.

We solved the quantum kinetic equations for a Gaus-
sian laser pulse envelope

V. SIMULATION OF THE QUANTUM KINETIC
EQUATIONS AND COMPARISON

WITH THE QUASICLASSICAL THEORY

In the simulation of the quantum kinetic equations we

used GaAs parameters with an exciton Bohr radius c0 ——

14 nm and an exciton Rydberg energy E0 ——4.2 meV.
Some extra care is necessary in the modeling of fem-

tosecond experiments. Due to the spectrally broad pulses
with high peak intensities very high-momentum states
are excited for which the parabolic two-band model of
the GaAs is no longer valid. Far from the resonance the
induced polarization is given by

0.3-

0.2-

0,1-

0
-24

~72
48

4
t (fs)

ds E(t)/2
lim Pt, t

(nk)'/2p —ao
(5.1) 0.5

[see Eq. (2.5)]. This behavior is a kind of adiabatic fol-
lowing. For ultrashort pulses the laser Geld peak value
E(t = 0) is very large. If the optical matrix element dg is
assumed to be constant, the polarization in the adiabati-
cally following tail is not negligible. The tail polarization
contributes to the HF field P VqPt« ~ [see Eq. (2.6)]
and inBuences in this way also the behavior near the res-
onance. We suppress the unphysical contribution of these
states by an optical matrix element

0.3

0.2

0.1

ka, 10~it:- "
12 -24

72
48

t (fs)

dg ——do exp! ' l+1 (5.2)

FIG. 1. Polarization amplitude !Pt,(t)l versus momentum
and time calculated (a) with the f'ull quantum kinetic equa-
tions and (b) with the coherent part only.
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0.2

0.1

lution [Fig. 1(b)] the rise of the polarization at k = 0
even after the laser pulse. This effect is even more pro-
nounced for the carrier distribution [Fig. 2(b)]. It is due
to the superposition of the response of the bound s exci-
tons, which have oscillator strengths alternating in sign.
Immediately after a short pulse, the polarizations of the
excitons add, at least partially, destructively, but after
about

= 240 fs
vr 5
2 Ep

0.5

0.4
0.3

0.2
0.1

4=:-~ — — = === 48
6 =—=== =—-==.:~ 24

ks. 8 ~ ===
0 t(fs)

12 -24

FIG. 2. Carrier distribution fq(t) versus momentum and
time calculated (a) with the full quantum kinetic equations
and (b) with the coherent part only.

and a duration 7 = 12 fs. The detuning is Ap = 5Ep.
The resulting final carrier density is nap = 0.364 or
n = 1.32 x 10' cm, corresponding to an inverse plasma
frequency of ~

&

——38 fs. The solutions of the quan-pl
turn kinetic equations with Coulomb scattering (2.4) are
shown in Figs. 1(a) and 2(a), and should be compared
to the solutions of the coherent equations (2.5) alone,
which are shown in Figs. 1(b) and 2(b). A comparison
of the two Ggures reveals a strong inQuence of excitonic
correlations on the ultrashort time scale. The excitonic
pair correlation is mediated by the HF field, i.e. , by the
polarization, which is still large at early times.

For low excitation, where fg « 1, the equation of the
polarization decouples I'rom the equation of the carrier
distribution [see Eq. (2.5)]. The resulting equation is
known as the Wannier equation and describes the re-
sponse of a system of bound and free excitons. In Fig. 1
the shallow oscillations with time can be understood as
beats between the 18 exciton and the ionization contin-
uum. During a cycle of the exciton-band beating, the
amplitude of the polarization rises and falls again. In
the k-t plane the position of the oscillation maxima is
approximately given by

1 d
T~ dt

= ——»(lp~l) (5.5)

A mean dephasing time can be extracted from the so-
called incoherently summed polarization

Bk

.6

72

they add constructively. In Fig. 1(b) this oscillation is
disturbed by saturation at t 48 fs, because fl, is no
longer small. Afterwards, the evolution is governed by
the fully coupled equations (2.5). Only for very low ex-
citation the undisturbed oscillation can be seen clearly.
A tail of the polarization follows the pulse envelope adi-
abatically as can be seen around t = 0 and kap ) 8. As
discussed in Sec. III, the growth of the polarization after
t & 48 fs ) u

