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By small-amplitude perturbation theory and by a computer-simulation approach we have studied the

incoherent scattering of electromagnetic waves from a randomly rough, dielectric 51m deposited on a
planar, perfectly conducting surface. The thickness of the dielectric Slm is such that in the absence of
the roughness the scattering system supports two guided ~aves. As a consequence, each multiply scat-

tered wave is now degenerate. The coherent interference of each of these degenerate waves with the

waves obtained from them by time reversal produces two satellite peaks in the angular dependence of the

intensity of the incoherent component of the scattered Seld, in addition to the enhanced backscattering

peak. These satellite peaks occur at scattering angles H, that are related to the angle of incidence 80 by

sin8, = —sin8o+(c/to)[q, (to) —q2(to)], where q, (oj) and q2(to) are the wave numbers of the two guided

waves supported by the scattering system at the frequency co of the incident Seld. These peaks are

present in the results of both the perturbation and simulation calculations. They are shown to be
multiple-scattering efects, and not a single-scattering phenomenon.

I. IMaODUt~ION

A great deal of attention has been paid recently to the
multiple scattering of classical waves and quantum parti-
cles from systems with volume and surface disorder. The
interest in this problem was stimulated by the fact that in
disordered media, notwithstanding the seemingly abso-
lutely random nature of the scatterers (either volume or
surface), under certain conditions there occurs either
complete [one-dimensional (1D) systems] or partial (2D
and 3D systems) coherence of the multiply scattered
fields. This coherence, which is a consequence of time-
reversal symmetry, leads to a constructive interference
that gives rise to such effects as strong localization, ' fluc-
tuational waveguiding, weak localization, enhanced
backscattering, the memory effect, etc. Until recently,
in the investigation of these phenomena attention was
directed mainly on infinite systems. However, in bound-
ed random media, together with the random interaction
of the fields it is often the case that regular interference,
caused by the presence of surfaces, can also be significant.
The additional coherence arising from the latter source
leads to new effects absent in infinite systems.

In this paper we show analytically and numerically
that the angular dependence of the intensity of waves
scattered from a random bounded system with a discrete
spectrum of excitations (a thin, randomly rough dielectric
film deposited on a perfectly conducting substrate) exhib-
its, due to degenerate time-reversal symmetry, satellite
peaks in addition to the enhanced backscattering peak
that is characteristic for scattering from a random, semi-
infinite medium.

To understand the physical origin of the enhancement
of scattering into directions other than the retroreflection
direction, we recall how the enhanced backscattering
peak arises in the scattering from semi-infinite random
media. In this case to each multiple-scattering path
ABCD [Fig. 1(a)] that contributes to the field scattered
into the retroreflection direction, there always corre-
sponds a time-reversed partner DCBA that has exactly
the same phase factor. As a result, these two waves are
always coherent, notwithstanding the random positions
of the scatterers. Note that in order that there be this
coherence (equality of phases) the speeds of propagation
from C to B and B to C must be equal.

In the case of a bounded system, the situation is more
complicated. If the index of refraction n& =Qes of the
film is larger than those of the media bounding it, the

A' D'

C

FIG. 1. Optical paths with the same phase factors. {a) An
infinite medium, {b)a bounded medium.
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transverse component of the wave vector k is quantized
inside the film. The field corresponding to the discrete
part of the spectrum is the sum of guided eigenwaves,
each of which propagates along the film with its own
(quantized) phase velocity. In contrast to the situation in
an infinite or semi-infinite medium, each trajectory
ABCD [Fig. 1(b)] is now N fold degenerate, where N is
the number of discrete modes supported by the
waveguide, in the sense that along the segment BC there
are N "channels" with different phase factors. The phase
difference for the two paths ( ABCD)„and ( A'CBD') is
equal to

b P„=(k;„+k„).rsc+ (k„—k ) Irsc I,

x, ={;(x,)

X3

dielectric

perfect
conductor

Xl

where k;„andk are the wave vectors of the incident and
scattered waves, respectively, the vector roc connects the
scatterers 8 and C, and k; is the wave number of the ith
mode. We see from Eq. (1.1) that constructive interfer-
ence (b,g„=0)can occur not only for scattering into the
retroreflection direction (n =m, k = —k;„),which is the
case for infinite and semi-infinite media, where
k„=k =k, but also for scattering into other directions
k„A—k;„for which 5$„=0for some num.

The outline of the paper is as follows. In Sec. II we
define the system studied in this work, viz. , a thin dielec-
tric film deposited on a perfectly conducting substrate,
with a one-dimensional, randomly rough dielectric-
vacuum interface, and a planar dielectric-conductor in-
terface. The s-polarized guided waves supported by this
structure in the absence of the roughness play a central
role in the theory developed here.

Consequently, in Sec. III we derive the dispersion rela-
tion for these guided modes, and discuss those of their
properties that will be needed in the remainder of this pa-
per. In Sec. IV, the incoherent scattering of an s-

polarized plane wave, whose plane of incidence is perpen-
dicular to the generators of the random dielectric-
vacuum interface, is calculated on the basis of a perturba-
tive calculation of the scattering amplitude to third order
in the surface-profile function. This low-order approxi-
mation is suScient to reveal the peaks in the angular
dependence of the intensity of the field that has been scat-
tered incoherently, caused by the interference between
inequivalent time-reversed scattering sequences arising
from the existence of two or more degenerate guided-
wave polaritons in the scattering structure. These pertur-
bative calculations inform the computer-simulation stud-
ies of the scattering of a finite beam of s-polarized waves
from the same structure carried out in Sec. V, whose re-
sults also display the additional peaks found perturbative-
1y. A discussion of the results obtained, and the con-
clusions drawn from them, is presented in Sec. VI. An
Appendix, in which the perturbative results obtained in
Sec. IV are related to the many-body perturbation theory
approach of Freilikher, Pustilnik, and Yurkevich to this
problem, concludes this paper.

