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Integrable multiparametric impurity model
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We present a one-dimensional model describing the interaction of spin- —impurities with band elec-

trons of a paramagnetic host metal. The model naturally describes the creation and annihilation of elec-
tron pairs localized at impurities, and the interaction between localized and band electrons. Using the
Bethe-ansatz solution the thermodynamic properties of the system are calculated.

The Kondo problem and the Anderson model that de-
scribe the behavior of a localized magnetic moment in
paramagnetic host metals are of great physical interest.
The models of dilute systems of magnetic impurities are
calculated using various methods such as Wilson's renor-
malized group, ' and the Bethe ansatz. The last
method of attack is preferred since we are dealing with
exact results. The exact solutions of the Kondo problem
and the Anderson model obtained by Andrei and Wieg-
mann ' are relevant for any dimension of a system.
These models are special because of their integrability.
The single impurity models are integrable for the linear-
ized dispersion of band electrons. This is due to the
spherical symmetry of kinetic energy of band electrons
and contact interaction, and the localized nature of the
impurity. The eigenvalue problem for the above models
has been solved exactly directly in a momentum space by
Kebukawa.

In this paper, based on Andrei and Wiegmann's idea of
a calculation of the Kondo problem, we present an exact
solution of the multiparametric one-dimensional single
impurity model. We propose a model that is again solv-
able in one dimension, and combines and extends some of
the interesting features of the Kondo problem and the
Anderson model. The model considered takes into ac-
count di8'erent interactions between conduction electrons
and electrons localized at impurities.

Before we present the Hamiltonian of the new impurity
model, we briefly discuss some physical aspects of the
model. It has been found that electrons in the materials
that exhibit high-T, superconductivity form spin-singlet
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pairs of Cooper type, which are much smaller than in
traditional superconductors. We shall consider a
creation and annihilation of electron pairs localized at
impurities and suggest the integrable model, which keeps
the main idea of approach to superconductivity, namely
the existence of singlet pairs of electrons in narrow
energy-band-electron systems. The model describes two
types of electrons with spin —,

' on a chain; the conduction
electrons from the partially filled atomic shells and al-
most localized electrons from the inner shells of impuri-
ties. The conduction electrons exchange interact with the
localized spins of impurities and are hybridized with elec-
tron states of impurity shells, which can be singly or dou-
bly occupied by electrons. The model Hamiltonian,
which takes into account these interactions has been dis-
cussed in Ref. 10. In contrast to Ref. 10 we also consider
terms describing a creation and annihilation of electron
pairs localized at impurities. " The model proposed
presents a logical generalization of the ones recently con-
sidered. In terms of the Hubbard operators
X; =

~
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~ (a, b =0, f, l, 2 ) which define the states of
impurity shell, the model Hamiltonian is chosen in the
form
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where c (x ) and c (x ) are the operators of the conduc-
tion electrons; c,z is the one-electron energy of impurity
level, U is the on-site Coulomb repulsion, F is the con-
stant of the correlated hybridized interaction, J is the
constant of the exchange interaction of the band elec-
trons with impurity spin, o =[a",o~, o'] are the Pauli
matrices, and S; is the spin operator of the spin- —, impuri-

ty. The last terms, which are proportional to complex
constants of prime interactions 5& and 52, describe a
creation and annihilation of singlet electron pairs on an
impurity: band electron-localized electron and pair of lo-
calized electrons. Additionally, we include a potential
scattering term with interaction constant I.

We construct the exact solution of the one-dimensional
model (1)—(3) for N, conduction electrons interacting
with ¹ impurities in the chain length L. The total
number of particles is not conserved since the
operator 8'=P, +8;[8,=g Jdx c (x )c (x ),

N,.=g '', (g~ +2X )] does not commute with & (the
last terms in (3}, which are proportional to 6) and b~,
nonconserve the total number of electrons). As the num-

N,ber operator P =8', —g '',g~ commutes with %
(Ref. 12) we can add a term —

ezra to the Hamiltonian
without changing the set of eigenvalues. That allows us
to introduce the Fermi energy c.F for the system in which
the total number of particles are not conserved. The

I

Hamiltonian &o can be rewritten as
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The multiparametric model (1), (3), and (4) generalizes
the integrable impurity models, which have been recently
proposed by the author: In the limit 6&~0, 62~0, and
I~0, the Hamiltonian coincides with the one in Ref. 10
and, for I=O and U~~, it coincides with the one in
Ref. 11.

