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We present an investigation of the sinh-cosh (SC) interaction model with twisted boundary
conditions. We argue that, when unlike particles repel, the SC model may be usefully viewed as a
Heisenberg-Ising Quid with moving Heisenberg-Ising spins. We derive the Luttinger-liquid relation
for the stifFness and the susceptibility, both from conformal arguments, and directly &om the integral
equations. Finally, we investigate the opening and closing of the ground-state gaps for both SC and
Heisenberg-Ising models, as the interaction strength is varied.

In Refs. 1 and 2, we solved the integrable one-
dimensional (1D) sinh-cosh (SC) model defined by the
Hamiltonian

1 . Bz&=-2 ): 2+ ). &'k(&' -») (1)
1&j&N j 1&j&k&N

The pair potential is given as
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and the quantum number 0 = +1 distinguishes the two
kinds of particles. We may usefully think of it as either
representing charge or spin. For values of the interaction
strength s in the range —1 & s & 0, the system exhibits
two gapless excitation branches with different Fermi ve-
locities as does the repulsive 1D Hubbard model, s and
thus may be classified as a typical two-component 1D
Luttinger liquid. The asymptotic behavior of the corre-
lation functions is given by finite-size arguments of con-
formal field theory. A Wiener-Hopf type calculation2
shows that the spin-spin part of the dressed charge ma-
trix is essentially identical to the dressed charge scalar in
the Heisenberg-Ising (HI) model. s

In this paper, we will further explore the connection
of the SC model with the HI model by examining the
response of the system to a flux 4. The addition of a
fiux is compatible with integrability and allows the study
of the transport properties by an adiabatic variation of
4. For the M model, this has already been done6 ~ for
the interaction strength range —1 & b, & 1. We will
show that the spin degrees of &eedom of the SC model
for 0 & s & —1 may be usefully viewed as a HI model
with moving HI spins. The presence of the translational
degrees of &eedom will simply renormalize the spin-spin

I
Lkj = 27rIj(kj—) ——4+ ) Hp g(kj —A )

a=1

N

+) Hp p(k,. —kt), (3a)

coupling.
We thus restrict ourselves in what follows to the un-

bound case —1 & s & 0, such that there are two gapless
excitations corresponding to a particle hole and a two
spin-wave continuum with excitation velocities v and v„
respectively. Let us then modify the Bethe ansatz equa-
tions of Eq. (7) of Ref. 2 by threading them with a
fiux 4'. We have two coupled equations for N particles
with pseudomomenta k = (kq, . . . , ktv) and M spin waves
with rapidities A = (Aq, . . . , AM) on a ring of length

L. The energy of a given state is E(k) =
2 g. ~ kz

and the total momentum is P(k) = P ~kj. Boost-
ing the system by 4' will accelerate the two kinds of
particles in opposite directions due to the two compo-
nents being of equal but opposite charge. Therefore, we
have no center-of-mass motion and P = 0. The en-

ergy of a given state will change as a function of O, and
the energy shift of the ground state may be written as
b Ep(4'):—Ep(4') —Ep(0)—:D@z/2L+O(44), where D is
called the stiffness constant and can be specified by per-
turbation argnrnents for 4' up to z'.s Note that since we do
not have any center-of-mass motion, we can call D either
spin or charge stiffness depending on what interpretation
of 0 we adopt. We choose the spin language for com-
parison with the HI model. However, the charge inter-
pretation is probably more natural to describe transport
properties. We, furthermore, caution the reader that the
term charge stiffness has been previously used in lattice
models to describe center-of-mass motion.

The twisted Bethe ansatz equations are given by
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M

0 = 2vrJ (A )+ 4+ ) H i i(A —Ag)

+) Ho i(A —ki). (3b)

The two-body phase shifts for particle-particle, particle-
spin wave, and spin wave-spin wave scattering, Ho o(k),
Hp i(k) and H i i(k), respectively, have been given
in Ref. 1. The particle quantum numbers I~ and the
spin-wave quantum numbers J are integers or half-odd
integers depending on the parities of N, M as well as
on the particle statistics. For simplicity, we use bosonic
selection rules, although a purely fermionic or a rruxed
bose-fermi system may be studied along similar lines. In
the ground state of the bosonic system, we have

(N —1) (N —3)
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which nearly is identical to the Bethe Ansatz equation
of the HI model, as can be readily seen when we use
the standard transformation for the HI momenta p =
f(a, p). We then merely have to identify a—:vrA. The
sole effect of the pseudomomenta k is an averaging on
the left-hand side. Let us now restrict ourselves in what
follows to the neutral (spin zero) sector such that we

for both N and M even.
We start with some general considerations. Let us de-

note by Eg ~l(4) the energy of a state specified by the
4 = 0 set of quantum numbers (I,J}. We then adia-
batically turn on the fiux until we return to our initial
state. The energy will also return to its initial value, al-

though, it may return sooner; so, the period of the wave
function will be an integer multiple of the period of the
energy. We can define a topological winding number n
to be the number of times the fiux 4 increases by 27r be-
fore the state returns to its initial value. As Sutherland
and Shastry have shown, the ground-state winding num-
ber of the HI model with S, = 0 in the parameter range
—1 & —cos(y):—6 & 1 is 2, implying charge carriers
with one half the quantum of charge, except at isolated
points 6 = cos(x/Q), where M )Q ) 2 is an integer. In
particular, at b, = 0, the free particle wave function has
periodicity 2z'NHi, where NHi is the number of HI sites,
implying free acceleration in the thermodynamic limit.