II. THE SYSTEM STUDIED

In this paper we study the scattering of s-polarized
light, whose plane of incidence is the x,x3 plane, that is

FIG. 2. The scattering system studied in this work.

incident from the vacuum side on a system that consists
of vacuum in the region x 3 )g(x, ), a dielectric film

characterized by a dielectric constant ez in the region
—d &x3 &g(x~), and a perfect conductor in the region
x 3 & —d (Fig. 2). The surface-profile function g(x, ) is as-
sumed to be a continuous, single-valued function of x

„

that is differentiable as many times as is necessary. In ad-
dition, we assume that g(x &

) is a stationary, Gaussian,
random process defined by the properties

(2.1)

W( Ix
& I ) =exp( —x

&
/a ) (2.3)

for the surface height correlation function. The charac-
teristic length a appearing in this expression is called the
transverse correlation length of the surface roughness.

It is convenient to introduce the Fourier integral repre-
sentation of g(x, ),

g(x, ) = J g(k)exp(ikx, ) . (2.4)

The Fourier coefficient g(k) is also a Gaussian random
process that possesses the following statistical properties:

(g(k) ) =0,
(g(k)g(k')) =2m5(k+k')5 g(IkI) .

(2.5)

(2.6)

The power spectrum of the surface roughness g ( IkI ) ap-
pearing in Eq. (2.6) is defined by

g(IkI)= J dx, W(Ix, I)exp( ikx, ) . — (2.7)

The form of g(IkI) that corresponds to the choice of
II'(Ix& I) given by Eq. (2.3) is

g(IkI)=m'~ a exp( —k a /4) . (2.8)

(2.2)

In Eqs. (2.1) and (2.2), the angle brackets denote an aver-
age over the ensemble of realizations of g(x &), while
5=(g (x, ))' is the rms height of the surface. In nu-

merical calculations, we will use the Gaussian form
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III. GUIDED WAVES

E(x;t)=[O,E2(x»x3lco), 0]exp( iso—t) . (3.1)

A central role in the scattering theory developed in this
paper is played by the guided waves supported by the
scattering system in the limit that g(x& ):—0. In this sec-
tion we obtain the dispersion relation for these modes
and determine their properties that will be needed in
what follows.

In an s-polarized electromagnetic field whose plane of
incidence is the x&x3 plane, the electric vector has the
form

(co/c) &q &+ed(Io/c) .

To solve Eq. (3.8},we define the variables x and y by

x=aq(q, co)d, y=Pp(q, co)d .

Then, Eq. (3.8) becomes

y= —x cotx .

(3.9)

(3.10)

(3.11)

polarized guided waves supported by a dielectric film on
a perfectly conducting substrate. These guided waves ex-
ist only in the region of the (co,q } plane defined by the
inequalities

The amplitude E2(x „x3leo) is the solution of

8 8 to+ + E2 (x„x3lto)=0
Bxf Bx3 C

in the region x3 & 0, and is the solution of

a2 a2 to2+ +ed E2 (x&Ix3 leo)=0
t}x

g Bx3 c

(3.2)

(3.3)

When we eliminate q from this pair of equations, we ob-
tain

y
—(R 2 x 2)1/2 (3.13)

A second relation between x and y is obtained if we first
rewrite Eq. (3.10) in the forms

2 x2 2 2
2 2 +3'

2
(3.12)

in the region —d &x3 &0. The boundary conditions
that must be satisfied at the interface x3 =0 are that the
tangential components of the electric and magnetic fields
must be continuous across it. These conditions can be
written in the forms

where

R =(6 —1)'/ (3.14}

By combining Eqs. (3.11) and (3.13), we obtain the equa-
tion satisfied by x,

E2 (x]»3lto)l, =p=E2 (x),x31)l, =p, (3.4a) (R —x )' = —xcotx, 0&x &R . (3.15)

E2 (xt»3I}l„=p= E2 (x& x3lto)l =p ~

x3 x3 "3

(3.4b)

At the same time E2 (x„x3lco)must vanish at x3 = ~ in
a guided wave, while E2 (x„x3lIo)must vanish on the
perfectly conducting surface x3 = —d.

The solution of Eq. (3.2) that describes a wave propa-
gating in the x& direction whose amplitude vanishes at
x 3

= 00 can be written in the form

0&R & —,
2 ' (3.16a)

The solutions [x„)of this equation for given values of Ed,
co, and d, are then substituted into the first of Eqs. (3.12)
to yield the values of the wave numbers [q„(co)Iof the
guided-wave polaritons of frequency u. A plot of the
dispersion curves of these modes obtained in this way is
presented as Fig. 3.

A graphical examination of Eq. (3.15) shows that it
possesses no solution for

E2 (x„x3lIo) =Be 'sinad(q, co)(x3+d ), (3.6)

where ad(q, co)=[a&(co /c ) q]'—
The boundary conditions (3.4) yield the pair of equa-

tions

(3.5)

where Pp(q, co)=[q —(co /c }]'/. The solution of Eq.
(3.3) that describes a wave propagating in the x, direc-
tion and has the nature of a standing wave across the film
that vanishes at x 3

=—d is

1.5

1.0Q

M

3
0.5

3 =B sinad(q, co)d,

Pp(q, co ) A =ad (q, u)B cosad(q, co)d

for which the solvability condition is

(3.7a)

(3.7b) 0.0 0.5
qd/(27r)

1.0
00 V I I I I I I I I I I

~ LJ

1.5

pp(q, co) = a(q, cd')c —ta o(q, d)d Io. (3.8)

Equation (3.8) is the dispersion relation for the s-

FIG. 3. Dispersion curves for s-polarized guided waves in a
dielectric film of dielectric constant ed =2.6896 and thickness d
on a perfectly conducting substrate.
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one solution for

7T 3m.