Let us consider a scattering of electrons on a magnetic
impurity localized at the origin. The two-particle wave
function can be written as
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where k is the electron wave vector, 5 is Kronecker's
symbol, and the unknown amplitudes are solutions of
Schrodinger's equation,
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p,.o=-', (1+cr,So) and . c' is the effective coupling constantwhere s(k)=k —sF, e=sz+U —sF, and so(k)=e(k}
+cz+c.F. Let us seek the solution for the amplitude
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and, finally, )t) = —2 tan '[(J +I) /2). The three-particle
wave function satis6es Schrodinger's equation and is

determined by the two-particle scattering matrix of elec-
trons S on the basis of solutions containing a step func-
tion. ' The S matrix is the solution of the Yang-Baxter
equations and has a we11-known form
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exp(iP },gk, )
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where P, - is the spin permutation operator of scattered
electrons.

The Bethe-ansatz wave function explicitly depends on
the relative ordering of the conduction electrons. We
present this dependence by a permutation Q of the N,

(15)v(k)=—

1

s(k)+li) I /so(k)

where P;o is the spin permutation operator

where A& is an arbitrary tensor.
According to (9), the relation among the components

of the tensor A& for x & 0 and x & 0 determines the
scattering matrix of conduction electrons on an impurity,
which is denoted below as the R matrix. This leads to the
following result for the R matrix:
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where [k. ] is the set of unequal wave numbers; the sums
are over all permutations P=[P„,Pn ]. The ampli-

e

tudes A (Q/P ) depend on spins of band electrons and im-
purities and on Q through the coordinates of conduction
electrons.

Imposing periodic boundary conditions on the Bethe
function (16}leads to the following equations for the elec-
tron momenta k. and rapidities A, derived in Ref. 11,

M g(k, ) A—i, /—2
exp(ik L+iN;P)= II)gk +i 2

~ A, —g ( k }—i /2 A, ( —i /2

, A, —g(k )+i/2 A, +i/2

(18)

The energy and the magnetization of the system in the
state corresponding to a solution of (17) and (18) are
equal to

E= g s(kj )+(sd+e~)N; HM, ; M—,=N/2 M, —
j=1

(19)

where H is an external magnetic field and N is the total
number of particles.

In the thermodynamic limit, the ground state of the
model consists of the Fermi seas each from which is
determined by the kz and B values. The ground-state
configuration corresponds to the filling of all states with
0 & k & kz and —B & A, & 00; the momenta are changed in
the interval from 0 to k& 0 & k & k& (where k& is the con-
duction bandwidth} and the rapidities range in the infinite
limits —~ (A. & ~. For a large system, we can intro-
duce the density of wave numbers p(k ) and the distribu-
tion function of rapidities o (A, ). By taking the continu-
um limit the Bethe Eqs. (17}and (18), corresponding to
the ground state, can be transformed into a set of coupled
integral equations for the functions p(k ) and o (A, )

p(k)= —g'(k) f dk, a, [A,—g(k)]o(A), (20)
2m —8

a(A, )+f dk, 'a2(A, —
A, ')o(A, ')

kF=f dka, [A, —g (k ) ]p(k )+n;a, (A, ), (21)

where n; is the concentration of impurity. The kernels of
these integral equations are given by

a„(A,)= n 1

2m A, +(n/2)
(22)

The density of momenta and the distribution function of

elements ordered coordinates of electrons

|Nxgi oi . xgn ox }
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The kernel R (x ) of this equation is given by

oo 1R (x ) =—f de cos(cox )
77 0 1+exp(co )

(25)

The value of g(k } is tended to zero for the momenta of
electron equal to k + (k + & k ) and tended to
infiniteness in the points kg (k+ & k" ). In contrast to
the Anderson model, a strong dispersion of g(k } has tak-
en place. We have three branches of values of g(k) be-
cause it is the discontinues function of the wave vector.
Three branches of values of g(k ) are realized for deep
electron levels, which correspond to inner electron shells
of impurity atoms, namely, for cd & —c~. The case
cd= —cz in the infinite U limit has been considered at
length. "The lowest of the k branch of g(k) should not
be taken into account if k" ( eF. Therefo—re, if the en-

ergy of one-electron impurity state fall on a conduction
band two branches of values of g(k) for k" &e(k)(k, —kz will be considered below.

The valence of an impurity atom depends on the value
of g (k ) at k =k~, which is denoted as z~, the state of in-
termediate valence corresponds to region of values of z~
at close-range zero. Let us consider the solution of Eq.
(24} for the state of impurity with a localized magnetic
moment assuming that k+ &0 and ignoring some states
with k+ &s(k) &k, —kz. In this approximation, we
consider only one branch of values of g(k}, namelyk" & e(k) & k+.

