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Magnetic field dependence of two-dimensional static shielding in the hydrodynamic model
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The hydrodynamic description of two-dimensional plasma nonlocality in a magnetic field [as
represented by the dynamic nonlocal longitudinal dielectric function of interacting two-dimensional (2D)
electrons] is seen to be inappropriate for direct application in the determination of the magnetic-field
dependence of shielding in the static limit. We find that this shortcoming is remedied by inversion of the
full 2D hydrodynamic dielectric tensor in magnetic field and selection of its longitudinal element for
static shielding.

I. I¹RODUCTION

The hydrodynamic model of plasma nonlocality has
served as a valuable guide in many complicated calcula-
tions relating to correlation phenomena in solids and the
role of collective electron plasma modes. Moreover, a
judicious choice of the nonloca1 "sound velocity" param-
eter p also adequately represents the static Thomas-
Fermi-Debye screening law (although this choice does
not properly fit the nonlocal correction to the bulk
plasmon, and depending on one's interest, the fitting
choice could be reversed}. The model has provided much
physical insight within the limitations of its validity as a
simplified representation of nonlocal three-dimensional
(3D) plasma dynamics, surface correlation dynamics, and
microstructure plasma dynamics.

The inclusion of a magnetic field in the hydrodynamic
model follows simply from a Lorentz force, and it proper-
ly represents the local magnetoplasmon spectrum. This
advantage has been successfully employed in a number of
2D theories, through the 2D longitudinal hydrodynamic
dielectric function ezD(p, co) (p is 2D wave vector, co is

frequency, co, is the cyclotron frequency, no is the 2D
sheet density, m is the efFective mass, —e is the efFective

charge moderated by the background dielectric constant,
and 5 is a positive infinitesimal}:

277e np
2

(2)

where the 20 loca1 plasmon in the absence of a magnetic
field is given by co 2D=2me nap/m. (A more detailed
discussion is given in the Appendix. } Furthermore, in the
absence of a magnetic field the nonlocal structure of the
longitudinal hydrodynamic dielectric function describes

2~e nop
e2D(p, to) =1-

m [co(co+i5} co, —p p—]

with the local electrostatic magnetoplasmon for low wave
number given by e2D =0,

2D static shielding in terms of
22~e no

e2D (p, 0)= 1+
mpp

(3)

which is correct for screening at wave numbers p &&pz
(Fermi wave number} as a 2D counterpart of Thomas-
Fermi-Debye static shielding, contingent, of course, on
the choice of P as P =A nc/2m e . ' (The 2D counter-
part of Thomas-Fermi-Debye shielding is not as dramatic
as the 3D exponential decay in space, as shown in a de-
tailed evaluation in Ref. 1.) Considering the hydro-
dynamic model of static shielding with the inclusion of a
magnetic field B, it is to be expected physically that there
should be no change from Eq. (3), since the Lorentz force
cannot do any of the work required for a rearrangement
of the statically shielded charge distribution. However, a
glance at Eq. (1) in the static limit seems to indicate oth-
erwise,

2~e nop
e2D'(p, O}= 1+ (&)

m [cot+p~p2]

because of the presence of m, in the denominator of the
2D hydrodynamic polarizability. The resolution of this
apparent dilemma is the object of this paper. An ap-
propriate explanation of this seemingly unphysical
feature of the hydrodynamic model is important to main-
tain confidence in its capability to provide reasonable
physical insight in more complicated calculations.

II. INVERSION OF THE 2D HYDRODYNAMIC
DIELECTRIC TENSOR IN MAGNETIC FIELD

In point of fact, it is insufficient to consider just the
algebraic inverse of the 2D longitudinal dielectric func-
tion @AD(p, co) since response on the plane is tensorial. To
construct the appropriate dielectric tensor @AD(p, co), we
employ its 2 X2 matrix relation to the conductivity tensor
P2D(p, co ), on the plane

2'
e2D(p, co) =I+ t po qD(p, co),
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4m
VzD(p, co)=I+i (yb(ock(p, co) &

N
(6a)

where J=a2D-8 with J=—noev as sheet current density
per unit normal length, no is the sheet density per unit
area, and v is the drift velocity responding to the electric
field P. parallel to the plane in a perpendicular magnetic
field. In this circumstance, an alternative equivalent
form may be written as