2 2

two solutions for

3m Sa
2

'
2

and, in general, p solutions for

(3.16b)

(3.16c)

tor in this case has the form given by Eq. (3.1). In the
vacuum region x3 & g(X1), the field amplitude
E2(x ] x3 ~

co) is the sum of an incident wave and a scat-
tered field

E2 (X„X3I~)
=exp[ikx, iap(k, co)x 3 ]

+ f R, (q~k)exp[iqx1+i ap(q N)x3] (41)
277

(2p —1)—&R &(2p+1)—
2 2

(3.17)
where

To simplify the discussion, in what follows we will be
interested in the case in which the scattering system sup-
ports two guided waves, which can be excited through
the roughness of the vacuum-film interface by an s-

polarized electromagnetic wave of wavelength A, incident
on it. From Eq. (3.16c), we find that this will be the case
if the mean thickness of the film d satisfies the inequalities

[( 2/ 2) 2]1/2 2 & 2/ 2

a (q, co)= '.0 &

[ ( / )]1/2 q2& 2/ 2

(4.2a)

(4.2b)

Within the film, —d &x &g(x, ), E2(x„x3~co)has the
form

E2 (X1,X3lco)

3 d 5

4(e, —1)'" ~ 4(e, —1)'" (3.18)

where

T, q exp iqx& sinad q, co @3+dq
2' (4.3)

IV. PERTURBATION THEORY

In this article the contribution to the mean differential
reAection coeScient from the incoherent component of
the scattered light will be calculated by means of a for-
mally exact computer-simulation approach in Sec. V. To
guide the computer-simulation calculations, and because
it provides explicit analytic expressions from which the
dominant contributions to the effect we are investigating
can be obtained, we preface the exact calculations by a
perturbation-theoretic calculation of the contribution to
the mean difFerential re6ection coefBcient from the in-
coherent component of the scattered light that is valid
through terms of fourth order in the surface-profile func-
tion. It has been shown in an earlier study of the
enhanced backscattering of light from a one-dimensional,
randomly rough, metal surface that this approximation
sufFices not only to predict enhanced backscattering, but
also to describe the effect quantitatively. We will see
that the same is true in the present context as well.

A. Scattering theory

We assume that an s-polarized electromagnetic wave of
frequency ~ is incident from the vacuum side onto the
vacuum-dielectric interface x3 =g(X1). The electric vec-

[ed(m lc ) q]'/, —
q &2e (de /2c )2(4.4a)

2 2 1/2 2i[q —ed(co lc )]'/, q &eq(co2/c2) .

k = (co/ )scin80, q = (co/c )sin8, . (4.6)

By imposing the requirement that the electric-field am-
plitudes given by Eqs. (4.1) and (4.3) satisfy the boundary
conditions at the rough vacuum-dielectric interface, we
obtain the following coupled integral equations for the
scattering and transmissions amplitudes R, (q~k) and

T, (qik):

(4.4b)

The contribution to the mean differential re6ection
coeScient from the light scattered incoherently is given
in terms of the scattering amplitude R, (q~k) by

~~s 1 co cos Hs'
[(/R, (qfk)/2&

88, '""" l. , 2mc cos80
—

~
(R, (q~k) ) ~2), (4.5)

where L, is the length of the mean surface x3 =0 in the

xI direction, and we have introduced the angle of in-

cidence 80 and the scattering angle 8„both measured
from the normal to the mean surface, by

(4.7a)

(4.7b)

The assumption that the field amplitude given by Eq. (4.1) which, strictly speaking, is valid only for x3 & g(x, ),„,can
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be continued in to the surface x3 =g(x) ) and used in satisfying the boundary conditions there, constitutes the Rayleigh
hypothesis. '

The Eqs. (4.7a) and (4.7b) can be decoupled to yield a single integral equation for the scattering amplitude R, (qlk)
alone. By multiplying Eqs. (4.7a) and (4.7b) by the factors

and
—ipx& iad(p, cu)[g(x) )+d] ia—d(p, ra)[g(x) )+d]

respectively, integrating both with respect to x(, and adding the resulting equations, we obtain the equation satisSed by
R, (qlk)

MpqR, q = p (4.8)

The functions M(plq) and N(pl k) appearing in Eq. (4.8) are given by

ia (p, co)d —ia (p, co)d

M(plq) =

N(plk)=—

d d

I[ao(q, co)+ad(p, co)lp —q] — I[ao(q, (o)—ad(p (o)lp —q]
ao q, co +ad p, co ao q, (o —ad p, ro

iad(p, ~)d —iad(p, o))d

I[ad(p, a)) ao(k, —co)lp k) — — I[—ad(p, ) —ao(k~~)lp —k] ~

ad p, (o —a() k, ro a, p, ~ +a, , ro

(4.9)

(4.10)

where

I(ylQ)= f dx(e 'e (4.11)

00

M(plq) = g M'"'(plq),
n=o n!

N(plk)= g, N'"'(plk),
nf

(4.13}

(4.14)

Equations (4.8)—(4.11) constitute the basis of our
perturbation-theoretic analysis. We seek R, (qlk) as an
expression in powers of the surface-profile function, in
the form where

(4.15)

R,(qlk)= g R,'" (qlk)
0 n! (4.12) P"'(Q)= f dx, e 'P(x, ) . (4.16)

where the superscript denotes the order of the corre-
sponding term in g(x(). We also expand M(plq), N (pl k),
and I (y l Q) in a similar fashion

By substituting Eqs. (4.12)-(4.15) into Eq. (4.8), and then
equating in the resulting equation terms of the same or-
der in g(x, ), we are led to the following recurrence rela-
tion for the IR,'"'(qlk) J:

M' )(p, co)R,' '(plk)=27r5(p k)N' '—(k, co), (4.17a)

dq
n —1

M"'(p ~)R'"'(plk) =N'"'(plk) —f" M'"'(plq)R, "'(qlk} g f" —M'" '(plq)R,"(qlk),
277 r=1 —oo 277

n + 1, (4.17b)

where we have used the results that
~ 2

N' )(k,co)= — D (k, co),
CO

(4.21)

with

M'0'(plq) =2n5(p —q)M' '(p, ~),
N'0'(pl k) =2@5(p —k)N' '(k, (o),

(4.18)
and

(4.19)
D+(k, (o) =ao(k, ra)sinad(k, co)dkiad(k, (o)cosad(k, co)d

(4.22)

2 2
M( )(p,co}=— D+(p, cg},

CO

(4.20} From Eqs. (4.9)—(4.11) and (4.13}—(4.16) we obtain the
terms in the expansions of M(plq} and N(ply} for n ~ 1
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M'"'(p~q)=i "[e '
[ao(q, co)+ad(p, co)]"

—iad(p, co)d—e
'

[ao(q, co)

—a, (p, ~)]" ']P"'(p —q),
(4.23)

the desired order in its expansion in powers of g(x, ) [Eq.
(4.12)]. For our purpose, it sufEces to obtain the four
leading terms, which are given by

D (k, co)
R,'o'(p(k) =2m 5(p —k)

D+ (k, co)

N'"'(p~k) = i—"[e '
[ad(p, co) a—o(k, co)]"

—iad(p, ~)d+e ' '
[ad(p ~)
—ao(k, co) ]" '

j P "'(p —k) .