Equation (24) is solved using the standard Wiener-
Hopf technique. The key to the solution of this equation
is to find a decomposition of the kernel into factors
G~(co) that are analytic in the upper and lower complex
co plane [1—R(co)] '=G+(co)G (co},

iso /27K

G (co)=G+( co)=v'2n- .
27M

1

I'(1/2+iso/2n )

I (x ) is the gamma function.
The density of conduction electrons and the valence of

impurity are equal to

rapidities describing conduction electrons are normalized
so that

kF 00f p, (k)dk =n„ f o, (A, )dk, =n, /2 —At, , (23)

where n, and JK, are the density and the density of the
magnetization of conduction electrons.

Below we shall consider a valence of an impurity ion at
H=O. In the absence of magnetic field it is easily seen
that B= ~. This allows the elimination of A,-dependent
quantities from the Bethe-ansatz integral equation by
Fourier transformation. From Eqs. (20) and (21), we ob-
tain the following equation for the function p(k ) at H =0
denoted as po(k ):

po(k )+g'(k )f dk'R [g(k ) —g(k')]pa(k')

—n;g'(k }R[g(k }]. (24}
1
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n, =k~/m — sin(co)G+ (ice)
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2m.

(27)

E„(A.) = —Ts' lnI n [c.„+,(A)]n(e„,(A)) j
k,T—5„,f dk g'(k)s[g(k) —A]
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These expressions make sense for z~&O only, for z~=O
or zF &0 we have to obtain the solution of Eq. (24) for
two branches of values of g(k) [k" &e(k) &k+ and
k+ &s(k) &k, kF].—The behavior of localized magnet-
ic moment in a small magnetic field arbitrary with
respect to the Kondo temperature Tz characterizes the
magnetic scale TH

kF
TH='t/2n/e f dk po(k) exp[ ng(k)—] . (28)

In the small magnetic field, the behavior of localized
magnetic moment is similar to that in the Kondo prob-
lem and the impurity magnetization is determined analo-
gous to the Kondo problem for the spin- —,

' impurity.
The solutions for the excitations of the system are the

same as for the Kondo problem, namely, M„strings of
complex spin rapidities of length n, n =1,2, . . . , ~,
which corresponds to bound spin states

AJ =A" +ic/2(n+ 1 2j )+0[ex—p( 5L )], —

j=1,2, . . . , n, 5&0; (29)

where A,
" is a real parameter.

The density of the free energy can be written in terms
of the quasienergies

kl
7=60+ Tf dk po(k) ln[n[E(k)] j

0

+ Tf d A, o 0(A ) 1 n n[[ s( A) ]j, (30)

where n(e)=[1+exp(e/T)] ' is the Fermi distribution
function, T is the temperature, o 0(A, ) is the distribution
function, and @0 is the density of the ground-state energy,
independent of H and T. The standard procedure leads
from (17) and (18) to the integral nonlinear equations for
the excitation energies

X 1 n[n[ —K(k)] j, n =1,2, . . . ,

Eo(A, ) = —ee, lim e„(A}/n =H, s(A, ) = 1

n~oo 2 cosh(mA)

(32)

where the symbol a "fdenotes the convolution.
The Kondo limit is obtained by suppressing the charge

excitation in the system: For this approximation, the im-
purity part of the density of the free energy is equal to

= —Tn, f dx s[x+1/n ln(T„/Tx)]

X ln[1+exp[h &(x )]j, (33)

where Tx=v 2/~e TH. The following recurrent equa-
tions are for the dimensionless functions h„(x ),

h„(x ) =s' ln[ [1+exp(h„,(x ) }][1+exp(h„+,(x ) ) ] j

—5„,exp( nx ), li—m h„(x ) /n =H
pg —+ 00

(34)

may be solved by iteration.
We have studied the e8'ects of incorporating realistic

features such as exchange interaction, hybridization be-
tween electron states of conduction and localized elec-
trons, and creation and annihilation of electron pairs on
the physics of the single-ion Kondo problem on the basis
of the Bethe-ansatz solution. The model considered is
unique because it is the only one integrable model, the
Hamiltonian of which is described by six parameters of
the two-particle interactions. In contrast to the Ander-
son model, the region of mixed valence is characterized
by a strong dispersion of the components of the two-
particle scattering matrices and determined by peculiar
point, which corresponds to strong interaction.
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