Bn +n, V.v=a,
at

Bv "o"
no +

Bt
—P Vn — —n E— n—vxB, (8)

m ' m

where collisions are represented in terms of a constant
phenomenological relaxation time ~. Fourier transform-
ing (r~ p, t aco}Eqs. (7) and (8) yield the 2D conductivi-
ty tensor as

where 0.»«k is the 2X2 part of the full block diagonal
3 X 3 conductivity tensor, and (yzD(p, co) =

inoe ~ 0 &py2 2 2 2

m g) P px py + l coco~

P pxpy ~~~c

02 Pzp z

(9)

block 2 2D (6b)

The 2D current-field relation for the hydrodynamic mod-
el is based on the linearized continuity and Euler equa-
tions for the perturbed 2D density n and velocity v:

where 0 =co(co+i /r) and 2)=0 (0 Pp—
) co co—, and

p,p are wave-vector components along two mutually
orthogonal directions on the 2D x,y plane. This results
in the 2D dielectric tensor (here, again,
co zD=2ne nap/m)

VzD(p, co) =

N»zD (0z pz z)
Py

2

(P p„py+icoco, )

2

(P p„p —icoco, )

NpzD(0z pz z)
(10)

which has the longitudinal component

P &ZD9
E'L—

2 2
2 2 Np 2DQ

z [px 2D, xx+pyezDyy+pxpy( 2D, xy ezD, yx )) z z z z z 20 (0 —P p ) —co co,

2

(P p„py i coco,)—N»»D(0z pz z)
1

2
Co N 2D

corresponding to Eq. (1) with I /r~5, a positive infinitesimal, which we take to be the case.
The matrix inverse of the dielectric tensor, tczD(p, co) [VzD VzD =(0, ) ], is given by

(12)

with

N
detlVzD I

I ' (20 —P p —
coy zD), (13)

and its longitudinal part is

PK2D P
KL (p~co)—

P

Co1»zD(0z pz z)
detlV, D I

(14)

III. CONCLUSIONS

In the static limit, co~0, Eq. (14) yields the longitudi-
nal part of the inverse dielectric tensor as

l

I+(pTp/p)
' (15)

which has the proper form for the 2D counterpart of
Thomas-Fermi-Debye shielding with the identification
pT„=2m.ezno/mpz. As anticipated from physical argu-
ments in the Introduction, the classical Lorentz force
does not affect the static screening of the hydrodynamic
model due to its classical dynamical character. Straight-
forward as these considerations are, they gain importance
by way of contrast to the fact that ezD(p, O) as given by
Eq. (4) fails to correctly represent static shielding in the
2D hydrodynamic model. Such a failure does not occur
in the 2D random-phase approximation (RPA}, and

ezD(Rp~)(p, O) does indeed correctly represent static
shielding in the presence of magnetic Geld, reproducing
Eq. (15}as
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1
E2D(RPA)(p, 0)=~L (p, O) —1+,1+(pTF p)

for wave numbers well below the Fermi wave number, as
shown in detailed analysis of the RPA in Ref. 1. In this
light, the failure of ezra(p, O) to correctly represent 2D
static shielding in a magnetic field could be seen as a seri-
ous deficiency of the 2D hydrodynamic model, were it
not for the fact that the correct static result is recovered
by dielectric tensor inversion, in the form of ttL(p, O)

given by Eq. (15). With this in mind, there should be no
loss of confidence in the hydrodynamic model and its ca-
pability to provide physical insight into the role of nonlo-
cal plasma dynamics in a complicated 2D probe of corre-
lation and interaction in a magnetic field.

APPENDIX

In regard to the local 2D magnetoplasmon spec-
trum, it has long been known that the 2D coupled
electromagnetic-plasma dispersion relation (retarded) has
the form '

&2D —I =0,d t I+ P I PIIPII

pg p ~m
2 2

or, alternatively

L

Em Em
(A3)

which reproduces the electrostatic magnetoplasmon
given by Eq. (2). However, as shown above, it is neces-
sary to employ the longitudinal component of the invert-
ed dielectric tensor to correctly determine the static
shielding of the hydrodynamic model.

where p =p~~+pf =e to lc with pl and p~ being
wave-vector components parallel and perpendicular to
the 2D electron sheet and e is introduced as the back-
ground dielectric constant. In the electrostatic limit
c —+ 00, p ~0, and p~ =ipse, and Eq. (17) reduces to

d I+ IIII "—I =0 (A2}
p &m
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