(4.24)

We can now use the recurrence relation, Eqs. (4.17), to-
gether with Eqs. (4.20}—(4.24), to calculate R, (p~k) up to

=2—n5(p —k)R,' '(k, co),

R,'"(p~k) =iu, (co)g~ "(p —k)

sinad(p, co)d 2ao(k, co)sinad(k, co)d
X

D+(p, co) D+(k, co)

(4.25)

(4.26)

sinai(p, co)d &z~R,' '(p~k)=iu, (co) '

P '(p —k)[ad(p, co)cotad(p, co)1+ad(k, co)cotad(k, co)d ]D+ p, co

sinad(q, co)d
&&~ 2az(k, co)sinad(k, co)d

+2iu, (co) P "(p —q) P "(q —k) i

sinad(p, co)d
R, (p~k) =iu, (co) g (p k) (2 4—ed ) —+p +k +2az(p, co)ad(k, co)cotad(p, co)d cota„(k,co)d

D+ p, co) c2

dg+3iu, (co) [ad(p, co)cotad(p, co)d+ad(q, co)cotad(q, co)d ]2'
&z~ sinad(q, co)d &„(p —q) g "(q —k)

D+ (q, co)

dq +~~ sinad(q, co)d
+3iu, (co) g "(p —q) [ad(q, co)cotad(q, co)d—~ 2n D+(q co)

+ad(k, co)cotad(k, co)d ]P '(q —k}

—6[u, (co) ]
2 dq dr ~&& sinad(q, co)d»~

(p —q) g (q —«)
2m — 2m D+ (q, co)

sinad(r, co)d»~ 2ap(k, co)sinad(k, co)d
X g "(r —k) .

D+ (r, co) D+ (k, co)

where

(4.27)

(4.28)

N
u, (co) =(ed —1)

C2
(4.29)

Upon substituting these four terms into Eq. (4.5) and keeping terms up to fourth order in g(x, ) in the resulting equa-
tion, one can readily obtain the contribution to the mean difFerential reAection coefficient from the light scattered in-
coherently up to the same order in g(x, ). In doing so, we explicitly take into account the statistical properties of the
Gaussian stochastic process g(x, ) as stated in Sec. II, thus arriving at

(
BR,

cos O, cos8oiGO(p, co)i [Iz(peak)+I4 ' (peak)+I4' ' (peak)+I4 '(p)k)] )Go(k, co)i
g incoh

(4.30)

The functions appearing in this expression are given by

I2(p~k) =5 [u, (co) ] g( ~p
—k~ ), (4.31)
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&4' '"(plk)=~'J "
g(lp —ql)g(lq —kl)[lui(co)u2(plk)l'+2«[[ui(co)]'u2(plk)Go(q co)]

+[ui(~)]'IGo(q ~)l'&

I" " (plk) =&'f " ' g( Ip
—

q I )g(lq —k
I )[ lui(co)u2(plk) I'+2 «[[u i(c0)]'u2(plk)Go'(q, co) $

4 oo dg

+[u, (co)] Go(q c0)Go(p+k q co)

(4.32)

(4.33)

I4' '(plk)=25 g(lp —kl)Re 3u, (co)u3(plk)+[ui(co)] [u2(klk)Gp(k co)+up(pip)Gp(p co)1

+2[ui(co)]'f 2 [g(lp —ql»~(qlk)+g(lq —kl»z(plq)]Gp(q, co)

+[u, (co)]~J Gp(q, co){g(lp —ql)[Gp(p, co)+ —,'Gp(k —p+q, co)]

+g(lq kl)[Gp(k co)+—,'Go(p k+q co)]]
' (4 34)

where u i (co) is given by Eq. (4.29), and

u2(plk)=-, '[ad(p, co)cotad(p, co)d

+ad(k, co)cotad(k, co)d ],
u i (c0)

u3(plk)= (p +k ) (4ed —2)—
C

(4.35)

+2ad (p, co)ad (k, co)cotad (p, c0)d

X cotad(k, co)d (4.36)

while Gp(p, co) is the Green's function for the planar
vacuum-dielectric interface,

i sinad(p, co)d
Gp(p, co) =

D+ p, co
(4.37)

I2(plk) gives the contribution to Eq. (4.30) of second or-
der in g(x, ), whereas P' ' P' ' and P~ ', yield
the contributions of fourth order in g(x, ) froin, respec-
tively, the ladder term, the maximally crossed term, and
the contribution consisting of products of terms in
R, (plk) of first and third orders in g(x, ).

It should be noted that, in obtaining Eqs. (4.30)—(4.37)
in the form shown above, we have made use of a reformu-
lation of the problem by means of a scattering theory that
manifestly ensures the reciprocity and the unitarity of the
scattering process. This formulation is addressed in the
Appendix.

B. Numerical results

We will evaluate the result for (BR,/c)8, );, h ob-
tained in Sec. IVA for a dielectric Slm whose dielectric
constant is ed =2.6896+i0.0075, deposited on a perfect-
ly conducting substrate. The small imaginary part of the
dielectric constant has been introduced to yield a finite
width to each of the peaks in (BR, /c)8, ) h. The
vacuum-dielectric interface is a one-dimensional random
interface as described in Sec. II, whose roughness param-

eters are a = 100 nm and 5=15 nm. An s-polarized plane
wave of wavelength A, =632.8 nm is incident on it from
the vacuum side. With these choices of the roughness pa-
rameters the usual conditions for the validity of small-
amplitude perturbation theory in application to rough
surface scattering, ' viz. , 5/A, «1 and (i/a «1, are well
satisfied. The thickness of the film is chosen in such a
way that the corresponding planar dielectric film sup-
ports only two guided-wave polaritons at the frequency
co, in accordance with the discussion in Sec. III. In light
of the dispersion curves shown in Fig. 3, we assume
d =500 nm, so that the wave vectors of the two guided-
wave polaritons are q, (co)=(co/c) 1.5466 and qz(co)
=(co/c) 1.2423.