We now note the following important fact: Choosing
p, =——x8, the spin-wave —spin-wave phase shift H i i is
identical to the spin-spin phase shift in the HI model,
and we may rewrite the equation for the rapidities as

N

NHp, (A, y)—:N ) Hp i(A —k, , p)/N
j=1

=2mJ (A )+4
M

+) H i i(A —Ag, y),

have M particles with o. = —1 and M particles with
o = +1 for a total of N = 2M. Then, a discussion of
the behavior of the rapidities A for varying 4 exactly
mimics the discussion of the HI momenta p in Ref. 6 at
S = 0: As long as ~4~ & 27r(s+ 1), all A stay on the
real axis. At 4 = 2m(s+ 1), the largest root AM goes
to infinity. For 4 increasing beyond this point, AM will

reappear &om infinity as ivr+ pi until exactly at 4 = 2',
AM

——ix (pi
——0) and the remaining M —1 rapidities

have redistributed themselves syrrirnetrically around 0 on
the real axis. However, as mentioned above, this behavior
is difFerent at the threshold values s = (1 —Q)/Q. The
momenta k are always real and distributed about the
origin. Equation (3b) simplifies at 4' = 2x(s+ 1) (and
thus AM ——oo) and is in fact just the equation for M —1
rapidities in the ground state. So as in Ref. 6 using simple
thermodynamical arguments, we may write

GEO [2m(s + 1.)] = Eo (N, M —1) —Eo (N, M)
= 1/2L, q-',

where g is the susceptibility. Comparing with the defini-
tion of the stifFness constant D, we find D = y i/4n 2(s+
1)

On the other hand, we can read off the finite-size en-

ergy corrections for the SC model, and then finite-size
arguments of conformal field theory give an expression
for bEO[2z'(s + 1)] in terms of the conformal weights,
the dressed charge matrix = and the spin-wave veloc-
ity v, . The neutral sector dressed charge matrix is
given in Equation (35) of Ref. 2 and thus we have

i = 2+v, (s+ 1). We may, therefore, express the stiff-
ness D in terms of the spin-wave velocity as

D = v, /2m'(s+ 1).

We emphasize that this formula for D is true also for
a system of purely fermionic particles. Shastry and
Sutherlands have given an exact formula for the stiffness
constant in the HI model, by using the known expression
for the H-I model spin-wave velocity v, = +sin(p)/p.
No such expression is known for the SC model and we

can only give v, as

e ~k/2s el (k)dk

27l 1 e «k/2a p(k) rIk—
Here, we use the definitions of Ref. 2, Sec. II. However,
written in terms of spin velocities the stifFness formulas
are identical and only the values of the respective spin-
wave velocities are difFerent. Thus the presence of the
translational degrees of &eedom in the SC model simply
renormalizes the spin-wave velocity.

We have iterated the Bethe Ansatz equations (3) in the
neutral sector for reasonably large systems and density
d—:N/I = 1/2 as a function of 4. By our correspon-
dence between the HI model, and the spin-wave part of
the SC model, we expect gee spin waves at s = —1/2.
In the thermodynamic limit, we would thus expect the
periodicity of the ground-state energy to be infinite. For
a finite system, this will be reduced to a periodicity that
scales with the system size. For the SC model we have
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FIG. 1. The low-lying states for the SC model at L = 12,
N = 6, and M = 3. The bold curve corresponds to the
ground state and the winding number is n = 6 = N. Note
the various level crossing in this &ee spin-wave case, especially
the crossing of the ground state and the first exited state at
@=2m.

indeed found that at s = —1/2 the periodicity of the
ground-state energy is given as 2+N. We may then
speak of s ~ —1+ as the ferromagnetic critical point
and s -+ 0 as the antiferromagnetic critical point of
the SC model. In Fig. 1 we show the full spectrum of
low-lying states with zero momentum at s = —1/2 for
L = 12, N = 6, and M = 3. The ground-state curve is
emphasized and its periodicity is 6 x 2z.

Note that at 4 = 2z there is a level crossing between
the ground state and the first exited state in Fig. 1. When
the interaction strength changes &om s = —1/2, inune-
diately a gap opens between the ground state and the
first exited state. Just as in the H-I model the period-
icity is reduced to 4n. Note that a perturbation the-
ory argument cannot describe this behavior. Figure 2
shows the behavior of the ground-state energy variation
L[l —E(4)/E(2z)j for s = —1/3 near 4 = 2z for differ-
ent lattice sizes. The rounding is well pronounced and
does not vanish as we increase the size.