&
in Fig. 1(a) falls in the region where our

theory is no longer valid.
The redistribution of the carriers and of the polariza-

tion caused by the coherent dynamics of the excitons ob-
scures the inQuence of scattering. The two effects can be
separated by plotting Bl, (t) of Eq. (3.9). Bs(t) = 1 holds
for an unexcited or still coherently excited k state. Due
to the buildup of the TSI in time, scattering gets impor-
tant only well after the pulse for t ) 24 fs, as can be seen
in Fig. 3. The transitions at kap ) 4 are barely excited
so that Bs(t) tends to one. A comparison of Fig. 1(a)
and 1(b) shows that the region of dominant scattering is
24 fs & t & 48 fs and 0( kap & 4, in agreement with
Fig. 3. In this region the logarithmic derivative of ~Ps~
can be regarded as time- and momentum-dependent in-
verse effective dephasing time

(hk)2 ) vriso+ ~t=2 —+2zn), +=01, , 2
2p, ) 2

(The small deviations from this relation are due to the
band gap shrinkage. ) Please note in the coherent evo-

FIG. 3. Evolution of the length of the Bloch vector Bg(t)
versus momentum and time corresponding to Figs. 1(a) and
2(a).
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P-(t) = ):"IP.(t)I (5 6)
90

( —d/dt ln[P'"(t)] iefr

3('t —tp) )
(5.7)

According to the quasiclassical theory, 7.G~ should be time
independent, i.e., the nonexponential decay time wG, [see
Eq. (4.14)]. In Eq. (5.7) we introduced explicitly the ini-
tial time to. The resulting decay time is given in Fig. 5

1.6

Because the polarization decay is measured optically,
e.g. , in a photon-echo experiment, ' 2 we included the
optical matrix element in the definition. In Fig. 4 the in-

coherently summed polarization corresponding to Fig. 1
is shown on a logarithmic scale. The solid line gives the
result for the full equations, the short-dashed line for the
coherent equations. The long-dashed line shows the re-
sult of a simulation in which the term RePi~+~iP„("P
scattering") has been neglected. The TSI gives rise to
a signi6cant polarization decay in its range of validity.
This makes us con6dent that the described kinetics may
be observed experimentally. Even in the simulation of the
coherent equations P'" is not strictly constant after the
pulse. The shallow oscillations and the small slope are
caused by the HF field. As already discussed in Sec. III,
the P scattering reduces the loss of coherence in the
nearly coherent regime. During and directly after the ex-
citation, the solution of the full equations follow closely
the coherent solution, whereas the solution without P2
scattering shows a stronger loss of coherence, which can
be approximately modeled by an exponential decay. The
crosses in Fig. 4 show an exponential fit with a decay
time of 44 fs. The solution of the full equations follows
much more a t law, as predicted by Gurevich et al, 3

For comparison, we compute from our numerical results

80

70

l

a0 ——.34

a,'=.50

60—

50
20 25

na0 ——.87

I I

30 35
t (fs)

40

FIG. 5. Effective nonexponential decay time 70 versus time
for various pulse intensities, corresponding to 2z/10 to 7r/10
pulses with duration ~ = 12 fs and a detuning Ap = 5Ep.

for various pulse intensities corresponding to 2x/10 to
vr/10 pulses with a duration w = 12 fs and a detuning
Ap = 5Ep We obt. ained the best, i.e., flattest, results for
tp = —12 fs. That means the effective creation time is
about one half width at half maximum time before the
pulse maximum. The diamonds in Fig. 4 show the po-
larization decay predicted by the quasiclassical theory.
The parameters have been taken from Fig. 5, i.e. , wG ——

73 fs and to ———12 fs. This nonexponential decay time
corresponds to the expression Eq. (4.15) where the mo-
mentum is replaced by an efFective momentum of (kao)
= 1.4. Only if the P2 scattering is included, one finds
agreement with the quasiclassical theory.

The quasiclassical theory makes distinct predictions
concerning the time, momentum, and density depen-
dences. In order to compare these predictions with our
numerical results, we have to select carefully the region
in the k tplane, wh-ere a comparison is possible. The the-
ory of Gurevich et al. assumes an instant creation of the
polarized state. In our model the pulse has a finite dura-
tion. In the quasiclassical theory the polarization decays
monotonically; in our model the polarization amplitude
also oscillates due to excitonic effects. Furthermore, a
transfer of polarization by scattering from one state to
another is possible. Thus the comparison can be made
only for times well after the pulse, during which scatter-
ing dominates over coherent dynamics. The predictions
of the quasiclassical theory for the inverse dephasing time
takes the form [see Eqs. (4.14 ) and (5.5)]

0.8
0 10 20

I

30
t (fs)

40 50

3(t —t,)'
Zefr G (~ )s (5 8)

FIG. 4. Incoherently summed polarization P'"(t) versus
time on a logarithmic scale. Full quantum kinetics (solid
line), coherent equations (short-dashed line), quantum kinet-
ics without P scattering (long-dashed line), and quasiclassi-
cal theory (diamonds) with a& = ?3 fs and te ———12 fs. The
exponential fit (crosses) has been obtained with a decay time
T2 ——44 fs.