We have numerically evaluated the contribution to the
mean differential reflection coefficient from the in-
coherent component of the scattered light through terms
of fourth order in g(x, ) [Eqs. (4.30)-(4.37)] as a function
of the scattering angle 8, for the parameters given above,
for a few different angles of incidence 8p. The result for
normal incidence is shown in Fig. 4. The contributions
arising from the second-order term [Eq. (4.31)] and the
fourth-order term [Eqs. (4.32)—(4.34)] are plotted sepa-
rately. In addition to the well-known, strong, enhanced
backscattering peak, two small satellite peaks symmetri-
cally placed with respect to 8, =0' at 8+ =+17.7' are also
observed in the fourth-order contribution. In Fig. 5, we
split this fourth-order term into its three separate contri-
butions: the ladder term (2-2)L [Eq. (4.32)], the crossed
term (2-2)c [Eq. (4.33)],and the (1-3) term [Eq. (4.34)]. In
light of the results shown in Fig. 5, it is evident that the
enhanced backscattering peak and the satellite peaks
originate entirely in the fourth-order crossed contribu-
tion. As we mentioned in the preceding section, this term
contains information about the interference effects be-
tween every doubly scattered light path and its time-
reversed partner, a phenomenon that we believe underlies
the existence of such peaks. In fact, the simple argument
that takes into account the phases of such trajectories re-
sulting from the interplay of the two guided waves and
leads to Eq. (1.1) in the case of an arbitrary number of
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FIG. 4. Contribution through fourth order in the surface-
profile function to the mean difFerential re6ection coei5cient
from the incoherent component of the scattered light for s-
polarized light of wavelength A, =632.8 nm incident at Hp=0 on
a dielectric film of mean thickness d=500 nm and dielectric
constant ed =2.6896+i0.0075, deposited on a planar perfectly
conducting substrate. The one-dimensional, randomly rough,
vacuum-dielectric interface is characterized by the parameters
5=15 nm and a =100 nm. The second-order and fourth-order
contributions are included also.

guided waves, predicts that the two satellite peaks should
occur at scattering angles 8+ given by

sin8+= —sin80%(c/co)[q, (co)—qz(co)] . (4.38)

Note that, when q, (co)=q2(co), Eq. (4.38) yields the
direction of the enhanced backscattering peak, as expect-
ed. In Figs. 4 and 5 these two angles are marked by ar-
rows and coincide accurately with the positions of the
peaks obtained through the perturbation-theoretic calcu-
lations (8+=+17.7').

FIG. 6. Same as Fig. 4 but for Hp 5'.

In order to demonstrate the displacement of the satel-
lite peaks as the angle of incidence is varied, we show in
Figs. 6 and 7 the numerical results of the perturbation
theory for the case considered in obtaining Figs. 4 and 5,
respectively, but for 80=5'. As expected, Fig. 6 reveals
two peaks about the backscattering peak at 8 =12.6',
and 8 = —23. 1', whose positions, precisely determined

by the conditions (4.38), are indicated by arrows. Figure
7 confirms that those peaks and the backscattering peak
stem from the fourth-order crossed contribution, as ex-
pected.

It is important to note that the total contribution of
fourth order in g(x

&
) is sufficiently smaller than the con-

tribution of second order in g(x, ) (see Figs. 4 and 6) that
the use of perturbation theory for the calculation of
( M, /88, );„„„shouldbe valid for the roughness param-
eters assumed.
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FIG. 5. Same as Fig. 3 but only for the fourth-order contri-
bution, including separately the ladder, crossed, and (1-3) terms.
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FIG. 7. Same as Fig. 5 but for Hp= 5 .
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V. NUMERICAL SIMULATION RESULTS

We have also carried out numerical simulations of the
scattering of s-polarized light from the structure depicted
in Fig. 2. In these simulations the incident light was
represented by a beam of finite width, and the surface-
profile function g(x, ) was assumed to possess the statisti-
cal properties described in Sec. II. The calculations were
carried out on the basis of the equations derived in detail
in Ref. 11. The wavelength of the incident light was tak-
en to be A, =632.8 nm and the dielectric constant of the
film at this wavelength was assumed to be ed=2. 6896,
which is the value appropriate to photoresist. In order
that the scattering structure support only two guided-
wave polaritons for these values of A, and ed in the ab-
sence of the surface roughness, we find from Eq. (3.18)
that the mean thickness of the film d has to satisfy the
inequalities 365.1 nm &d &608.5 nm.

The length L of the rough surfaces used in the simula-
tions was L =25 600 nm. The ratio L/g assumed in this
work, where g is the half-width of the intercept of the in-
cident beam with the mean scattering plane x3 =0, was
L/g=4. The length L was divided into N=400 subin-
tervals of equal length in solving the integral equations
arising in the scattering theory presented in Ref. 11 by
converting them into matrix equations. In the calcula-
tion of the contribution to the mean differential reflection
coefficient from the incoherent component of the scat-
tered light, (BR, /88, );„„haverages over N =1000 reali-
zations of the surface profile, generated by the method
described in Appendix A of Ref. 12, were used.

The angle of incidence assumed in these calculations
was fixed at 80=0', i.e., normal incidence was assumed,
and the mean thickness d of the dielectric film was
varied. This choice of experimental conditions was made
because in the numerical simulations, which take
multiple-scattering of all orders into account, it was
found that as the angle of incidence is given increasing
positive values, the satellite peak at the scattering angle
8, =8, which is the larger of the two angles 8+ in mag-
nitude, washes out rapidly, presumably due to shadowing
effects, and only the satellite peak at 8, =8+ is observed.
At normal incidence both satellite peaks are clearly visi-
ble in (BR,/BH, );„„h,and as the thickness of the film is
decreased, the scattering angles 8, =8+= —8 at which
they occur increase in magnitude due to the changes in
the values of the wave numbers q&(co} and qz(co} entering
Eq. (4.38). In our calculations values of d equal to 580
and 500 nm were used. The satellite peaks for these
choices of d should occur at scattering angles given by
8, =+13.3' and 8, =+17.7', respectively.