Thus the behavior of the low-lying states in the SC
and HI models is qualitatively the same, up to the renor-
malization of quantities such as the spin-wave velocity
v, . Let us briefiy describe the behavior of the gaps in the
HI model, keeping in mind the correspondence p, = —z s.
Increasing p beyond z/2 (b, = 0), we see that the gap
continues to widen up to a maximum value at p 7z/12

FIG. 3. The charge stifFness D(s) for the SC modeL The
dashed curves correspond to L = 12, 24, and 32 and converge
to D(0) = 1/Sat s -+ 0 . The solid curve comes from Eq. (7),
which can be derived by conformal methods or Rom the Lut-
tinger relation. (Note that as s m 0, the solid curve does
not converge to 1/8. This is due to a buildup of numerical
errors in the integration routine. )

(b, 0.26). It then closes up again exactly at p = 2z/3
(6 = 1/2). As has been noted before, this value of y,

coincides with the appearance of a Q = 3 string in the
ground state. s Further increase of p, again opens, and
then closes the gap at the threshold for the next-longer

Q = 4 string. This behavior continues, and the thresh-
old values accumulate as p ~ z' (b, ~ 1). In Fig. 3, we
show the ground state and the first exited state of the HI
model on a ring of NH1 = 12. Note that due to the finite
size of the ring, we can only observe strings up to length

Q = 6. We will present a more detailed finite-size study
of the behavior of the gaps in the HI and SC model in
another publication. We only mention that for fixed p,

the gap scales with the system size as a negative power of
NHr, with variable exponent depending on the coupling
constant p.

The stifFness constant D is the curvature of the ground-
state energy Eo(O) as a function of 4. In Fig. 4, we
show D for systems of 12, 24, and 32 lattice sites. We
also show the behavior of D as given by Eq. (7). As
s -+ 0, the spin-wave velocity approaches the velocity
of a noninteracting single-component model, i.e., v, -+
zd/2. 2 Thus D approaches the nonzero value 1/8 which
is compatible with the result of Ref. 6. Furthermore, the
SC model exhibits a gap for s ) 0 and so D is zero. Thus
D exhibits a jump discontinuity at s = 0 just as in the
HI model for b, = —l.

Note that Eq. (7) may also be written as Dy i = v2.
This is nothing but the Luttinger relation for the spin-
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FIG. 2. Plot of the ground-state energy variation
L[1 —E(4)/E(2s)j for the SC model at s = —1/3 for
L = 12, 20, and 28.

FIG. 4. Energy of the ground state and the first exited
state and their difFerence in the HI model for NHI ——12. Note
the closing of the gap at Lh, = cos(s/Q) for Q = 2, 3, 4, 5.
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wave excitations. 4 Let us briefiy explain how to derive
this formula without using argi~ments of conformal field
theory. In the thermodynamic limit, we convert Eq. (3)
into a set of coupled integral equations as in Eq. (10) of
Ref. 2. Here p(k) and o (A) are the distribution functions
of particles and down spins, respectively. The density d
and the magnetization M are then given parametrically
in terms of the integral limits B and C. We now use
an iteration scheme, i.e., first, for B = oo and M = 0,
i.e. at half filling and zero magnetization, we calculate
p(k) = po(k). We then use this po(k) in the equation
for o (A) with C finite and B nearly oo. Finally, we use
this o(A) to calculate p(k) and thus the effect on the
momenta and the energy. Since we are only interested in
the leading order correction terms, we may stop. Then
the corrections to the energy are

&E
L 2 L

4vr(l+ s) i L)
+ [2~(1+s)]

where JH = zid(1 —2M/N). A complete account of this
calculation can be found in Ref. 9.

The derivation of the Luttinger relation uses integral
equations and as such is valid in the thermodynamical
limit. Most of the other results given above have been de-

rived using Eq. (3). These equations, however, have been
derived by the asymptotic Bethe Ansatz (ABA). This
method is only correct in the thermodynamic limit. io

Thus all our finite-size results should exhibit correction
terms. From the hyperbolic form of the pair potential
(2), we may expect these corrections to be exponentially
small in L. Indeed, a log-log plot of the ground-state en-
ergy versus I at fixed interaction strength shows a simple
power law behavior already for L & 6. Thus the L ~ oo
behavior of the finite-size Bethe-Ansatz equations for the
SC model does not seem to differ in any significant re-
spect from usual finite size behavior for short ranged
models. This further supports our use of the ABA in
the present study.

In conclusion, we have shown that the SC model ex-
hibits all the rich structure of the HI model for —1 & s (
0. In particular, there is a Luttinger relation for the spin
waves just as in the HI model, that can be derived &om
(i) conformal arguments, (ii) an exact calculation in the
thermodynamic limit, and (iii) is furthermore supported
by numerical results for finite systems. Thus this yields
credibility to both the conformal and the Luttinger ap-
proach in models solved by the ABA. Finally, we have
reported an interesting behavior of the gaps in the HI
and SC models.
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