%'e compare the inverse effective dephasing times com-
puted from the quantum kinetic equations to those com-
puted from the quasiclassical theory [see Eqs. (5.7) and
(5.8)] and find astonishingly good agreement. The abso-
lute values agree if we allow an uncertainty in the initial
time to on the order of the pulse width. The time and
momentum dependences show the same tendencies.
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Next we compare the predicted density dependences.
In Fig. 6 the nonexponential polarization decay time 7.~
is shown as a function of the induced plasma density.
The dashed line corresponds to the quasiclassical theory.
The diamonds show the data &om Fig. 5 with v = 12
fs and 60 ——5EO. The results for simulations with the
pulse parameters v = 6 fs and 60 ———Eo are shown as
squares and those with 7 = 24 fs and 60 ——0 as triangles.
Finally, the stars show results for the same pulse param-
eter, but different cutofF energies in the optical matrix
element (e, = 49, 64, and 144 Eo). Due to the slow con-
vergence of the HF field the change in the optical matrix
element affects the induced plasma densities. Neverthe-
less, as a function of density n all results agree well with
the n ~~s law from the quasiclassical theory shown by
the dashed line [see Eq. (4.14)]. The only free parameter
in the fit is the efFective momentum for which we took
as (kao) = 1.4. The nonexponential decay time is rather
insensitive to details of the carrier distribution, caused
by difFerent excitation conditions or by difFerent optical
matrix elements. It depends mainly on the total induced
plasma density. In summary, the agreement of the early-
stage Coulomb quantum kinetics and the quasi-classical
theory for the phase decay has been shown to be surpris-

ingly good, wherever a comparison is possible.
Unfortunately, it is not possible to investigate a

broader density range. On the high-density side we are
limited, because the inverse plasma &equency has to be
larger than the pulse duration, and on the low-density
side the "coherent Bloch dynamics" dominates over the
scattering.

Becker et al. reported a photon-echo experiment per-
formed with laser pulses as short as 6 fs. From their
data they concluded that the polarization decay follows
an exponential decay and a density dependence of n
for the exponential decay time, in contrast to our predic-
tion of a nonexponential decay in the form proportional
exp( —ants). They explained their results with the in-
Quence of screening. We suggest that a mixture of LO-
phonon and carrier-carrier scattering may have caused
the reported density dependence. Due to the spectral
width of the pulse also states deep in the band have
been excited. These states are strongly coupled to LO
phonons. From ultrafast luminescence experiments it has
been deduced that LO scattering becomes important only
after 100 fs, ~s where a modulation of the carrier distribu-
tion function with LO-phonon energy spacing has been
found. In an earlier Raman-spectroscopy experiment
12 LO-phonon emissions have been found to occur in
2 ps. These values agree with Markovian Monte Carlo
simulations. On the other hand, we have shown that

90
4

80 -',

70- 4

50-

40-

30
0.5 1 1.5 2 2.5 3 3.5

na',

FIG. 6. Nonexponential decay time v~ versus density for
pulses with a duration r = 6 fs and a detuning 60 ———Eo
(squares), with r = 12 fs and As ——5Es (diamonds) and with
r = 24 fs and b,s = 0 (triangles). The stars correspond to r
= 12 fs and 60 ——5EO, but for different cutoff energies of the
optical matrix element (e, = 49, 64, and 144 Eo). The dashed
line corresponds to the quasiclassical theory with (kas) = 1.4.
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in the early stage the energy conservation in the colli-
sion does not hold and a non-Markovian theory has to
be used. Therefore, the LO-phonon coupling may also
be faster in the early stage of the kinetics. Due to the
broadening the early LO scattering will not cause a pro-
nounced modulation of the distribution function. Becker
et al.2s and Bigot et al.zs reported a I'-X transfer after
a 6 fs laser excitation deep in the band of less than 50 fs.

In conclusion, we have presented a Coulomb quantum
kinetics for the early stage of the carrier kinetics during
and shortly after a femtosecond pulse excitation. It is
a retarded kinetics, without energy conservation in the
two-particle scattering and without screening, difFering
strongly &om the usual Boltzmann kinetics. In our opin-
ion it is worthwhile to reexamine recent femtosecond ex-
periments in the light of the above described theory.
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