In Fig. 8 we present our results in the case that the sur-
face roughness is characterized by the parameters 5= 110
nm and a=260 nm. For a mean film thickness of
d =580 nm [Fig. 8(a)], in addition to the enhanced back-
scattering peak at 8, =0 two well-defined satellite peaks,
symmetrically placed with respect to the retroreflection
direction, are observed. The vertical dashed lines indi-
cate the positions of the satellite peaks predicted by Eq.
(4.38). When the thickness of the film is decreased to 500
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FIG. 8. Computer-simulation results for the differential
refiection coeScient (BR,/Be, } h for the scattering of a s-
polarized beam of light from a one-dimensional random surface
on a photoresist film deposited on a planar perfectly conducting
substrate. 80=0', 5=110 nm, a=260 nm, A, =632.8 nm,
ed=2. 6896, L =25600 nm, g=6400 nm, N=400, N~=1000.
(a) d =580 nm, (b) d =500 nm. The vertical dashed lines indi-
cate the scattering angles at which the satellite peaks should
occur according to Eq. (4.38).

nm [Fig. 8(b)], the positions of the two satellite peaks are
shifted to larger values of.the scattering angle as expect-
ed. The small differences between the values of the
scattering angles at which the satellite peaks occur in the
numerical-simulation results and the values predicted by
Eq. (4.38) are presumably due to the fact that the numeri-
cal simulations take into account the renormalization of
the values of q, (co) and qz(co) caused by the surface
roughness, while the values of q&(co) and q2(co) used in
obtaining the predicted values of 8+ were calculated in
the absence of the roughness.

We also note that the angular width of the enhanced
backscattering peak, as defined by the distance between
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the subsidiary minima separating the subsidiary maxima
from the enhanced backscattering peak, does not change
when d is changed. This is as expected, since the angular
width of the enhanced backscattering peak is determined
by the ratio A, /a', and thus should not change when
only d is changed.

VI. CONCLUSIONS

In conclusion, we note that the results obtained in this
paper for the angular dependence of the intensity of the
light that has been scattered diffusely from a thin dielec-
tric film with a one-dimensional, randomly rough inter-
face with vacuum deposited on the planar surface of a
perfect conductor, which supports two guided-wave
modes, have qualitatively the same structure for any oth-
er bounded system with a discrete spectrum, indepen-
dently of the nature of the scatterers (volume or surface),
the transverse dimension of the system (film thickness),
and the nature of the modes comprising the discrete spec-
trum. The sole requirement for obtaining such a depen-
dence is that the mean free paths of these modes must be
much larger than the inverse of the characteristic "dis-
tance" between the wave numbers of consecutive modes
5q(co)= lq„+,(co) —q„(co)l. When this condition is
satisfied, enhanced scattering occurs not only into the
retrorefiection direction, but also into additional scatter-
ing directions. The number of the additional, satellite,
peaks is determined by the number of discrete guided
modes supported by the scattering system, and the ampli-
tudes of the peaks are inversely proportional to the thick-
ness of the film.
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The function Go(k, co) is a Green's function for the same
dielectric film on a perfectly conducting substrate system,
and the transition matrix T(qlk) is postulated to satisfy
the equations

T(qlk)=v(qlk)+ f v(qlp)GO(p, ~)T(plk}

(A3a)

=v(qlk)+ f" T(qlp)G, (p, ~)v(plk),

(A3b)

where the scattering potential V(qlk) is defined by Eqs.
(4.8), (Al) and (A3) once we know what Go(k, co) is. We
also introduce the Green's function G (ql k) for the dielec-
tric film on a perfectly conducting substrate in the case
that the vacuum-dielectric interface is no longer planar
but is defined by the equation x3 =g(x, ). It is the solu-
tion of the equation

G(ql k) =2m5(q —k)GO(k, co)

+G (q, co)f v(qlp)G(plk} (A4a)

= 2m 5(q —k)Go(k, co }

+Go(q, co)T(ql k)GO(k, co) . (A4b)

When we use Eq. (A4b) in Eq. (Al), we find that the
scattering amplitude R, (ql k) takes the form

R, (qlk) =2n5(q k)[RO(k—,co)+2iao(k, co)GO(k, co) j

planar and parallel. It is given by Eq. (4.25) as

Ro(k, co)

i—ad(k, co)cosad(k, co)d+ao(k, co)sinad(k, co)d

i ad(k, co)cosa&(k, co)d +ao(k, co)sinad(k, co)d

(A2)

APPENDIX 2iG(ql k—)ao(k, co) . (A5)

In this Appendix we sketch out the manner in which
the low-order perturbative calculation described in Sec.
IV can be related to the kind of many-body perturbation
theory calculation employed by Freilikher, Pustilnik, and
Yurkevich in their general treatment of the scattering of
light by random systems displaying degenerate time-
reversal symmetry.

%e begin by postulating that the scattering amplitude
R, (q lk) has the form'

R, (qlk }=2m5(q k}RO(k,co)—

Ro(k, co)+2iao(k, co)GO(k, co) = —l,
which yields the result that

Go(k, co)

(A6)

i sinad (k, co )d

iad(k co}cosad(k, co)d+ao(k co}sinad(k co)d

We now use the preceding results to obtain Go(k co) and

v(ql k)
We first define Go(k, co) through the condition

2iGO(q, co)T(ql—k)GO(k, co)ao(k, co) . (Al)
(A7)

In this expression Ro(k, co) is the Fresnel coefBcient for
the scattering of s-polarized light from a dielectric film
deposited on a perfectly conducting substrate, when the
vacuum-dielectric and dielectric-substrate interfaces are R, (qlk)= —2~5(q —k) —2iG(qlk)ao(k co) . (A8)

The motivation for this choice is that it reduces the ex-
pression (A5) for the scattering amplitude to the simple
form
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By combining Eq. (A8) with Eq. (4.5) we find that the
contribution to the mean differential reflection coefficient
from the incoherent component of the scattered light is
given in terms of the Green's function G {qlk) by

If we substitute Eq. (Al) into Eq. (4.8), we obtain an
equation satisfied by the transition matrix T(ql k),

Mpqeoq, co Tq
3

(
BR, 1 2 co

cos e,cos00
incoh ~ i

x [ & I G(qlk) I'& —
I & G(qlk) & I'],

where q
= (co/c)sine, and k =(cole )sin90.

(A9)

[M(plk)RO(k, co)—N(pl k) ]

2iao(k, a))GO(k, a))
(A10)

If T(qlk) in this equation is now replaced by the right-
hand side of Eq. (A3b), the result is

f M)plq)G, )qra)V)qlk)+ J J "M(p)lq)G, (qra)T(q)lr)G, (rru)V(r)lk)

[M(p I
k)R 0(k, co ) —N(p I k) ]

2iao(k, co}G (0k, co)
(A 1 1}

If we use Eq. (A10) in the second term on the left-hand
side of Eq. (All) to eliminate T(qlr), we obtain finally the
equation satisfied by the scattering potential V(qlk},

f [M(plq)+N(plq)]
2lao q, co

[M(pl k)&-(k, ~)—N(plk)D+ (k, ~) ]

2ao(k, qo)sinad (k, co)d
(A12)

where we have used Eq. (A6) to simplify the left-hand

side.
We can solve Eq. (A12) for V(qlk) as an expansion in

powers of the surface-profile function g(x i ). Thus, if we

write

V(qlk)= g V'"'{qlk),
n=1

(A13}

where the superscript denotes the order of the corre-
sponding term in g(xi), we obtain for the first three
terms in this expansion

COV"'(qlk) =(ed —1) P "(q —k),
c

COV"'(qlk) =—2(s'd 1) 2 P '(q —k) [aq(q, a) )cotaq(q, co)d +cotaq(k, co)dad (k,co)],
c

(A14a)

(A14b)

(A14c)
2 NV' '(qlk) = , (ed —1) —[q +k (4Ed —2) +—2ad(q, oo)cotad(q, co)d cotad(k, co)daz(k, co}]P '(q k) . —

c c

& G{qlk}& =2m5{q —k)G(q, qo),

where

(A15)

In the small roughness approximation the scattering
potential V(qlk) in Eqs. (A3) and (A4a) is approximated
by V"'(qlk), given by Eq. (A14a}. We will make this ap-
proximation in what follows.

The calculation of the contribution to the mean
differential reflection coeScient from the incoherent com-
ponent of the scattered field, Eq. (A9), requires
knowledge of the averaged Green's function (G(qlk)).
Due to the stationarity of the surface-profile function
g(x i }, ( G(ql k) ) is required to be diagonal in q and k,

co qq dp
M(q, qo) =5' (ed —1), f g( lq

—pl )Go(p, ~)
C —~ 2'

(A17)

in the small roughness approximation.
To calculate the two-particle Green's function

( I G(ql k) I ) needed in the evaluation of Eq. (A9) we con-
sider the more general two-particle Green's function
( G(p+ lp'+ )G'(p —lp' —) ), where p4 =pkq/2 and
p'4 =p'kq/2, and take the limit as q ~0 at the end of
the calculation. Due to the stationarity of /{xi}, this
function can be written in the form

G(q, qo) = 1

Go '{q,co)—M(q, co)
(A16) (G(p+ Ip'+)G'(p —Ip' —) & =L iP» (q), (A18)

The proper self-energy M(q, co) appearing in Eq. (A16) is
given by

where the reduced two-particle Green's function P .(q)
satisfies the Bethe-Salpeter equation'
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ct)pp (q) =2~5(p —p')G(p+, co)G'(p —,co)

+G(p+, co)G'(p —,co) =2vr5(p' p—"}U'0'(q)

X U, q, ~ q (A19)
2

CO=2~5(p' —p") (e„—1) 5 g(lp —p'I) .
C

(A24)

where U, (q) is the irreducible vertex function.
The solution of Eq. (A19) can be written formally as

Thus, we find that U'0)(q) is in fact independent of q and
can be written in the form

ct)p .(q) =2n5(p —p')G(p+, co)G'(p —,co) U' '=$v g(lp —p'I), (A25)

+G(p+, co}G*(p , co)R—pp (q) where

X G(p'+, co)G*(p' —,co), (A20)
CO&=5(ed —1)
C

(A26)

where RPP (q) is the reducible vertex function, and is the
solution of the equation

Rpp (q) = U .(q)

+ U, qGS+, co G*s—,coR, q2'

(A21)

In the language of diagrammatic perturbation theory, the
vertex function U' ' corresponds to a single rung of a
ladder diagram.

When the surface height correlation function
W(lx) l)=exp( —x) /a ) is a sharp function, i.e., when
the transverse correlation length a is small, we can solve
Eq. (A21) analytically. This is because in a convolution
integral containing the power spectrum of the surface
roughness,

If we now note that, since g p s $

I & G(p Ip'} &
I'= I:2~5(p —p')]2IG(p, ~) I'

=L,2n 5(p —p')
I G(p, co) I2, (A22)

we can make the replacement g(lp —sl)
~g( lp I )g ( lsl )/g (0) in this limit. ' As a consequence,
Eq. (A21} becomes an integral equation with a separable
kernel,

then on combining the results given by Eqs. (A18) and
(A20) with the expression for (BR, /c}8, );„„„givenby
Eq. (A9), we obtain the result that

3
~Rs 2 c0

cos O, cos8o
incoh

X IG(q, co)l R,k(0)IG(k, co)l', (A23)

where we recall that q =(co/c)sin8, and k =(co/c)sin00.
To solve Eq. (A21) we need an approximation to the ir-

reducible vertex function U .(q) that enters it. We will

approximate it by the expression that corresponds to the
sum of all maximally crossed diagrams in diagrammatic
perturbation theory. It is this contribution that describes
the coherent interference between each multiple-
scattering sequence and its time-reversed partner that is
responsible for the effects being studied in this paper. '

To obtain this expression we first assume for UP (q) the
lowest-order approximation to it in g(x) ), U'0,'(q), which
is obtained from the result that'

R(L)( )
—U(0) + pr2g lpl

PP PP g (0)

X
" 'g s XqR'~'q, (A27)

K, (q}—:G(s+, co)G'(s —,co)

=K', (q) .

(A28a}

(A28b)

The solution of Eq. (A27) is

U~0) + 4 g ( Ip I } I (q) g( Ip'I }
g(o) W' g(0)

1 — I(q}
g 0

(A29)

where the superscript L denotes that the solution of this
equation is the contribution to the reducible vertex func-
tion from the ladder diagrams, and where we have

simplified the notation by defining
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where

I(q)= J g (Ig1)x,(q) (A30a)

=—f ds g (s)ReK, (q) .
0

(A30b)

In obtaining Eq. (A30b) we have used Eq. (A28b).
We next carry out the transformations

p~ —,'q+ —,'(p —p'), p'~ —,'q —
—,'(p —p'), and q~p+p' in

the result given by Eq. (A29). They transform R' .'(q)
into U' .c'(q), the contribution to the irreducible vertex
from the maximally-crossed diagrams in diagrammatic
perturbation theory. ' The result is

U(Mc)( ) U(0) + Pr4
g(-,' Ip

—p'~ }

PP PP g(0)
I(p+p'}
W

1 — I(p+p')
g 0

C (0)}
G(q, 0))=

q q(0)) ib—, (~)— (A32)

In this expression the summation index m takes the
I

g(0)
(A31)

where we have used the result that UPP is invariant under
these transformations, and have passed to the limit q ~0
in terms where this produces no singularities. Equation
(A31) is the approximation to the irreducible vertex func-
tion we will use in solving Eq. (A21).

To proceed beyond this point we must analyze the
form of the vertex function A in its dependence on p
and p', and for this we need the structure of the function
K, (q) defined by Eq. (A28).

The Green's function G(q, 0)} Eq. (A16), has poles at
the wave numbers of the guided waves supported by the
scattering structure corresponding to the frequency co of
the incident light. We will exploit this circumstance to
simplify the subsequent calculations by making a pole ap-
proximation to G(q, co} for a two-mode system of the
form

C C„
K,(q)—= gg .

„

i(h +iI),„)+(q—q„)—q

s —
q ib, —

1

s —q„+ib,
„

(A33)

in the limit q ~0. In the double sum we retain only the
terms that are large for small values of q. This reduces
the expressions (A33) to

values —2, —1, 1, 2, and C (co)= —C (0)),
q (co}= —

q (0)), and 6 (0))=—b, (0)). Here q, (0))
and q2(co) are the wave numbers of the two guided waves,
while h)(0)) and 62(co) are their decay rates. In writing
Eq. (A32), we have neglected the shifts in the values of
q, (co) and q2(0)), obtained in Sec. III in the absence of
surface roughness, that arise from the real part of the
self-energy M(q, 0)), and have used for C)(0)) and C2((g))
the residues at the poles q =q&(0)) and q =qz(0)) of the
unperturbed Green's function, G0(q, 0)). The decay rate

(co) (m = 1,2) has been written as the sum
b,"(co)+i'"(co},where b "(co) is the decay rate of the
guided wave m associated with the imaginary part of the
dielectric constant of the film, while 6's")(0)) is the decay
rate due to the roughness induced conversion of the guid-
ed wave into other guided waves and into volume elec-
tromagnetic waves. The former was obtained numerical-
ly from a study of G0 (q, 0)) in the vicinity of q =q (0)}.
The latter is given by 5'~")(co}=C (co)lmllf[q (co),co].
For a dielectric film of mean thickness d =500 nm and
dielectric constant ed=2. 6896+i0.0075, illuminated by
s-polarized light of wavelength A, =632.8 nm, we find
that q, (0))=1 5466.( 0)/c), q2(co)=1.2423(0)/c), C, (co)
=0.01956, C2=0.08639, while 6Ig)(0)) =0.00234(0)/
c ), 5')s")(0)) =0.000 54(0)/c ), b t2"(0) )=0.002 56(0)/c ),
and 5~2s")(co)=0.002 73(ro/c ). In obtaining the values of
6')s")(0)) and hz'")(0)) we have assumed that the rough-
ness of the vacuum-dielectric interface is characterized
by the parameters 5= 15 nm and a = 100 nm.

The substitution of Eq. (A32) into Eq. (A28a), together
with a partial fraction decomposition of the product of
the Green's functions, yields the result
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It is only the real part of K, (q) that is needed for evaluating the function I(q) defined by Eq. (A30b), and from Eq.
(A34) we find that this is given by
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%e again drop all terms that are small when q is small, and obtain
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In writing Eq. (A36) we have also dropped all functions of s that are not resonant at a positive value of s, since the in-
tegration in Eq. (A30b) extends only over such values of s. With the approximation

z z
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by combining Eqs. (A30b) and (A36)
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where we have used the Gaussian form (2.8) for the power spectrum of the surface roughness. It follows from Eq (A38).
that
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2 2C
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(A39)

When the result given by Eq. (A39) is substituted into Eq.
(A31), we find that the vertex function A~~. is large when
p+p'=0 due to the first two terms on the right-hand side
of Eq. (A39)—this gives rise to the enhanced backscatter-
ing peak in (BR, /BO, );„„z—and it is also large when

I

p+p'=-+(qz —q, ), due to the third and fourth terms on
the right-hand side of this equation —this gives rise to
two satellite peaks, one on each side of the enhanced
backscattering peak.

The Neumann-Liouville solution of Eq. (A21) in the
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In Fig. 9 we plot the contribution to the mean
differential re8ection coe%cient from the incoherent com-
ponent of the scattered light, (BR,/88, );, h, as a func-
tion of the scattering angle 8„that is obtained when the
result given by Eqs. (A25), (A26), (A38), (A39), and (A41)
are used in Eq. (A23). The Gaussian form of the power
spectrum of the surface roughness, Eq. (2.8), has been
used in these calculations, and the experimental and
roughness parameters assumed are those used in obtain-
ing the values of q, z(co), 5t 2(co), and C, 2(co) quoted fol-
lowing Eq. (A32) above. The enhanced backscattering
peak and its two satellite peaks are clearly visible in the
results plotted in Fig. 9. The positions of the satellite

peaks are at scattering angles given by sinO,
= —sin8o+(c/co)[qz(co) —q, (co)]. For comparison, we
have also plotted the results for (BR, /BO, );„„„obtained
from the third-order perturbation calculation carried out
in Sec. IV for the same values of the experimental and
roughness parameters. It is seen that although there are
some small quantitative differences between the two sets
of results, they are in quite good overall agreement with
each other. This suggests that the approximations made
in this Appendix in order to obtain an analytic result are
valid for the experimental and roughness parameters as-
sumed in the calculation leading to Fig. 9.
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